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Yuzhou Tang,1,2 Tim T. Cockerill,2,3 Andrew J. Pimm,3 and Xueliang Yuan1,4,*

SUMMARY

Electric vehicles (EVs) are currently beingpromoted to reduce transport emissions.
We present a life cycle assessment of EV charging behaviors based on marginal
emissions factors. For Great Britain, we find that electricity consumption accounts
for the highest proportion of life cycle carbonemissions fromEVs.Wehighlight the
potential life cycle carbon emissions reduction brought by charging during periods
when the grid mix produces relatively low emissions. While our study focuses on
Great Britain, we have applied our methodology to several European countries
with contrasting electricity generation mixes. Our analysis demonstrates that
countries with a high proportion of fossil energy will have reduced benefits from
deploying EVs, but are likely to achieve increased benefits from smart charging ap-
proaches. We conclude that using marginal emissions factors is essential to under-
standing the greenhouse gas impacts of EV deployment, and that smart charging
tied to instantaneous grid emissions factors can bring benefits.

INTRODUCTION

Electric vehicles (EVs) are set to gradually replace internal combustion engine vehicles (ICEVs) as the main

technology for personal transportation (OLEV, Office for Low Emission Vehicles, 2017). This transformation

is intended to reduce greenhouse gas (GHG) emissions significantly over vehicle lifetimes, supporting net-

zero targets (BEIS, The Department for Business, Energy and Industrial Strategy, 2019b). Meanwhile, the

electrification of passenger vehicles is considered a promising strategy to reduce the environmental impact

of transportation (Hill, et al., 2019), which mainly includes battery electric vehicles (BEVs), plug-in hybrid

electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs) (Boriboonsomsin, 2021). In this study, we

investigate the extent to which EV’s reduce emissions, and explore how smart vehicle charging processes

can be managed to maximize the potential benefits. The assessed EVs include BEVs and PHEVs.

Several previous studies have suggested that introducing EVsmay not necessarily lead to carbon emissions

reductions in every case (Del Pero et al., 2018; McLaren et al., 2016; Casals et al., 2016; Buchal et al., 2019),

and in some circumstances EV emissions could exceed those of ICEVs. The lifecycle analysis (LCA) ap-

proaches used in these studies indicate that the origin of the electricity used for charging is key, with carbon

intensity being a critical factor (Petrauskien _e et al., 2020; Raugei and Winfield, 2019; Rosenfeld et al., 2019;

Wu et al., 2019; Burchart-Korol et al., 2020). In many studies, however, the carbon intensity of electricity is

evaluated in a relatively simple manner that does not take full account of its increasingly important variation

with time and location (Rees et al., 2014; Sun et al., 2019).

Marginal emissions factors (MEFs) provide a convenient approach for characterizing the temporal variation

in the carbon intensity of the electricity used to charge EVs. While MEFs are well understood in power sys-

tem analysis, their application to the LCA of EVs has received scant attention in the literature (Hawkes, 2014;

McLaren et al., 2016; Pimm et al., 2019; Jochem et al., 2015). This paper further develops an MEF-based

technique formulated by some of the authors to evaluate how smart charging approaches can be used

to minimize the emissions associated with EV charging. As MEFs vary with time, charging behavior (i.e.,

when users choose to charge their vehicles) plays a crucial role in influencing emissions (see e.g., Morrissey

et al., 2016). We supplement our approach therefore with a specific cluster analysis of EV domestic charging

behavior, accounting for charging time, plug-in duration, and energy demand. This cluster analysis builds

on concepts from charging behavior modeling efforts (Sun et al., 2020; Aghabozorgi et al., 2015; Khaki
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et al., 2019; Akman et al., 2019; Xydas et al., 2016; Straka and Buzna, 2019) and the identification of charging

characteristics (Chaouch, 2014; Helmus et al., 2020; Wang et al., 2019).

At the conclusion of our analysis, a comparative environmental impact assessment of EV charging is pre-

sented. The carbon emissions from different charging behaviours are assessed using hourly electricity

grid emissions factors, and we determine the potential to further reduce emissions by load shifting during

the period the vehicle is plugged in. Our work provides insights into the carbon emissions associated with

EVs in the UK, considering upstream emissions from electricity generation, and analyses the decarboniza-

tion potential of smart EV charging. As electricity generation mixes vary considerably between different

countries, we also present comparative research for Poland, Ireland, and Spain, demonstrating how the

methodology can be applied in different national contexts.

RESULTS AND DISCUSSION

Baseline life cycle carbon emission analysis using average emissions factors

To provide background, and give a baseline against which to demonstrate the importance of usingMEFs to

analyse charging emissions, we present a simple analysis of the life cycle carbon emissions associated with

EV charging in British households for 2019. For this analysis, we assume that an EV starts charging imme-

diately when it is plugged in, and continues charging until the battery is fully charged, a process we will refer

to as ‘‘passive charging’’. The functional unit of the system is taken as a single domestic EV charging event,

and all analyses use the same functional unit for comparison. The system boundary is defined as ‘‘cradle to

grave,’’ as shown in Figure 1.

Figure 2 provides the calculated life cycle carbon emissions for the EV, in which the average carbon emis-

sions factors (AEFs) for the GB electricity grid in 2019 as given in the greenhouse gas reporting (BEIS, The

Department for Business, Energy & Industrial Strategy, 2019a) are used to calculate the environmental

impact of electricity consumption. The results show that the life cycle carbon emissions are primarily related

Figure 1. System boundary of the research
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to the energy delivered. Electricity consumption accounts for approximately 83% of the total CO2 emis-

sions, followed by manufacturing of the battery (11%), the EV without battery (4%), and the charger (2%).

Clearly, electricity consumption is the key source of carbon dioxide emissions associated with this EV. How-

ever, as with most previous research, the analysis in this section has not taken variations in grid emissions

factors into account. In practice, carbon emissions can vary considerably over time depending upon the

share of generation from renewables, and the time at which charging takes place is the key determinant

of life cycle carbon emissions. In this paper, we explore the effect of taking this variation into account.

Clustering of charging behaviors

To investigate the greenhouse gas emissions associated with EV charging, and the potential to reduce

these emissions by load shifting in response to grid emissions factors, we make use of the domestic EV

charging dataset provided by the UK government’s office for low emission vehicles (OLEV), focusing on

the characteristics of charging time, charging duration, and energy demand (DfT, The Department for

Transport, 2018). This dataset comprises over 3 million charging sessions, so clustering is used to focus

the analysis on a small number of representative charging sessions. Our clustering approach draws on pre-

vious work aimed at analyzing large charging behavior datasets (Helmus et al., 2020).

We consider a charging session to be a decision of an EV user to charge a specific volume of energy from a

particular connection time, for a specific duration, and then disconnect at a specific time. Histograms of the

four features (connection time, disconnection time, energy consumed, and connection duration) of ses-

sions in the OLEV dataset are shown in Figure3.

For each feature shown in the figure, colours are used to indicate the groups used in the clustering process.

Connection and disconnection times were normalized from 0 to 1, with 0 and 1 indicating the start and end

of the 24-h day (00:00 and 23:59, respectively). Connection and disconnection times were divided into

morning (06:00–12:00), afternoon (12:00–18:00), and night time (18:00–06:00) periods for clustering pur-

poses, represented by the letters M, A, and N, respectively. The connection and disconnection times

are characterized by evening and morning peaks, respectively. The energy consumption features were

divided into four groups: small (0–5 kWh), medium (5–10 kWh), big (10–25 kWh), and huge (>25 kWh), rep-

resented by the letters S, M, B, and H, respectively. The consumption data are mainly concentrated in the

small andmedium groups, with the number of charging sessions at higher levels of consumption tending to

zero. The plug-in duration was separated into four groups: short (0–3 h), medium (3–12 h), long (12–24 h),

and very long (>24 h), represented by the letters S, M, L, and V, respectively. The distribution of plug-in

duration contains two distinct peaks, one in each of the short and long connection duration groups.

The Gaussian mixture model (GMM) approach was used to develop clusters of charging events based on

these four features. Using the Bayesian information criterion (BIC), it was found that a cluster size of 10

Figure 2. Life cycle carbon dioxide emissions for EV charging
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provides the best model performance, as shown in Figure 4. The BIC value represents the overfitting of the

model, and the lower value indicates better fitted model. The details of the four features for each cluster,

labelled using the first letters of the feature names, are presented in Table 1. A large majority of sessions

(over 90%) are in the clusters NMML, AAMM, AASS, andNMBL. Two of these (NMML andNMBL, containing

over 50% of sessions) are characterized by overnight charging, with connection and disconnection times

being around the end and start of the work day. The other two (AAMM and AASS) are characterized by af-

ternoon charging. These four clusters are the focus for the rest of this study.

Life cycle carbon emissions with marginal emissions factors

For our analysis, the life cycle carbon emissions associated with a charging event are divided into two parts:

facilities (battery, charger, and EV without battery) and electricity consumption, as shown in Figure 5. We

focus on the four major clusters (NMML, AAMM, AASS, andNMBL) only. The connection and disconnection

times for each cluster are used to calculate the carbon emissions from the grid with the MEF analysis. The

carbon emissions of the four main behavior clusters under the functional unit (a single domestic EV

charging event) are calculated for each day of the year to reveal the effect of variations in grid emissions

factors over the year.

Figure 6 provides a complete display of the life cycle carbon emissions associated with every charging

event for the four main behavior clusters from 1st January 2019 to 31st December 2019. A summary of

the life cycle carbon emissions from one charging event for each charging behavior is shown in Table 2.

The life cycle carbon emissions calculated using MEFs are 25% higher than those found using the AEFs

for the GB grid in 2019, which is similar to the difference found by Hawkes (Hawkes, 2010) in an analysis

of the national energy system. In addition, many studies have shown that AEFs would seriously erroneously

calculate the emissions related to the intervention (Hawkes, 2010; Bettle et al., 2006; Thind et al., 2017).

Therefore, MEFs are more reliable than AEFs in evaluating the carbon emissions impact in this study.

Upstream emissions from electricity generation account for the large difference in emissions for one

charging event across different times of the year. The results show that variations in upstream emissions

could lead to more than a 50% life cycle carbon emissions difference (for example, considering NMMLbe-

haviour, the emissions of the charging event on January 21 emits double that of the charging event on

March 18). The reason behind this should be the difference in electricity generation structure during the

same period of these two days. Carbon emissions in wintertime (December, January, and February) are

Figure 3. Features of charging sessions
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higher than those in summertime (June, July, and August), and the difference in average emissions be-

tween the two periods is approximately 20%.

Potential carbon emissions reduction from EV smart charging

Electricity consumption is responsible for the majority of the carbon emissions from EV charging in our

functional unit. We now investigate the potential to reduce these emissions by changing the charging

time point from times of high MEF to times of low MEF, known here as smart charging. The emissions

reduction associated with this approach are calculated through comparison with passive charging. One

hour is the minimum length of a charging period according to the data resolution. As a result, the AASS

cluster does not have the possibility to reduce emissions by load shifting. Therefore, the clusters of

NMML, NMBL, and AAMM are analysed with both passive and smart charging approaches, but only pas-

sive charging is analysed for AASS.

Figure 7 shows the monthly average reductions in life cycle carbon emissions of the NMML, NMBL, and

AAMM behaviors. The decarbonization potential is greatest for the NMML and NMBL behaviors because

both are characterized by overnight charging and hence long idle times. These provide increased flexi-

bility, demonstrating the highest average life cycle carbon emissions reduction (around 5% in both cases).

AAMM has a medium plug-in duration and could only achieve a reduction in life cycle carbon emissions of

approximately 2%. The charging events in the AASS behavior are only one hour long; therefore it is not

possible to determine the benefits of smart charging using hourly resolutionMEF data. The results illustrate

that the benefits of smart charging are highly associated with the plug-in duration.

Emissions reduction from smart charging varies considerably with month. For example, compared with

passive charging, smart charging for NMML in February can induce a more than 9% life cycle emissions

reduction, while that in November could give only a 2% reduction. Because of the behavior characteristics

of the connection and disconnection time, NMML and NMBL have the similar reduction trend in months,

but AAMM is different. The decarbonization benefits mainly rely on the low MEFs time during the plug-in

duration of charging behaviors.

Compared with passive charging, smart charging achieves around a 6% reduction in carbon emissions

when used in the most common charging behaviors, characterized by overnight charging. Plug-in duration

was found to have a crucial impact on smart charging performance, with longer connections typically

providing greater opportunity for load shifting and wider variations in grid emissions factors.

Figure 4. Result of BIC analysis for charging sessions in 2017
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The benefits of smart charging are related to the charge rate as well as charging behaviors. We assume that

the battery controller of the vehicle does not limit charge rates, so that the impact of different domestic

charger capacities (3–22 kW) can be analysed.

The change in charging flexibility is apparent (Figure 8). Increasing charger capacity allows the required

energy to be delivered in a shorter period, increasing the idle time and allowing more charging to occur

in the lowest MEF periods when smart charging is used. Thus, the carbon emissions reduction curve for

different charging behaviors has some intersection points. This phenomenon could be due to the hourly

MEF data used in the present study, with the intersection points reflecting the change in charging hours.

The proportion of emissions reduction for NMML and AAMM steadily increases until the charging time is

less than one hour. Considering NMBL, the reduction proportion increases significantly with charge rate

when the charge rate is below 6.4 kW; above this, it rises more gradually with charge rate to 5%.

Table 1. Overview session types, abbreviations, and distribution properties

Abbreviation Connection time Disconnection time Energy Connection duration Sessions

AABV Afternoon, Afternoon, Big, Very long, 4,212

15:10, 12:22, 18.2 kWh 740.0 h 0.13%

d5.5 h d5.4 h d17.1 kWh d721.6 h

AMBV Afternoon, Morning, Big, Very Long, 18,652

15:20, 11:48, 22.1 kWh 125.7 h 0.59%

d5.3 h d4.8 h d17.6 kWh d51.0 h

MABL Morning, Afternoon, Big, Long, 51,626

09:43, 14:24, 24.2 kWh 15.3 h 1.63%

d6.2 h d5.2 h d6.1 kWh d9.1 h

NAML Nighttime, Afternoon, Medium, Long, 52,562

03:30, 13:40, 7.5 kWh 20.6 h 1.65%

d3.4 h d5.7 h d4.0 kWh d9.4 h

AMHV Afternoon, Morning, Huge, Very long, 64,683

16:09, 10:22, 30.7 kWh 41.0 h 2.04%

d5.5 h d4.2 h d19.8 kWh d24.5hrs

AMMV Afternoon, Morning, Medium, Very long, 81,508

16:52, 10:37, 8.6 kWh 41.5 h 2.57%

d4.0 h d3.8 h d4.8 kWh d5.4 h

NMBL Nighttime, Morning, Big, Long, 402,293

19:21, 08:13, 19.2 kWh 12.9 h 12.66%

d2.4 h d2.1 h d6.9 kWh d3.0 h

AASS Afternoon, Afternoon, Small, Short, 568,331

13:54, 15:00, 3.4 kWh 1.1 h 17.89%

d4.1 h d4.1 h d1.9 kWh d0.6 h

AAMM Afternoon, Afternoon, Medium, Medium, 690,071

12:28, 16:25, 8.0 kWh 3.9 h 21.72%

d4.5 h d4.2 h d4.7 kWh d2.0 h

NMML Nighttime, Morning, Medium, Long, 1,242,865

18:11 09:02 7.22 kWh 14.85 h 39.12%

d3.20 h d3.05 h d3.04 kWh d4.47 h

For connection and disconnection times.

Morning time (M): 06:00–12:00; Afternoon time (A): 12:00–18:00; Nighttime (N): 18:00–06:00.

For energy.

Small (S): 0–5 kWh; Medium (M): 5–10 kWh; Big (B): 10–25 kWh; Huge (H): >25 kWh.

For connection duration.

Short (S): 0–3 h; Medium (M): 3–12 h; Long (L): 12–24 h; Very Long (VL):>24 h.
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Overall, sensitivity analysis revealed that increased charge rate improves the benefits of smart charging by

introducing flexibility to the charge times, and this is particularly apparent when charge rate is increased

from an otherwise low level. Charger capacities of 7 kW could generally achieve good emissions reductions

through smart charging at households.

International comparisons

To explore how the results vary in other countries, the same approaches are now applied to the national

electricity systems of Poland (PL), Ireland (IR), and Spain (ES), to compare the greenhouse gas emissions

from charging electric vehicles with the emissions from internal combustion engine vehicles and assessed

the potential to reduce electric vehicle charging emissions through smart charging in these countries with

each other and Great Britain. Table 3 shows the structure of the electricity system in the different countries

of interest. We selected these countries to explore the effect of different dependencies on fossil fuel-

derived electricity.

Figure 5. Flow chart of the life cycle carbon emissions calculation

Figure 6. Life cycle carbon emissions for each charging behavior in 2019
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Poland has the highest proportion of fossil energy (more than 80%), followed by Ireland (53%), Great Britain

(43%), and Spain (34%). Based on the hourly generation and demand data, the MEFs for Poland, Ireland,

and Spain were calculated using the same approach as Great Britain. The MEFs are predominantly posi-

tively correlated to the proportion of fossil energy.

The method used for Spain, Poland, and Ireland is the same as that used for Great Britain. By assuming that

the EV charging behaviors in the three additional countries are the same as those revealed in theOLEV data

for EV drivers in Great Britain, the average life cycle carbon emissions for charging behaviors in the func-

tional unit can be compared. Figure 9 illustrates the life cycle carbon emissions of the different charging

behaviors in the four countries. Poland has the highest life cycle carbon emissions, followed by Ireland,

Great Britain, and Spain. The results reveal that the life cycle carbon emissions of EV charging are positively

correlated with the proportion of fossil energy in the supply mix.

Table 4 shows the absolute and relative reductions in life cycle carbon emissions from smart charging for

the NMML, NMBL, and AAMMbehaviors in the four countries. Across all countries and charging behaviors,

the greatest reductions are achieved in the two overnight charging behaviors (NMML andNMBL) in Poland,

which has the highest MEFs. The MEFs in other countries are relatively low, resulting in lower emissions re-

ductions. NMML, the charging behavior with the highest idle time, has the greatest reduction in life cycle

carbon emissions from smart charging in all four countries (from 5.2% to 12.8%). The benefits of smart

charging are lowest in the AAMM charging behavior across all four countries (approximately 1.5%), proving

that idle time has a significant influence on the benefits of smart charging.

Table 2. Life cycle carbon emissions of one charging event for each behavior through 2019 (in kgCO2)

NMML AASS NMBL AAMM

Minimum 1.8 1.0 6.3 2.7

Maximum 4.3 1.9 11.3 4.8

Mean 2.9 1.4 7.9 3.3

Based on AEFs 2.3 1.1 6.2 2.6

Figure 7. Percentage reduction of the NMML, NMBL, and AAMM behaviors from using smart charging of EVs instead of passive charging
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The comparison of the four countries provides useful insights into the impact of upstream electricity emissions

on thebenefits of switching toEVs in different countries. The conclusions on theEV chargingbehaviors inGreat

Britain are applicable in other countries. Electricity consumption is always themain source of carbon emissions

in the life cycle of EVs. The energy demand feature for charging behaviors has an impact on total carbon emis-

sions in all countries. The benefits of smart charging are predominantly associated with idle duration.

Interpretation and policy implications

With the rising number of charging points and financial support from the UK Government, registrations of

EVs have grown rapidly in the UK in recent years and this trend is expected to continue.

Figure 8. Sensitivity analysis of charge rate

(A) Sensitivity for NMML.

(B) Sensitivity for NMBL.

(C) Sensitivity for AAMM. The time that it would take to fully charge the battery from 0% state of charge with the different

charger powers is indicated using vertical dashed lines.
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Although the carbon emissions of all sessions in the datasets were not individually calculated, the life cycle

carbon emissions for one charging event of the four most important charging behaviors (together account-

ing for more than 90% of all charging events) were studied. It was demonstrated that different behaviors

have a significant impact on the emissions arising from EV charging with the current electricity supply struc-

ture in Great Britain. To maximize the benefits of increasing EV deployment, consideration should be given

to policies that influence charging behavior, perhaps by linking electricity prices to current carbon intensity.

Emissions-responsive smart charging, whereby load is shifted away from periods when grid carbon inten-

sity is high, was applied to reduce the emissions in energy consumption. Among the four charging

behaviors, the overnight charging behaviors with long plug-in duration (NMML and NMBL) had the best

emissions reduction performance (approximately 6% reduction in the carbon emissions from electricity

consumption). AAMM with medium plug-in duration showed a 2.2% reduction proportion. NMML and

NMBL, as the overnight charging behaviors, accounted for more than 50% of sessions in the dataset.

Table 3. Proportion of total energy supply for different generation types and the averageMEFs of four countries in

2019

Great Britain (GB) Spain (ES) Poland (PL) Ireland (IE)

CCGT 41.1% 29.0% 6.8% 35.3%

Oil 0 0.8% 1.0% 8.9%

Coal 2.1% 4.2% 73.4% 11.2%

Nuclear 19.0% 21.1% 0 0

Wind 16.5% 19.7% 9.3% 39.3%

Pumped 0.6% 1.2% 0.6% 2.5%

Hydro 1.3% 10.1% 1.0% 3.4%

Other 0.3% 0.5% 0 0

Biomass 6.2% 1.1% 1.3% 0

Solar 4.0% 5.4% 0 0

Transmission 9.0% 5.9% 6.6% �0.1%

Average MEFs (g/kWh) 361 276 761 492

Figure 9. Comparison of life cycle carbon emissions of four charging behaviors in the four countries
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Consequently, the application of EV smart charging in households could make a valuable contribution to-

wards the decarbonization of transport.

The research was repeated for Poland, Ireland, and Spain to investigate how the results vary between

different countries with different electricity systems. In general, similar results to Great Britain were

achieved with smart charging during connection events with high idle times (typically those involving over-

night charging) providing good emissions reduction across all four countries. A clear trend is that countries

with higher emissions factors achieve greater benefits from smart charging.

This paper has presented a simulation study of the carbon emissions arising from domestic EV charging

using recent data. While smart EV charging approaches offer clear emissions benefits in the current elec-

tricity systems analysed, future studies should examine the financial impacts and public acceptance of such

approached, and the likely impacts of future energy scenarios. Although the idle time of public and rapid

charging is estimated to be smaller than domestic charging, their environmental impact and the potential

benefits from smart charging are also worthy of further investigation.

Conclusions

Through this work we have investigated the greenhouse gas emissions from charging electric vehicles in

the UK and three other European countries, and assessed the potential to reduce electric vehicle charging

emissions through smart charging based on electricity grid emissions factors. The UK analysis revealed that

electricity consumption accounts for the highest proportion (around 87%) of life cycle carbon emissions

from EVs. These emissions vary considerably over time depending upon the share of generation from

non-fossil generation, and charging behavior is the key determinant of life cycle carbon emissions.

Compared with passive charging, smart charging achieves around a 6% reduction in carbon emissions

when used in the most common charging behaviors, characterized by overnight charging. Plug-in duration

was found to have a crucial impact on smart charging performance, with longer connections typically

providing greater opportunity for load shifting and wider variations in grid emissions factors. For Great Brit-

ain, we figure out the carbon emissions of EVs under a range of charging behaviors. We also highlight the

potential life cycle carbon emissions reduction brought by charging during periods when the grid mix pro-

duces relatively low emissions. The research was repeated for three other European countries; the results

demonstrated that the countries with higher emissions factors achieve greater benefits from smart

charging, and smart charging during connection events with high idle times (typically those involving over-

night charging) provides good emissions reduction across all four countries. We expect that the findings of

this study will provide a reference for the strategic implementation of electric vehicles and smart battery

charging systems in the UK and the methods employed are applicable to any country.

Limitations of the study

In this study, we note that the large-scale emission responsive charging will change the condition of the net

demand, which in turn will affect the MEFs at that time. Future work could also consider the effects of

charging state and examine the financial impacts and public acceptance.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

Table 4. Carbon emissions reduction from using smart charging compared with passive charging for different

countries throughout the year

Great Britain (GB) Poland (PL) Ireland (IE) Spain (ES)

Charging behaviour NMML 0.15 kg 0.78 kg 0.33 kg 0.24 kg

5.2% 12.8% 8.4% 10.0%

NMBL 0.40 kg 1.89 kg 0.68 kg 0.36 kg

5.0% 11.6% 6.5% 5.8%

AAMM 0.06 kg 0.09 kg 0.08 kg 0.04 kg

1.9% 1.4% 1.8% 1.5%
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and materials should be directed to and will be fulfilled by

the lead contact, Xueliang Yuan (yuanxl@sdu.edu.cn).

Materials availability

No materials were used in this study.

Data and code availability

This paper does not report original code, which is available for academic purposes by request from the lead

contact.

Links of the source data used in this paper are available in the key resources table. Data on the LCI are avail-

able within the supplemental information.

Any additional information required to reanalyse the data reported in this paper is available from the lead

contact upon request.

METHODS DETAILS

This work was focused on a large domestic charging dataset for the UK in 2017 and electricity generation

data for Great Britain in 2019. The Gaussian mixture model clustering approach was used to focus the anal-

ysis on the most important charging behaviours. The emissions arising from electric vehicle charging were

determined using marginal emissions factors derived from linear regression of the generation data. The

GWP100 method is used to convert the LCI of the EV facilities to carbon emissions for the charging

behaviours.

Goal and scope definition

We present an investigation into the life cycle carbon emissions of EV charging in British households in

2019. The scope of the study includes the current electricity generation mix in Great Britain and an assess-

ment of the impact of changes to this mix combined with different charging behaviours. The functional unit

of the system is taken as a single domestic EV charging event, and all analyses use the same functional unit

for comparison. The system boundary is defined as ‘‘cradle to grave’’. This encompasses the lifetime of the

product from the extraction of raw material to waste disposal, including the impact of the charger, the bat-

tery, and the vehicle.

Life cycle inventory

The production, use, and disposal of the infrastructure of EVs (the charger, the battery, and the vehicle

without battery) are involved in this study, with details provided in supplemental information (Table S1).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

OLEV domestic EV charging dataset UK The Department for Transport https://www.gov.uk/government/statistics/

electric-chargepoint-analysis-2017-domestics.

Generation and demand data for energy

supply in Great Britain

Elexon portal and Sheffield University https://www.gridcarbon.uk

ENTSO-E dataset ENTSO-E Transparency Platform https://transparency.entsoe.eu/dashboard/

show

Software and algorithms

SimaPro 7.0 PRé Sustainability B.V. https://simapro.com/
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The environmental impact of the infrastructure is divided by the energy consumption. The life cycle inven-

tory of EV manufacture refers to the electric passenger car without battery in the Ecoinvent database from

SimaPro 7.0 (2021). The recycling of tires, the replacements of several components and the EVs without bat-

tery is considered and the detailed recycling situation is based on the research of (Hao et al., 2017). The Li-

ion (LiMn2O4) technology is chosen for the battery due to its extensive use in the EVs (Miao et al., 2019). The

charger capacity is assumed to be 7 kW in this study, and the effect of varying the charger capacity from

3 kW to 22 kW is explored. Inverter and charge efficiencies are assumed as 97.0% and 98.5% respectively

(Sun et al., 2019). Battery self-discharge is disregarded in this study; we believe this is a reasonable simpli-

fication, as self-discharge rates for Li-ion batteries are generally low (Zhang et al., 2020) and EVs are typi-

cally used shortly after charging.

Life cycle impact assessment

The GWP100 method of the ReCiPe midpoint (H) model from SimaPro 7.0 (2021) is used to convert the LCI

of the EV facilities (EV without battery, battery and charger) to carbon emissions for the charging behav-

iours. The GWP100 value is provided by IPCC, Intergovernmental Panel on Climate Change (2020), which

is defined as the greenhouse effect of various gases corresponds to the mass of CO2 with the same effect

within a 100-year time frame.

The AEFs for the GB electricity grid in 2019 as given in the Greenhouse gas reporting (BEIS, The Depart-

ment for Business, Energy & Industrial Strategy, 2019a; 2019b) are used to calculate the carbon emissions

of electricity consumption for baseline analysis. The MEFs are used to calculate the carbon emissions of

electricity consumption and the potential carbon emissions reduction from EV smart charging.

Clustering methodology

Household charging behaviour clusters are examined using a domestic EV charging dataset provided by

the UK Government’s Office for Low Emission Vehicles (OLEV) (DfT, The Department for Transport,

2018). We use this dataset to model household charging behaviours focusing on the characteristics of

charging time, charging duration, and energy demand. The dataset does not include any information on

the chargepoint users, therefore charging frequency and driver behaviours are disregarded in the research,

although they would have little impact on our results (Momtazpour et al., 2012).

The Gaussian mixture model (GMM) approach was used for clustering following the analysis of Helmus

et al. (2020). GMM uses a probabilistic assignment of data points to perform clustering (Liu et al., 2018).

Each cluster corresponds to the Gaussian (normal) distribution of its input elements, and the sum of the

clusters conforms to the overall distribution of the original data (Patel and Kushwaha, 2020). This study as-

sumes the presence of multiple probability distributions in the dataset, with probability distribution corre-

sponding to a specific type of charging behaviour. In GMM, it is assumed that a dataset with observations

X = fx1; x2; x3.xngwith X˛Rdðd = 4 in our workÞ is generated by a mixture of K components. A component

represents a clustering result of our dataset. The probability distribution of the GMM is

pðxjqÞ =
XK

k =1
akpkðxjqkÞ (Equation 1)

where X is the charging session, pkðxjqkÞ is the Gaussian distribution density function of the kth component

and akðak R0 &
PK

k= 1ak = 1 Þ is the probability that the observation data belongs to the kth component

(Helmus et al., 2020). For the kth component, qk is the mean and covariance matrix of the kth component,

as qk = ðmk ; sk
2Þ. For the four-dimensional data in our work, the Gaussian distribution of the kth compo-

nents obeys the density function of

pkðxjqkÞ = 1
.
ð2pÞd=2s�1

k exp

�
� 1

2
ðxi � mkÞTs�2

k ðxi �mkÞ
�

(Equation 2)

The Expectation-Maximisation (EM) algorithm is widely used to estimate parameter qk (Fraley and Raftery,

2007). Because the parameters qk and ak must be estimated and the data in each category obeys a normal

distribution, Bayes’ Theorem is used to modify the form of Equation (1) as

pðxja; qÞ =
XK

k = 1
akpkðxjqkÞ (Equation 3)

The new k-dimensional latent variable Z is introduced to describe which component xi comes from. Z should

satisfy zkð1%k%KÞ . zk canonly take0or1 and
PK

k = 1zk = 1:Forexample, if thedataset consistsof 3 components
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and xi comes from the 2nd component, theZ for xi isZ = ð0; 1; 0Þ. Then,pðzk = 1jxiÞ can represent theprobability
(posterior probability) that xi is generatedby the kth component, aspðzk = 1jxiÞ = ak .pðzk = 1jxiÞ is simply writ-

ten as gðzikÞ. For the Expectation step, the parameters qk and ak are estimated by Equation (4).

gðzikÞ =
akpkðxi

��mk ; sk
2ÞPK

j = 1ajpk

�
xi
��mj;sj

2
�= pðzk = 1jxiÞ (Equation 4)

In Equation (4), the iterative method is used to calculate qk and ak , that is, take the parameter values of qk
and ak obtained in the previous iteration (the first iteration takes their initial values). When the iteration

ends, the cluster li to which xi belongs is determined by

li = arg max gðzikÞ k˛f1;2;.;Kg (Equation 5)

For the Maximisation step, the latest parameters of mk ; sk
2 and ak are calculated based on the value of

gðzikÞ from Equation (4), as shown in Equations (6), (7) and (8), and then the next iteration can be carried

out using these new estimates. The E step and M step are repeated until convergence is reached. Accord-

ing to the result of the EM algorithm, the charging sessions can be allocated following the cluster number.

mk =

PN
i = 1gðzikÞxiPN
i =1gðzikÞ

(Equation 6)

sk
2 =

PN
i = 1gðzikÞðxi � mkÞðxi � mkÞTPN

i = 1gðzikÞ
(Equation 7)

ak =
1

N

XN

i =1
gðzikÞ (Equation 8)

The Bayesian Information Criterion (BIC) is chosen to determine the optimal number of clusters and avoid

overfitting (Equation (9)). The independent parameter M is adapted from the work of Scrucca et al. (2016).

The minimum BIC value over clustering from 1 to GMMmax represents the best clustering (Schwarz, 1978).

BIC = ln ðnÞM� 2 ln pðX ;Z jq;aÞ (Equation 9)

Marginal emissions factors calculation

Generation and demand data provided by the GB electricity system operator, National Grid ESO, are used

to analyse the carbon emissions factors of energy supply (Gridwatch, 2019). Carbon intensity factors from

GridCarbon (2019) and the carbon intensity of electricity traded from overseas (Moro and Lonza, 2018)

(shown in Table S2) were used to calculate national-level, one-hour resolution MEFs. The ENTSO-E Trans-

parency Platform (2019) was used to calculate the marginal carbon emissions factors in Poland, Ireland, and

Spain, as it includes hourly generation mix data for each country in Europe.

Data on electricity generation by type, total electricity demand, and interconnector flows (all in MW) for the

year 2019 were obtained at five-minute resolution from Gridwatch (2019). These were averaged to hourly

resolution to reduce the impact of missing points in the five-minute resolution data. The generation and

demand data are further filtered by system demand net of wind and solar generation.

The adapted Hawkes’s method (2010) was applied to calculate MEFs. Firstly, the system net demand (i.e.,

demand net of wind generation) and generator types corresponding to net demand are used for linear

regression. That is, the data is binned by system net demand (shown in Figure S1, with bin widths of 2

GW). Secondly, along with binning the data by net demand, they are further binned by 60 days centred

on the hour of interest. That is, rather than a linear regression analysis on the entire system data in 2019,

the MEF for any given hour is calculated using the generation and net demand data for 30 days before

and after. Thus, it is possible to reveal seasonal effects, particularly the reduced output from coal-fired gen-

eration in summer. The MEF at any given net demand could then be calculated using the relationship be-

tween carbon emissions and system net demand (Equations 10 and 11).

Ct =
X
i

ðGitFiÞ (Equation 10)

DCt = mtDDt (Equation 11)

In Equation 10,Ct is the total carbon emissions at time t,Git is the generation from technology type i at time

t and Fi is the carbon intensity factor of technology type i. In Equation 11,DCt is the change in emissions,mt

is constant MEF at time t and DDt is the change in demand.
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Figures S1 and S2 show the example of the linear regression results for GB and the three countries respec-

tively, which is the example over the period from 01/01/2019 00:00 to 02/03/2019 01:00 binned by system

net demand (blue curves) to calculate the MEFs for the hour of 31/01/2019 00:00–01:00 of the linear regres-

sion approach results.

The MEF time series of GB, shown in Figure S3, has several features of note. First, comparing MEFs in 2019

with those derived by Hawkes (2010) for the period 2002–2009 reveals a significant reduction inMEFs due to

low-carbon energy (particularly hydro and biomass) replacing fossil generation at the margin. Second, the

MEFs are higher in winter than in summer, due to the decreased use of fossil generation in summer.

Charging system model

The connection and disconnection times for each cluster are rounded up to the nearest hour to match the

hourly resolution of the MEF data. The charging and idle durations of each behaviour are calculated in

accordance with the energy demand of each behaviour and the charger rate. This is a simplification, but

the characteristics of the EV battery, charger rate, and SOC are not readily available, and thus, the influence

of these components was disregarded in this study.

Two charging strategies are investigated. In the passive charging strategy, the battery starts charging from

the connection time (Tconn). In the smart charging strategy, charging occurs at the times of lowest MEF in

the connection period, assuming that the charging control system has perfect foresight of MEFs in the

connection period and the EV’s disconnection time (Tdisconn). In reality this is not the case, therefore this

analysis provides an upper limit on the potential to reduce emissions using EV smart charging. Example

charging power profiles for passive and smart charging during one charging event are shown in Figure S4.
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