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Tightly controlled epithelial and endothelial barriers are a
prerequisite for life as these barriers separate multicellular
organisms from their environment and serve as first lines of
defense. Barriers between neighboring epithelial cells are
formed by multiple intercellular junctions including the
‘apical junctional complex—AJC’ with tight junctions (TJ),
adherens junctions (AJ), and desmosomes. TJ consist of
tetraspan transmembrane proteins like occludin, various
claudins that directly control paracellular permeability, and
the ‘Junctional Adhesion Molecules’ (JAMs). For establishing
tight barriers TJ are essential but at the same time have to
allow also selective permeability. For this, TJ need to be
tightly regulated and controlled. This is organized by a variety
of adaptor molecules, i.e., protein kinases, phosphatases and
GTPases, which in turn are regulated and fine-tuned involving
microRNAs (miRNAs). In this review we summarize available
data on the role and targeting of miRNAs in the maintenance
of epithelial and/or endothelial barriers.

Introduction

Tight (TJ) and adherens (AJ) junctions form a decisive part of
the ‘Apical Junctional Complex – AJC’ and regulate the paracel-
lular permeability of epithelial layers across the apical/basolateral
axis. Different groups of proteins are required to assemble the
tight junction complex: transmembrane proteins like occludin,
proteins of the claudin family and junctional adhesion molecules
(JAM). These proteins are linked with cytosolic regulatory pro-
teins as well as scaffolding and cytoskeletal proteins.1-4 Interac-
tions of barrier components have to be strictly coordinated and

tightly controlled to maintain their function in homeostasis of
epithelial—or endothelial—barriers including their paracellular
permeability. There is increasing evidence on how this sophisti-
cated regulation might be orchestrated by microRNAs (miR-
NAs), small regulatory RNAs that post-transcriptionally affect
most of the assembly steps and synthesis processes of junctional
complex proteins.

In this review we aim to summarize current knowledge about
regulatory effects of miRNAs involved in the adaptation of tight
junctions i.e., modulating epithelial barrier functions in response to
environmental challenges such as inflammation or disease. Our
main focus is directed toward miRNA involved in TJ of intestinal
epithelial barriers, as the gut is constantly challenged by foreign
antigens and is by far the largest immunological organ. In addition,
we will briefly touch the endothelial blood brain barrier as toxin or
drug passage across this barrier is of particular pharmaceutical
interest.

Tight Junctions and Adherens Junctions

Tight (TJ) and adherens junctions (AJ) are the major protein
complexes of the Apical Junctional Complex (AJC).5,6 The AJC
complex tightly connects the polarized epithelial cells in the intes-
tinal mucosa and maintains the homeostasis of the intestinal bar-
rier.7 The AJC represents the key structure for maintaining
intestinal barrier functions.8,9 Tight junctions are found in all
vertebrate epithelia and represent specialized multi-protein com-
plexes localized at the apical side of lateral membranes of polar-
ized epithelial cells.10 Since their discovery in 1963 more than 50
TJ-associated proteins have been identified.1 Tight junctions
allow selective permeability for molecules on the basis of charge
and size restrictions.11-13 It also became apparent that TJ are
highly dynamic and may vary in different tissues giving rise to
distinct barrier properties.1,2 However, despite ever increasing
numbers of TJ-associated components, the detailed mechanism
(s) of how these components work together to form a controlled
selectively permeable barrier has remained largely enigmatic.1,3

Trans-membrane proteins such as occludin, claudins, junc-
tional adhesion molecules (JAMs) constitute the main protein
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complexes of tight junctions.8,10,11 With the exception of JAMs,
all trans-membrane proteins of tight junctions are tetraspanins
consisting of 4 trans-membrane domains, which form 2 extracel-
lular loops and one intracellular loop. Adaptor proteins such as
ZO-1, -2 and -3 are linked to the cytosolic C-terminus of the
trans-membrane proteins. The adaptor proteins interact also
with many other proteins and are anchored to the actin cytoskele-
ton. Interactions between the different tight junction proteins
and the cytoskeleton are essential for the normal assembly and
maintenance of tight junction and hence also epithelial barrier
integrity.

Examination by electron microscopy of the apical junctional
complex has revealed a distinct ultrastructure. At the apical side
of lateral membranes of polarized epithelial cells transmission
electron microscope (TEM) pictures exhibited electron-dense
regions consisting of regularly punctates representing the cellular
epithelial barrier (Fig. 1). According to freeze fracture electron
microscopy tight junctions exist of an anastomosing strands of
beads.13

Tight junctions in different epithelia are challenged by a vari-
ety of factors like toxins, pathogens or inflammation potentially
leading to tissue damage.14-16 At the same time these barriers are
positively affected by probiotics and/or molecules like growth
factors or anti-inflammatory cytokines, which stabilize the barrier
function.17-21 The disruption as well as the assembly of tight

junctions are regulated by several signaling cascades, involving
protein kinases, protein phosphatases and G-proteins.22-25

The second major constituents of AJC are adherens junctions
(AJ). AJ are characteristic for anchoring cells to cytoplasmatic actin
filaments via a tightly controlled network of adaptor proteins. Cad-
herins, the transmembrane spanning proteins of 2 opposing cell
membranes of epithelial cells (E-cadherins) or endothelial cells
(VE-cadherins) are involved in homotypical trans-interactions
thereby mediating cell-cell adhesion. Interactions of cadherins to
several catenins provide the linkage to the actin cytoskeleton.26

Impact of Tight Junction Regulation

The interactions of tight junction proteins are dynamically
regulated by several regulatory mechanisms (see Fig. 2). This
results in selectively permeable barriers that are distinct in differ-
ent tissues. Various extracellular factors such as inflammatory
cytokines, reactive oxygen species (ROS) or microbial pathogens
and their products disrupt epithelial tight junctions by activating
multiple intracellular signaling pathways. In particular, molecules
involved in signaling like protein kinases are involved in disrup-
tion or assembly of tight junctions. The c-Src-dependent tyrosine
phosphorylation of different AJC proteins disrupts barrier func-
tions and intestinal and renal epithelia.23,24

Work from our and other laboratories showed that PKC iso-
forms such as PKCl, PKCz and PKCh are involved in
the assembly of tight junctions,25,27: e.g., the activation
of PKCz effects the availability of occludin in TJ. Other
protein phosphatases like PP2A and PP1 are able to
effect TJ stability indirectly by dephosphorylating com-
ponents of Par3, Par6, CDC42 polarity complex,
which is essential for the integrity on TJ.28-30

Bacterial lipopolysaccharides (LPS) induce tight
junction disruption via NF-kB and the induction of the
Toll-like receptor 4 (TLR4) and LPS-binding protein
(LBP) pathways. A specific knockdown of TLR4 or
LBP significantly attenuates LPS-induced tight junction
disruption.31

For several gastrointestinal inflammatory diseases,
including Crohn’s disease, ulcerative colitis, celiac dis-
ease, as well as many diarrheal syndromes induced by
pathogenic microbes, the disturbance of TJ functions
leads to a disruption of the intestinal barrier. In this
way an increased penetration of microbial and other
antigens is facilitated, resulting in inflammatory

Figure 1. Transmission electron microscopy (TEM) image of
an ’apical junctional complex’ of polarized T84 human colo-
rectal carcinoma epithelial cells Depicted are the ‘tight junc-
tions’ (TJ), directly beneath the microvilli, ‘adherens junctions’
(AJ), and ‘desmosomes’ (DS) below the ‘apical junctional com-
plex’. Scale bar D 1 mm (courtesy of Lilo Greune, Institute of
Infectiology – Center for Molecular Biology of Inflammation
(ZMBE), University of M€unster).
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responses.23,32 Correspondingly, restoring or even enhancing
the intestinal TJ barrier limits the development of intestinal
inflammation and facilitates a more rapid resolution of the
inflammatory disease.33,34 However, the role of transmembrane
TJ protein depletion in disorders involving increased intestinal
permeability remains largely undefined. A marked decrease of
occludin levels in inflammatory bowel disease has been reported
in several clinical studies.35-37 How occludin depletion causes
an increase of intestinal permeability is currently under
investigation.

Tumor necrosis factor a (TNF-a) represents one of the cen-
tral mediators of gastrointestinal inflammation.38,39 Expression
levels of TNF-a are significantly elevated in patients with inflam-
matory conditions, like Crohn’s disease, ulcerative colitis, or
celiac disease. An effective induction of remission by anti-TNF-a
therapy has been achieved in patients with severe active Crohn’s
disease and ulcerative colitis39,40 as well as refractory celiac
disease.41 This suggests that the pro-inflammatory activity of
TNF-a may contribute to an increase in intestinal TJ perme-
ability.42-45 TNF-a induces a breakdown of barrier functions, as
shown in vitro by employing the Caco-2 monolayer model and
in vivo in a mouse intestinal model.45

MicroRNA Biogenesis

MicroRNAs (miRNAs) represent a large family of short, sin-
gle-stranded, non-coding RNAs (ncRNAs) of about 19–25
nucleotides in length. The human genome encodes for probably
more than 2570 miRNAs (mirBase 20).46,47 Different sets of
miRNAs are found in different cell types and tissues.48 MiRNAs
are synthesized by a defined biogenesis pathway.49,50 The rele-
vant gene regulation and mode of action has been reviewed
extensively.46,51-53 The basic principle of gene regulation depends
on the final, partial hybridization of one miRNA strand (‘guide
strand’) within the RISC complex to partially complementary
sequences, localized mostly within the 30-UTR of target mRNAs
(imperfect base-pairing). This leads to gene silencing by trigger-
ing mRNA deadenylation and degradation or—as a second
option—translation inhibition. However, it is important to
emphasize that several other mechanisms of the regulation of
gene expression by miRNAs have also been described.54 Since
their discovery in 1993 miRNAs have emerged as a new class of
gene regulators that modulate and control the activities of thou-
sands of mRNAs and in recent years the number of protein cod-
ing genes found to be regulated involving miRNA has been

Figure 2. Schematic representation of currently known TJ pathway genes affected by miRNAs (modified from Veltman et al. 201293).
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increasing steadily.55 Actually, it has been estimated that at least
60% of all protein-encoding genes are regulated by miRNAs.46,56

MiRNAs are well conserved in eukaryotic organisms and are sup-
posed to be evolutionarily ancient components of gene regula-
tion.57 Hence, it is not surprising that miRNA-deregulation
effects many physiological and/or pathological processes58,59 par-
ticularly when one takes into account that miRNA are usually
able to target different mRNA, and vice versa that a certain
mRNA is supposed be targeted by multiple miRNAs.60 More-
over, it has been discovered recently, that miRNA-binding sites
might not only be localized within the 3´-UTR46 but also within
the coding sequence (CDS)61 or the 5´-UTR of a transcript.62

The genome-wide analyses of miRNA-binding sites, performed
by Darnell and others indicate that a substantial number of miR-
NAs interact with these alternative binding sides.63,64 Therefore,
this implies that the number of miRNA target sequences might
have been even underestimated up to now.

Nevertheless, the prevailing consent concerning miRNA-
mediated regulatory mechanisms is gene silencing by transcript
decay due to mRNA deadenylation. However, miRNA-based
gene regulation following this mechanism may operate in certain
cells differently depending on the locus of miRNA-mRNA inter-
actions and also the physiological state of the cell.

For the identification of miRNAs and the elucidation of
potential miRNA targets several algorithms have been developed
including TargetScan (http://www.targetscan.org/), MicroCosm
Targets (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/
targets/v5/), DIANA LAB (http:// http://diana.cslab.ece.ntua
.gr/), miRSearch (https://www.exiqon.com/ mirsearch) or Gene-
Globe (http://http://www.qiagen.com/products/genes%20and%
20 pathways/) just to mention a few.

MiRNA and Human Disease

As miRNAs are involved in the regulation of many essential
physiological processes in eukaryotic cells, dysregulation and
aberrant expression of miRNAs has been associated with numer-
ous disease states65 Consequently, miRNA-based diagnostics and
therapies are under investigation.66 Here, only a few examples of
miRNA involvement in pathologic conditions will be mentioned.

Role of miRNA in Cancer
Chronic lymphocytic leukemia was the first human disease

known to be associated with miRNA deregulation.67 Many
miRNAs correlated with different types of cancer68 are also
referred to as ‘oncomirs’ e.g., miRNA-21 which is linked with
different types of cancer such as glioblastoma.69 In human breast
cancer cells the expression of claudin-6, as a TJ protein, was
shown to be regulated by miR-7 and miR-218.70 Recent studies
concerning 5 members of the microRNA-200 family (miR-200a,
miR-200b, miR-200c) as well as miR-141 and miR-429 also
revealed their regulatory effects during tumor progression of
breast cancer.71 Screening assays for regulated miRNAs con-
nected to early detection of colorectal cancer have been developed

and are currently undergoing clinical trials. Our own experiments
revealed that a sufficient selectivity and specificity can be achieved
from less than 100 ml of blood plasma samples. This is due to the
fact that cell-free, circulating miRNAs are highly stable in body
fluids. This indicates that certain miRNAs might be used in diag-
nostics to assist clinical decision-making or the monitoring and
interpretation of different disease treatment regimes.

Beyond that, just to indicate the scope of miRNA dependent
regulation, the impact of miRNAs during heart development in
general has been proven by inhibiting miRNA maturation in
mouse models and for miR-155, miR-221 and miR-222 a pivotal
role for the development of obesity during of the differentiation of
stem cell progenitors into adipocytes have been shown.72,73

Furthermore let-7 inhibition might be used obesity and type 2
diabetes treatment.

MiRNA and Barrier Function

MiRNAs are involved in nearly every developmental and
physiological process and play decisive roles in the differentia-
tion, cell migration, architecture, and barrier function in intesti-
nal epithelial cells. In recent years the important role of miRNAs
in protein expression in the small intestine has been firmly estab-
lished and it has become increasingly clear that expression pat-
terns of intestinal miRNAs are altered in intestinal diseases. In
different mouse models the impact of miRNAs on the
impairment of epithelial barrier function was shown e.g., by
Mckenna et al.74 In a typical Dicer1-deficient mouse model the
intestinal barrier function is impaired leading to spontaneous
intestinal inflammation. This is due to the loss of mmu-miR-
192, which is normally highly expressed in the intestinal mucosa.
Furthermore, in this mutant the transcription factors Rega and
Regß as well as Relmß, which play a crucial role in inflammation
and infection susceptibility are up-regulated and represent targets
for miR-23a and miR-23b. The “recycling perfusion in vivo
mouse model” by Ye et al. is discussed in the occludin section.75

In addition, it has been found that the intestinal miRNA signa-
ture is also influenced by the presence of microbiota.76,77 During
bacterial infections miRNA expression is altered and plays an
important role in the onset and progression of intestinal disease
(for review: Staedel and Darfeuille, 2013).78 Recently, intestinal
barrier dysfunction due to altered miRNA expression has been
reported also in HIV and SIV infections.79 Furthermore, miR-
NAs have been identified as important factors in the host’s
response against microbial insults.

Inflammatory bowel diseases (IBD) represent a group of
chronic, idiopathic, relapsing, and remitting immune disorders
of the gastrointestinal tract in genetically susceptible individuals
who are exposed to environmental risk factors.80,81 In these dis-
eases disturbances of the intestinal barrier are major factors in
aggravating and perpetuating disease pathology. Thus, restoring
barrier functions greatly helps to induce remission. MiRNAs
have been found to regulate tight junctions in intestinal epithelial
cells and in this way also affect intestinal barrier functions.82

Interestingly, clinical studies demonstrated that in IBD including
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Crohn’s disease83 and ulcerative colitis84 miRNA expression pat-
terns are abnormal. From our own work as well as others we
know that this differences are also reflected in mouse models
which to a certain degree simulate the human diseases. In
the more UC like dextran sulfate sodium (DSS) colitis model
(miR-155) or in the more CD like T cell transfer model (mir-
10a) different miRNAs, indicating the different origin of the dis-
ease, are upregulated during the course of the inflammation.85-88

Wu et al. were able to show that different sets of miRNAs also
represent the degree of inflammation in ulcerative colitis (UC)
and Crohn´s disease (CD).83,84 For example, they were able to
characterize miR-192 as up-regulated and miR-16 as down-regu-
lated in patients with active UC. MiR-16 has been shown to be
upregulated during inactive UC and is therefore inversely corre-
lated with the status of the disease. For active CD miR-23b has
been revealed to be up-regulated and on the other hand miR-19b
as downregulated. Pathophysiologically both diseases are corre-
lated with diarrhea and the according breakdown of the barrier
function. However, these miRNAs have not yet been linked to
the exact target molecules during the course of disease.

Occludin
Recently, it could be shown that miR-21 is upregulated in

chronic UC patients.84 MiR-21 induces the degradation of ras
homolog gene family member B mRNA, leading to the depletion
of occludin with the resulting impairment of tight junctions.
Increased levels of miR-21 levels in inflamed tissues were also
shown by Takagi et al.89 revealing its important role in pathogene-
sis of IBD. UC patients revealed an increase in miR-21 levels in
serum samples, this was also supported by the presence of miRNAs
in peripheral blood cell as it was shown by Paraskevi et al.90 A simi-
lar increase inmiR-21 levels was also reported in patients with pedi-
atric CD.91 After transfection with miR-21 mimics Caco-2 cells
suffer the loss of tight junction proteins and the according structural
changes.83 These results indicate that circulating miRNAs such as
miR-21 and others might have the potential to be used as bio-
markers in clinical applications, which is also supported by our
own recent results (Pott et al.; 2014; personal communication).
The expression of occludin in Caco-2 cells as well as in mouse intes-
tinal epithelial cells is TNF-a dependent as had been shown by Ye
et al.75 TNF-a is increased in patients under inflammatory condi-
tions (anti-TNF-a therapy) which leads to the expression of miR-
122a. By binding to the non-coding region of occludin mRNA,
miR-122a induces specific mRNA degradation and thus occludin
depletion, leading to an increase in intestinal permeability. There-
fore, miRNA-122a plays a crucial role in TJ formation and barrier
function during intestinal inflammation.

Zonula occludens proteins ZO-1 and ZO-2
The up-regulation of miR-212 expression after alcohol abuse

was reported to induce the disruption of TJ by inhibition of
ZO-1 translation.92 Work from our own laboratory used
miRNA profiling in T84 (human colorectal carcinoma cells)
monolayers and employing specific miRNA inhibitors showed

that miR-203, miR-483-3p, and miR-595 affect the expression
of several adapter molecules of the tight junctional complexes
as monitored by expression of associated proteins and transepi-
thelial resistance (TER) in epithelial cellular barrier models
(Table 1). Although ZO-2 and PKCz were found to be
affected, interestingly, a modulation of ZO-1 could not be
observed.93 Further putative activities of these miRNAs were
not investigated in these studies.

Claudins
McKenna et al. demonstrated that claudin-4 and claudin-7

are not expressed in the apical membrane of intestinal epithelial
cells of Dicer 1-deficient mice, which resulted in impaired intesti-
nal barrier functions, which could not be correlated yet to a cer-
tain miRNA.74 In contrast Zhi et al. were able to show that
claudin-1 is indirectly affected by miR-874 during intestinal dys-
function after ischemic injury, which might result as a complica-
tion following intestinal disease or abdominal surgery. It was
found that the level of miR-874 was inversely related to the level
of aquaporin 3 (AQP3) expression which enhances intestinal per-
meability by down regulating claudin-1 and occludin.94

Looking at the retinal pigment epithelium another indirect
effect by miR-204 on the upregulation of claudin-10 and -19 has
been shown.95 The direct target for miR-204 is the TGFß-R2
which in its active form reduces the claudin expression via tran-
scriptionfactor SNAIL2. Furthermore, the dysregulation of TJ is
a basic phenomenon, e.g.,: Claudin-1 expression is down-regu-
lated by an increase of miR-155 in ovarian cancer cells.96

Rho-GTPases
Different members of the Rho GTPase family play significant

cellular roles e.g. in organizing the actin cytoskeleton.97 RhoB, a
Ras GTPase was identified as an additional target for miR-21,
which has been already identified as targeting the mRNA of occlu-
din. Unlike RhoA and RhoC, RhoB acts as a tumor suppressor and
affects cell cycle, angiogenesis, and apoptosis. On the cellular level
it also influences actin organization, cell migration, and cell adhe-
sion.98 In colorectal cancer cell lines,97 hepatocellular carcinoma
cell lines,99 and human umbilical vein endothelial cells
(HUVECs),100 RhoB is regulated by miR-21 via binding to 30-
UTR. Furthermore, reducing RhoB expression by siRNA treat-
ment resulted in a decrease in TER and a destabilization of the junc-
tional complex emphasizing the role of RhoB in the AJC. RhoA
induces and regulates the assembly of the AJC. It has been shown
that down-regulation of RhoA leads to disruption of junctional
complexes101,102 by interfering with the synthesis of tight junction
proteins.103 The mRNA of RhoA contains 3 miRNA binding sites
in the 30-UTR. One of these sites is specifically bound by miR-
155.104 MiR-155 plays a pivotal role in the systemic inflammatory
response.105 In addition, miR-155 interferes with the activation of
Toll-like receptor (TLR) pathway in monocytic cell after LPS-
induction.106 Inflammatory cytokines, such as TNF-a and interfer-
ons are able to induce miR-155 expression.104,107 The increase of
TNF-a in inflammatory bowel disease, which can be induced by
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bacterial infection leads to the downregulation of ZO-1 and E-cad-
herin expression and the destabilization of the AJC.108 This further
emphasizes a key role of miR-155 for the regulation of barrier func-
tion in intestinal epithelial cells.

Currently validated miRNAs and their targeted proteins mod-
ulating epithelial and/or endothelial barrier integrity are summa-
rized in Table 1.

MiRNA and Blood Brain Barrier

The complex blood brain barrier (BBB) ensures the barrier
functions between the vascular system and the brain and consists
of brain microvascular endothelial cells, astroglia and pericytes.
The tight junctions and adherens junctions109 between these cells
restrict the passage of cells, bioactive molecules, including most
therapeutics across this barrier.110,111 Impairment of the homeo-
stasis of these cellular junctions leads to barrier disruption.
Experiments in several mouse models revealed the importance of

Claudin-based tight junctions for the selectivity of endothelial
barrier function. The knock-out of claudin-1 or -5 in different
murine models was found to be lethal during embryogene-
sis.112,113 In esophageal carcinoma cells the displacement of clau-
din-7 induces the loss of E-cadherin expression and therefore the
destabilization of tight junctions.114

VE-cadherin, the endothelial cell-specific AJ and transmem-
brane protein, is a key regulator of endothelial apical junctional
complexes and of endothelial barrier integrity.115 VE-cadherin
interferes with a variety of signaling molecules, which coordinate
endothelial TJ organization and permeability113 and is targeted
by different miRNAs that modulate the transcriptional repression
directly and also indirectly. MiR-9 was described to target VE-
cadherin, inducing the reduction of ß-catenin, which enhances
invasion as well as increased tumor angiogenesis.

The HI-virus is able to cross the BBB and to infect brain mac-
rophages/microglia. The HIV-1 Tat protein induces miRNA-32.
This miRNA regulates the expression level of TRAF3, which
itself enables the infection of microglial cells.113 This is also

Table 1.miRNAs quoted in this review, affecting the expression of apical junctional complex proteins

miRNA miRNA - target Reference

miR-7a Claudin-6 Li et al. 201270

miR-9 Aquaporin 3, Claudin-14 Zhi et al. 201494

miR-21a Occludin, RhoB Yang et al. 201383

miR-105 VE-cadherin, Tight junction protein 1 Zhou et al. 2014122

miR-122a Occludin, Dicer1 Ye et al. 201175

miR-145 Protein phosphatase 2 regulatory subunit,
Tight junction protein 1, Mucin1

Ma et al. 2010117

miR-146a ß-Catenin, Protein Kinase C Hwang et al. 2012121

miR-155-5p Claudin-1, RhoA, ß-Catenin,
Protein Kinase C

Tili et al. 2007104

O’Connell RM et al. 2007105

miR-200 Pten Gregory et al. 200771

miR-203 Tight junction protein 2, Claudin1 Veltman et al. 201293

miR-212 Occludin, Tight junction protein 1 Tang et al. 200892

miR-218 Claudin-2/6, CDC-42 Li et al. 201270

miR-221 Protein phosphatase 2 regulatory subunit, Pten Romao et al. 201173

miR-223 Occludin, Protein Kinase C, Tiam1 Redell J. 2012122

miR-328 Tiam-1, Claudin-19 Arora et al. 2011120

miR-483-3p Protein Kinase-a, Zang Y-W et al. 2012114

miR-503 CUG-binding protein 1, Occludin Yang et al. 2014123

miR-595 Cell-polarity protein-6 Veltman et al. 201293

miR-874 Cell-polarity protein-6 Veltman et al. 201293

Detailed information concerning microRNA sequences and validated or further potential target mRNA molecules can be obtained from
`miRBase´or `TargetScan´ databases.
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achieved by the downregulation of VE-cadherin, due to the upre-
gulation of miR-101 by Tat C protein. Knockdown experiments
for miR-101 revealed that the degree of claudin-5 expression is
depending on VE-cadherin level.

TJ are also destabilized by metastatic brain tumors. These
enable circulating tumor cells to enter the brain, this indicates
that the integrity of the BBB is an important barrier for mela-
noma cells. It has been shown that the disruption of barrier func-
tion is correlated with a reduced Claudin-5 and ZO-1
availability, which can be monitored by a loss in transendothelial
electrical resistance (TER).116,117 Recently, these findings have
been supported by Zhou et al.118 who found that miR-105
which is secreted by metastatic breast cancer cells targets the TJ
protein ZO-1. In this way, miR-105 secreted and transferred via
exosomes disrupts TJ and facilitates metastatic migration.

Brain metastasis has been linked to the expression of miR-145
and miR-328.119,120 The overexpression of miR-328 has been
shown to interfere with the level of protein kinase C a (PKCa)
which is one of the TJ regulatory proteins. On the contrary other
studies were able to show that the overexpression of miR-146
leads to an increased b-catenin level which suppresses brain inva-
sion by migrating cells.121

Furthermore brain injury induces a variety of signaling path-
ways, which effect blood-brain barrier permeability. MiR-223
levels seem to be upregulated in cerebral microvasculature where
it targets TIAM1 thereby affecting barrier integrity. It has been
reported by John Redell in 2012 that blocking miR-223 leads to
an improvement in barrier function.122

Summary and Perspective

Cellular junctions such as tight and adherens junctions play a
crucial role in regulating paracellular permeability in vertebrate
epithelia and endothelia. In order to fulfill this task effectively
the assembly and maintenance of junctional complexes need to
be properly controlled and regulated. TJ and AJ exist as a set of
tetraspins, transmembrane proteins (occluding, claudins) and
JAMs, accompanied by many regulatory and adapter proteins
like ZO-1, -2 and -3, or kinases and phosphatases. During dis-
ease or infection the function of epithelial or endothelial cellular
barriers can be severely disturbed. A cellular response mechanism
to counteract an impairment of barrier function or to fine-tune

and adapt the paracellular permeability are microRNAs, which
are able to modulate the AJC proteins post-transcriptionally.

To demonstrate the very complex regulation of TJ proteins,
Yang et al.123 reviewed very recently the cooperative and post-
transcriptional effects of RNA-binding proteins (RBPs) and miR-
NAs on mRNA stability coding for TJ proteins in the gastroin-
testinal mucosa.

The extent of gene regulation byMiRNAs will become more
complex as new miRNA binding sites are likely to be discov-
ered.46,124 It is foreseeable that there will be many more regula-
tory interactions to be identified that are affecting the synthesis
of junctional proteins, the proper assembly of the complexes and
the fine-tuning of immunological responses. Due to the intrinsic
‘musketeer strategy’ (‘one for all and all for one’) in miRNA-
mRNA interactions, the ensuing degeneration of regulatory path-
ways involving miRNAs will present a formidable task to distill
and validate the determining interactions with target mRNAs.
Defining certain interactions and regulations of miRNAs with
junctional proteins will hopefully also pave the way for potential
therapeutic applications that would either reinforce cellular bar-
riers to prevent tissue damage, induced by pathogenic microbes
or inflammatory reactions, or would on the contrary provide pos-
sibilities to temporarily disrupt or impair barrier functions to
facilitate drug delivery.
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