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GLUT1 and lactose synthetase are critical
genes for lactose synthesis in lactating
sows
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Abstract

Background: Lactose synthesis rate is an important factor in milk production and quality in mammals.
Understanding the lactose synthesis mechanism is crucial for the improvement of milk quantity and quality.
However, research on the temporal gene changes regarding lactose synthesis during the whole lactation is still
limited. The objective of this study was to determine gene expression profiles related to lactose synthesis in sows
during lactation, and further identify the critical steps or key factors in the lactose synthesis pathway.

Methods: To determine the temporal change of factors related to lactose synthesis in sows, milk from eight
multiparous Yorkshire sows (parity 3 to 6) was collected at 0 h, 2 h, 6 h, 12 h, 24 h, day 2, 3, 4, 7, 14, and 21 after
birth of the first piglet. Lactose content, prolactin and progesterone concentration, and gene or protein expression
related to lactose synthesis were measured.

Results: The lactose yield increased gradually from D2 to D21 and reached a maximum at D14 (3-fold from D2)
during lactation (P < 0.05). A similar trend was observed in IGF-1 and insulin concentrations in milk, both of which
were greatest at D3 with a subsequent decrease during middle to late lactation. Conversely, milk prolactin and
progesterone concentrations moderately decreased with the progression of lactation. The mRNA or protein
expressions related to glucose transportation (GLUT1), glucose-galactose interconversion (HK1 and UGP2), UDP-
galactose transportation (SLC35A2), and lactose synthetase (LALBA and B4GALT1) in the lactose synthesis pathway
were significantly upregulated during early to middle lactation and plateaued by late lactation (P < 0.05).

Conclusions: These novel findings suggest that the increased lactose synthesis in lactation was related to the
coordinated upregulation of genes or enzymes in the lactose synthesis pathway, and glucose transportation
(GLUT1) and lactose synthetase (LALBA and B4GALT1) might be the critical steps in the lactose synthesis pathway
of sows during lactation.
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Background
Milk yield and composition of sows is crucial for growth
and performance of their piglets [1]. In past decades,
genetic selection and improved management have in-
creased the litter size and growth rate of piglets, result-
ing in an increased nutrient demand by neonates from

nursing sows [2]. Restriction of the quality and/or quan-
tity of sow milk could limit the growth potential of suck-
ling piglets, and improvements in milk yield and quality
in sows is necessary to prevent such limitations [3–6].
Sow milk contains approximately 5.5% lactose, 4.5%

protein, and 6% fat [7–9]. As the primary osmotic agent
in milk, lactose, rather than protein or fat, is the major
factor influencing milk volume [10] by pulling water into
the Golgi vesicles [11, 12]. Furthermore, lactose yield is
not only highly correlated with milk yield, but also influ-
ences milk fat and protein yield [13, 14]. Thus,
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understanding the lactose synthesis mechanism is crucial
for the improvement of milk quantity and quality.
Lactose synthesis is a complicated process that requires

the coordination of many genes encoding for enzymes in-
volved in glucose uptake [15–18], glucose-galactose inter-
conversion [11, 19], UDP-galactose transportation [11, 20],
and synthesis of lactose [12, 21–24]. Glucose is transported
into mammary epithelial cells from blood by glucose trans-
porters and phosphorylated into glucose-6-phosphate. The
glucose-6-phosphate is then converted into UDP-galactose
by phosphoglucomutases (PGMs), UDP-glucose pyrophos-
phorylase 2 (UGP2), galactose-1-phosphate uridylyltransfer-
ase (GALT), and UDP-galactose-4-epimerase (GALE).
Ultimately, UDP-galactose and glucose in the cytoplasm
are transported into Golgi bodies through glucose trans-
porters and UDP-galactose transporters, where lactose is
synthesized through lactose synthase composed of
β1,4-galactosyltransferase1(B4GALT1) and α-lactalbumin
(LALBA). Almost all of the glucose utilized by lactose syn-
thesis in the mammary gland is transported from the blood
by glucose transporters [25–27], and glucose transportation
into mammary epithelial cells may be the rate-limiting steps
for lactose synthesis [28, 29]. This has been demonstrated
in rat [30], and goat [31] models during lactation. A previ-
ous study in our lab also demonstrated that GLUT1 was
the dominant glucose transporter in sow mammary gland
from late pregnancy to peak lactation [32, 33]. However,
Xiao and Cant reported that hexokinase may be the
rate-limiting step in the lactose synthesis pathway [34]. In
human models, the gene regulating UDP-galactose conver-
sion and transportation may control the potential critical
process in initiation of lactose synthesis [11]. Previous re-
ports have mainly focused on the transitional change of
genes between pregnancy and lactation [32, 33, 35–39].
However, research on the temporal gene changes regarding
lactose synthesis during the whole lactation is still limited,
especially in lactating sows.
Therefore, the objective of this study was to determine

gene expression profiles related to lactose synthesis in
sows during lactation, and further identify the critical
genes or key factors in the lactose synthesis pathway.

Methods
Animals and milk collection
A total of 8 multiparous sows (Yorkshire, 3 to 6 par-
ities) were selected from the Changjiang Swine Breed-
ing Center in Guangdong Province (China) and were
managed by standard procedures. The diets were
corn-soybean meal based and were formulated to
meet or exceed nutrient requirements for lactating
sows recommended by the National Research Council
(NRC) [40]. The diet compositions and nutrient con-
tents are presented in Table 1.

Milk collection
Maningat et al. [41] demonstrated that the RNA obtained
from the milk fat globule was suitable to determine the
gene expression profile of human mammary epithelial
cells during lactation. The same method was also used in
the rat [42], dairy cow [43], human [11, 44–46], and buf-
falo [47]. Consequently, milk fat globule RNA was used to
determine gene expression in this research in lieu of
mammary gland biopsies. Colostrum samples were col-
lected immediately at 0, 2, 6, 12, 24 and 48 h after birth of
the first piglet. Milk samples were collected on day 3, 4, 7,
14, and 21 of lactation following the intramuscular injec-
tion of 20 IU oxytocin (each ampule contained 20 IU oxy-
tocin) at the neck muscle of sows to facilitate milk
letdown. Each 20 mL sample was collected from 3 func-
tional mammary glands (anterior, middle, and posterior)
on each side of the udder by hand milking. Samples were
immediately stored in liquid nitrogen for subsequent ana-
lysis. The milk samples were centrifuged at 3500 rpm for
15 min at 4 °C as described by Mohammad et al. [11]. The
supernatant fat layer was transferred into new tubes, and
2 mL TRIzol (Invitrogen, Carlsbad, CA, USA) was added
into the tube. The fat and TRIzol mix was homogenized,
and stored at − 80 °C. The infranatant was also stored at
− 80 °C for subsequent analysis.

Milk yield
The estimation of the milk yield on days 2, 7, 14, and 21
of lactation was based on the equation described by
Hansen et al. [48]. Litter size and litter gain were re-
corded for days 2, 7, 14, and 21 in lactation and used as
inputs to predict the milk yield.

Milk lactose and hormone analyses
Milk lactose concentration was determined by Lactose/
D- galactose (Rapid) Assay kit (Megazyme international
Ireland Ltd., Wicklow, Ireland). Prolactin, progesterone,
insulin (1μIU/mL = 1 ng/mL× 21.2), and IGF-1 content
in milk infranatant were determined by radioimmuno-
assay (RIA) method using commercial kits (human, con-
verted to pig estimates) (Tianjin Jiuding Medical and
Biological Engineering Co., Ltd., Tianjin, China) as de-
scribed by Foisnet et al. [49].

RNA extraction and qPCR
Total RNA was isolated from the mix of milk fat and TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Total RNA concentration
and purity were measured using Nano Drop spectropho-
tometer (Nano Drop Technologies, Wilmington, DE,
USA). The rate of A260/280 was from 1.95 to 2.10; A260/
230 was from 1.78 to 2.11. The genomic DNA elimination
and the cDNA synthesis was performed according to the
instructions of a Prime Script RT reagent kit (Takara,
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Dalian, Liaoning, China). The quantitative real-time PCR
was executed on the ABI Prism 7500 Sequence Detection
System (Applied Biosystems, Carlsbad, CA, USA) in a vol-
ume of 20 μL. SYBR Green Real-Time PCR Master
(Toyobo, Osaka, Japan) was the reaction mix. GAPDH,
TBP, MRPL39, β-actin, and SDHA was selected by geN-
orm 3.5 (http://medgen.ugent.be/~jvdesomp/genorm/) as
the reference genes for the qPCR. Gene specific forward
and reverse primers were designed using Primer Premier
5 (PREMIER Biosoft Int., Palo Alto, CA, USA). All the
primers of the target gene and reference gene for qPCR
were shown in Table 2.
All the expression levels were normalized by the arith-

metic mean of the selected control gene (GAPDH, TBP,
MRPL39, β-actin, or SDHA). The mRNA expression was
calculated using the 2-ΔΔCt method [50].

Western blot analysis
Primary antibodies (dilution, cat. no. follow in paren-
theses) for GLUT1 (1:500, ab150299), HK1 (1:1000,
ab209661), UGP2 (1:1000, ab154817), PGM1 (1 μg/mL,
ab94601), and B4GALT1 (1:1000, ab211207) were from
the Abcam Company Ltd. (Cambridge, MA, USA). The
primary antibody for SLC35A2 (1:200, sc-82,031) was
from Santa Cruz Biotechnology (Delaware Ave Santa
Cruz, CA, USA). The secondary antibodies (1:6000; ex-
cept PGM1, 1:50000) were from Cell Signaling (Danvers,

MA, USA). The protein concentrations were measured
using Pierce BCA protein assay kits (Thermo Fisher Sci-
entific, Rockford, IL, USA). The Western blot analysis
procedure was conducted according to Lv et al. [39].
The milk samples were electrophoresed on 10% poly-
acrylamide gel and then transferred onto nitrocellulose
membranes (Millipore, Bedford, MA, USA). The mem-
branes were blocked for 3 h with Tris-buffered saline so-
lution containing 0.1% Tween 20 (TBST) containing 5%
fat free milk and incubated with primary antibodies at
4 °C overnight (over 12 h). Subsequently, the mem-
branes were washed by TBST and incubated with sec-
ondary antibody for 1 h at room temperature. Western
blots were then generated with an enhanced electroche-
miluminescence reagents (ECL) (Beyotime, Shanghai,
China). The bands were quantified by Image Processing
Software (Image Pro Plus 6.0) (Rockville, MD, USA).

Statistical analysis
Statistical evaluation of milk yield, lactose and hormones
concentration in milk, transcription, and western blot
was performed using the ANOVA and LSD procedure of
SPSS 19.0 software (SPSS Inc., Chicago, IL). Data were
analyzed as a randomized complete block with a linear
model that included sow (random), time (fixed, re-
peated), sow x time (random error), and among samples
within sow (random subsample variance). Differences at

Table 1 Composition and nutrient content in diet

Ingredients Content, g/kg Nutrients, unit Calculated value

Corn 470.6 DE, MJ/kg 14.43

Wheat bran, 15.7% CP 70 CP, g/kg 189.9

Barley 100 CF, g/kg 34.5

Soybean meal, 42.0% CP 250 Ash, g/kg 59

Fish meal, 64% CP 25 Fat, g/kg 70.8

Soybean oil 45 Ca, g/kg 9.5

Dicalcium phosphate 5 Total P, g/kg 8.4

Limestone 12 Available P, g/kg 5.7

Salt 3 Digestible Lys, g/kg 11.3

Sodium bicarbonate 2 Digestible Met + Cys, g/kg 5.8

Sodium sulfate 4 Digestible Thr, g/kg 8.5

Vitamin and mineral premixa 8 Digestible Trp, g/kg 2.2

Choline choride (50%) 2

Vitamin C (95%) 0.2

Vitamin E (50%) 0.2

L-Lys·HCL 1.5

L-Thr 1.5

Total 1000
aProvided the following per kilogram of diet: 24000 IU of vitamin A, 3000 IU of vitaminD3, 60 mg of vitamin E, 5 mg of vitamin K, 5 mg of vitamin B1, 12.5 mg of
vitamin B2, 24 mg of pantothenic acid, 50 mg of niacin, 5 mg of vitamin B6, 0.037 mg of vitamin B12, 2.2 mg of folacin, 0.1 mg of biotin, 8 mg of Cu, 60 mg of Fe,
35 mg of Mn, 65 mg of Zn, 0.35 mg of I, 0.3 mg of Se
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Table 2 Primers used for RT-PCR

Gene name Gene accession Primer sequence (5′-3′) Size (bp)

GLUT1 EU012358 F: GATGAAGGAGGAGTGCCG 106

R: CAGCACCACGGCGATGAGGAT

SGLT1 NM001164021 CATCATCGTCCTGGTCGTC 138

GGGGCTTCTTGAATGTCCT

HK1 XM003359224 CGAGATAACAAGAGCACACCC 138

GAGGAAACGCACATCACAGTC

HK2 DQ432056 GTTCCTGGCTCTGGATCTTGG 115

GGGATGGCGTAGATCTGGTTC

LALBA NM214360 GTGGTGGGGATTCTCTTTCC 179

TCTGTGCTGCCATTGTCATG

B4GALT1 XM003130680 GAGTTTAACATGGCCGTGGAC 185

TGACGCTGTAGGATTGGGTG

PGM1 NM001246318 TGGTCGCTTGGTTATTGG 123

TTGGGTCCTCCTGGGTTGT

PGM2 XM003128910 CAACAGTGACGCACCCGA 198

GCCACCAGCCCAAGAGG

UGP2 NM213980 TACCACGGCACCATCACA 238

GGTTCCCAAACCACCATT

GALT XM005668043 TGGTTGGCTACGAAATGC 126

TGGCTGCTGTCTCCTTGT

GALE XM003356202 GACTATGACACGGAGGATGG 108

CGTGCCCAGGTTGTAGAT

SLC35A2 XM013986120 GCTGTGGTCATGGCTGAAGT 196

TGGAGATGGCAACATACTGGA

AKT1 NM001159776 CCTGAAGAAGGAGGTCATCG 123

TCGTGGGTCTGGAAGGAGTA

PRLR NM001001868 TTTCTGCTGTCGTCTGTTTGA 142

TCTTCGGACTTGCCTTTCTC

STAT5a NM214290 CATCACCATTGCCTGGAAG 141

CGGTCGGGAAACACATAGAT

STAT5b NM214168 TGTGAGAAGTTGGCGGAGAT 169

CGATGATGAATGTGCTGGTC

ACACA NM001114269 ACATCCCCACGCTAAACA 186

AGCCCATCACTTCATCAAAG

FASN NM001099930 GCTTGTCCTGGGAAGAGTGTA 115

AGGAACTCGGACATAGCGG

PGLS XM003123494 GCTGGACTCTGGGCTTCTG 138

GCAGCTCAGGGTTAATGGTG

β-ACTIN XM003124280 GGATGCAGAAGGAGATCACG 105

ATCTGCTGGAAGGTGGACAG

GAPDH NM001206359 AAGGTCGGAGTGAACGGATT 248

CATTTGATGTTGGCGGGAT

MRPL39 AY610067 CAAAAGAGAACCTACATTCCTTCACA 100

TCTAATGCCACTTTTGCTTCAACT
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P < 0.05 were considered statistically significant. Data
were expressed as means ± SEM.

Results
Milk yield and lactose concentration and yield
Milk yield increased linearly from D2 to D14 (5.06 vs
10.71 kg/d, P < 0.05), and decreased at D21 of lactation
(compared to D14, P > 0.05) (Fig. 1a). There was no dif-
ference in the lactose concentration from 0 h to 12 h
after the first piglet was born (P > 0.05, Fig. 1b). Lactose
concentration increased significantly from 12 h to D7
(29.12 vs 54.02 g/L) (P < 0.01), reaching a relative plat-
eau, with the maximum concentration of 56.17 g/L at
D21 of lactation. Similar to milk yield, lactose yield of
sows increased 2-fold from D2 to D14 (180.70 vs
551.61 g/d, P < 0.05), and then decreased at D21
(476.66 g/d) in lactation (Fig. 1c).

Hormone concentration in colostrum or milk
To explore the lactose synthesis mechanism, concentra-
tions of four hormones related to lactose synthesis were
measured in milk (prolactin, progesterone, insulin, and
IGF-1). The milk prolactin and progesterone concentra-
tions declined progressively from 0 h (prolactin:
14.56 ng/mL; progesterone: 5.24 ng/mL) and plateaued
at D7 (prolactin: 4.09 ng/mL) or D1 (progesterone:
1.12 ng/mL), and then remained relatively constant
throughout the remainder of lactation (Fig. 1d). How-
ever, milk insulin and IGF-1 concentration increased sig-
nificantly in early lactation to D3, and then decreased
thereafter. Insulin increased from 2.28 ng/mL at 0 h to a
maximum of 15.17 ng/mL on D3 (P < 0.05) with a de-
cline thereafter to D7 (P < 0.05), when it plateaued (Fig.
1e). The milk IGF-1 concentration increased 2-fold from
12 h (21.06 ng/mL) to D3 (55.97 ng/mL), and then
decreased to 19.24 ng/mL at D21 (P < 0.05, Fig. 1e).

Expression of genes or proteins related to lactose
synthesis in milk throughout the whole lactation
The mRNA expression of GLUT1 increased from 0 h to
12 h (P < 0.05), and then decreased and was relatively
stable to D14 when it increased to levels comparable to
12 h (P < 0.05, Fig. 2a). Compared with 0 h, the mRNA
expression of GLUT1 increased 1.62-fold at 6 h, 3-fold
at 12 h, 2.6-fold at D14 and 1.5-fold at D21 respectively
(P < 0.05). However, there was no change in the mRNA

expression of SGLT1 throughout lactation (P > 0.05,
Fig. 2a). Western blot analysis showed that GLUT1
markedly increased from 0 h to D14 (P < 0.05), but
then declined at D21 (Fig. 2d). The GLUT1 protein
expression increased 0.92-fold at D4, 2-fold at D7,
2.5-fold at D14, and 1.45-fold at D21 (P < 0.05) from
0 h of lactation.
The transcription abundance of HK1 increased from

0 h to 12 h (P < 0.05) to the maximum value, and then
gradually decreased during the remainder of lactation
(P < 0.05, Fig. 2b). The mRNA expression of HK1 was
upregulated 1.38-fold at 2 h, 1.4-fold at 6 h, 2.76-fold
at 12 h, 2.46-fold at 24 h, 2.35-fold at D2, 1.99-fold at
D3, and 1.39-fold at D7 (P < 0.05) compared with 0 h.
Similarly, the HK1 protein expression increased 1.4-fold
(P < 0.05) from 0 h to D7 (Fig. 2d), and then slightly
declined at D14 and D21 from D7 (P < 0.05) of lacta-
tion. However, the mRNA expression of HK2 was
increased from 0 h only at 12 h (2.52-fold, P < 0.05),
there was little difference between 0 h and other times
of lactation.
The changes in genes of LALBA and B4GALT1 in-

volved in lactose synthetase were similar to the milk lac-
tose concentration profile (Fig. 2c). The mRNA
expression of LALBA and B4GALT1 was upregulated
from 0 h to D3 (P < 0.05), and reached a relative plateau
from D3 to D21 or D14. The transcript abundance of
LALBA was significantly upregulated by 4.44-fold at D2,
11.76-fold at D3, 13.85-fold at D4, 11.88-fold at D7, the
peak value (14.84-fold) at D14, and 11.82-fold at D21 re-
spectively (P < 0.05). Compared with 0 h, the mRNA ex-
pression for B4GALT1 was augmented 1.21-fold at 24 h,
1.76-fold at D2, 3.15-fold at D3, 3.34-fold at D4,
2.89-fold at D7, 2.83-fold at D14, and 2.02-fold at D21
respectively (P < 0.05). Furthermore, the protein expres-
sion of B4GALT1 also increased 3.3-fold by D2 from 0 h
(Fig. 2d), and attained to a relative plateau from D1 to
21 of lactation.

Expression of genes or proteins related to glucose-
galactose interconversion and UDP-galactose synthesis
and transport in milk throughout the whole lactation
The mRNA expression of genes related to
glucose-galactose interconversion (PGM1, PGM2) and
UDP-galactose synthesis (UGP2, GALT, GALE) and
transportation (SLC35A2) in milk throughout the whole

Table 2 Primers used for RT-PCR (Continued)

Gene name Gene accession Primer sequence (5′-3′) Size (bp)

SDHA DQ402993 ACTCGCTCCTGGACCTCGT 152

GGTTCCGTTCGCAAATCTC

TBP DQ178129 GATGGACGTTCGGTTTAGG 124

AGCAGCACAGTACGAGCAA
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lactation is shown in Fig. 3. The mRNA expression of
PGM1 was significantly upregulated (1.65-fold, P < 0.05)
at 2 h, but then decreased gradually, with a decrease of
nearly 50% at D21 compared to 0 h. There was no sig-
nificant change in the mRNA expression abundance of
PGM2 in the whole lactation (Fig. 3a). At variance with
the mRNA expression, the protein expression of PGM1
increased 1.73-fold by D7 compared to 0 h (P < 0.05),
and then reached a relative plateau from D7 to D21.
The mRNA abundance of UGP2 increased slowly from

0 h, reached the maximum value at D3 (3-fold, P < 0.05),
and then decreased from D3 to D21 (Fig. 3b). The mRNA
expression of UGP2 increased 1.27-fold at D1, 2.14-fold at
D3, 1.42-fold at D4, and 1.66-fold at D7 (P < 0.05). The
protein expression of UGP2 increased slowly to D7 (89%,

P < 0.05) compared to 0 h (Fig. 3d). The mRNA expression
of GALT increased at 2 h (1-fold, P < 0.05), and then grad-
ually decreased. There was no significant change in the
mRNA expression abundance of GALE during lactation
(P > 0.05, Fig. 3b).
The mRNA expression of SLC35A2 increased 1.88-fold

by D14 from 0 h (P < 0.05), and decreased at D21 from
D14 (P < 0.05, Fig. 3c). Similarly, the protein expression of
SLC35A2 increased 1-fold by D4 (P < 0.05), reaching a
relative plateau thereafter (Fig. 3d).

Expressions of genes related to regulation of
transcription in milk throughout the whole lactation
The mRNA expression of AKT1 increased at D1 (P < 0.05)
(Fig. 4), then decreased and reached a relative plateau at

Fig. 1 The milk yield (a), lactose yield (b), milk lactose concentration(c), milk prolactin and progesterone concentration (d), milk insulin and IFG-1
concentration (e), and ratio of milk prolactin content and milk progesterone content (f) of lactating sows. Values are means ± SEM (n = 8);
Labeled means without a common letter differ, P < 0.05
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D4. The mRNA abundance for AKT1 increased 3.31-fold
at D1, 1.91-fold at D2, and 2.42-fold at D3 (P < 0.05). How-
ever, there was no significant change for PRLR mRNA
expression throughout lactation.

Discussion
As a key osmotic agent, lactose synthesis is an important
factor in milk production [10] and has an indirect influence
on milk protein and fat yield [13, 14]. Reports have shown
that, from day 1 to day 14 postpartum in sows, milk pro-
duction and concentration of milk lactose increased ap-
proximately 1-fold [7, 48, 51]. Consistent with these

previous reports, we found milk yield and milk lactose con-
centration increased 1-fold and lactose yield increased
3-fold in the present study. Incremental lactose yield and
up regulated lactose synthesis was likely attributable to the
upregulation of genes involved in the lactose synthesis
pathway, including glucose uptake, glucose-galactose inter-
conversion, glucose and UDP-galactose transportation, lac-
tose synthesis, and corresponding transcription regulation.
As the primary substrate for lactose synthesis, glu-

cose contributes approximately 80% of the carbons in
lactose in humans [25] and 85% in cows [26, 27].
However, mammary glands are unable to synthesize

Fig. 2 The expression of genes or proteins for GLUT1, SGLT1, HK1, HK2, LALBA, and B4GALT1 in milk throughout lactation. a The mRNA
expression of genes for GULT1 and SGLT1 (n = 8). b The mRNA expression of genes for HK1 and HK2 (n = 8). c The mRNA expression of genes for
LALBA and B4GALT1 (n = 8). d Western blot analysis for GLUT1, HK1, and B4GALT1 (n = 4). Values are means ± SEM; Labeled means without a
common letter differ, P < 0.05
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glucose from other precursors due to the shortage of
glucose-6-phosphatase [52]. Any glucose existing in
lactating mammary glands has been shown to be fully
transported from blood [16]. Two glucose trans-
porters, glucose transporter 1 (GLUT1) and Na+ −
coupled glucose transporter 1 (SGLT1), were found to
participate in this transport [18, 33, 53]. During lacta-
tion, expression of GLUT1 was reported to be signifi-
cantly increased in humans [11], bovines [15, 35, 54],
rats [24, 30], and goats [31]. Similarly, in sows, a

significant increase of GLUT1 mRNA and protein ex-
pression was observed in the mammary gland from
late pregnancy to peak lactation [32, 33]. In this
study, we evaluated the temporal gene expression
changes of GLUT1 and SGLT1 during the whole lac-
tation. There was no significant change in the abun-
dance of SGLT1 during this period. However, we
found that the protein expression of GLUT1 gradually
increased from 0 h to D14 (1.8-fold) after parturition
and was relatively stable until the end of lactation.

Fig. 3 The expression of gene or proteins for glucose-galactose interconversion and UDP-galactose synthesis and transport in milk throughout
lactation. a The expression of genes for PGM1, and 2 (n = 8). b The expression of genes for UGP2, GALT and GALE (n = 8). c The expression of
genes for SLC35A2 (n = 8). d Western blot analysis for PGM1, UGP2, and SLC35A2 (n = 4). Values are means ± SEM; Labeled means without a
common letter differ, P < 0.05
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Based on reports from the literature and results of
our research it is evident that glucose transporters
(such as GLUT1) are involved in one of crucial steps
of lactose synthesis during lactation.
Once glucose enters cells, it is converted into

glucose-6-phosphate through hexokinase (HK). Xiao and
Cant [34] reported that phosphorylation by hexokinase
exerted 80% of the control of glucose metabolism to lac-
tose in bovine mammary epithelial cells, and hexokinase
was likely the limiting step in the lactose synthesis path-
way. There are four isozymes of hexokinase, but, only
HK1 and HK2 have been reported to be expressed in the
mammary gland [19]. Chen et al. [33] observed that the
mRNA expressions of HK1 and HK2 were upregulated
in the mammary gland at D1 of lactation compared with
pregnancy. In this study, we evaluated the temporal pro-
tein expression change of HKs in the whole lactation.
We found that the protein expression of HK1 was in-
creased gradually during the lactation. The results in the
present study indicated that HKs are likely the limiting
step in early lactation.
Once glucose is phosphorylated to glucose-6-phosphate,

it is subsequently converted into UDP-galactose in the
cytoplasm by UGP2, PGMs, GALT, and GALE, and enters
the Golgi bodies via SLC35A2 [10, 11]. In this research,
we observed that the protein abundance of PGM1 in-
creased progressively postpartum and reached a max-
imum value at D7 of lactation. This finding is in
agreement with results in humans [11] and bovines [55].
We also observed that both mRNA and protein expres-
sion of UGP2 and SLC35A2 increased during lactation in
the present study. Similar results were observed in sows
[32], humans [11], and bovines [56] in previous reports.
However, the transcript abundance of GALT increased at
2 h after the birth of the first piglet and then decreased
linearly during the subsequent lactation in our study,

which differed from the results in humans [11]. The unco-
ordinated regulation of genes encoding for the
UDP-galactose synthesis and transportation pathway in
the present study (Fig. 5) indicated that they were likely
not the limiting step in the lactose synthesis pathway in
lactating sows.
Lactose is synthesized by lactose synthetase from glucose

and UDP-galactose when they are transported into Golgi
bodies by glucose transporter GLUT1 and UDP-galactose
transporter SLC35A2. Lactose synthetase is composed of
two subunits (LALBA and B4GALT1), both of which are
required for activity [57, 58]. β 1,4-Galactosyltransferase-I
is one of seven β 1,4-Galactosyltransferases and adds gal-
actose to oligosaccharides [59]. α-lactalbumin (LALBA)
promotes the glucose binding to B4GALT1and increases
the B4GALT1 activity by approximately 30-fold [60–63].
Bleck et al. [64] reported that LALBA concentration posi-
tively correlated with the milk concentrations of protein,
fat, and lactose. Many previous reports also found that the
mRNA or protein expression of LALBA increased from
pregnancy to lactation in rats [24], humans [46], bovines
[37, 56], goats [36, 65], and sows [33]. Consistent with
former studies, the transcript abundance of LALBA was
augmented significantly during lactation and increased
14-fold at D14 in this study. Similarly, the mRNA and pro-
tein expressions of B4GALT1 were also strongly upregu-
lated in lactation. This finding was consistent with reports
in rats [24], bovines [37, 64], and sows [33]. The transcript
abundances or protein expressions of LALBA and
B4GALT1 increased with lactose yield and milk concentra-
tion of lactose in this study (Fig. 5), indicating that lactose
synthetase might play an important role and be the
rate-limiting step in lactose synthesis in lactating sows.
Lactogenic hormones such as prolactin, insulin, and

growth hormone are necessary to induce and maintain
successful lactation [66]. Prolactin deficiency decreased

Fig. 4 Expression of transcription factors for AKT1 and PRLR at mRNA level in milk throughout lactation. Values are means ± SEM (n = 8); Labeled
means without a common letter differ, P < 0.05
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milk production and lactose yield in rats [67] and cows
[68], which perhaps was related to the direct effect of
prolactin on the opening of tight junctions between
mammary epithelial cells [67], inhibiting epithelial cell
loss and maintaining cellular differentiation [67, 68].
In humans, prolactin has been reported to increase
lactose synthesis at initiation of lactation via the
PRLR-JAK2-STAT5 signaling pathway upregulating
the mRNA expression of UGP2 and SLC35A2 [11].
Prolactin also has been reported to maintain GLUT1
level [69] and upregulate glucose intake [70] for in-
creased lactose yield via the PI3K-AKT1 signaling
pathway [70]. The activation of AKT1 was necessary
and sufficient to STAT5 activation [71]. Prolactin has
been reported to enhance the activity of B4GALT1and
LALBA and increase the tissue accumulation of the
mRNA of both [72]. As is known, insulin can
strongly upregulate the activation of STAT5 [73],
which indirectly upregulates the gene expression of
LALBA with the promoter region of LALBA contain-
ing a STAT5 binding site [10]. Prolactin, combined
with insulin, hydrocortisone, and estradiol, increased
the mRNA expression of LALBA several hundred-fold

in bovine mammary epithelial cell [74]. It has been shown
to be an important hormone regulating the lactogenic and
galactopoietic processes [75]. However, in the present
study, the milk concentration of prolactin and progester-
one decreased gradually, which indicated the role of pro-
lactin on lactose synthesis may less important in sows. In
addition, as the downstream gene in the prolactin path-
way, the transcript abundance of PRLR did not change
significantly in our study. Only the mRNA expression of
AKT1 increased in early lactation. The observations in
this study are consistent with a previous report in our lab
[33]. The evidence of the relationship between increased
lactose synthesis and milk prolactin concentration or the
expression of AKT1 and PRLR suggested that prolactin or
the regulating factors played minor roles in lactose synthe-
sis in lactating sows. Loisel et al. [76] reported that the
relative prolactin-to-progesterone concentrations influ-
enced the colostrum yield in sows and indicated the indu-
cing role of prolactin on the onset of lactose synthesis. In
the present study, the ratio of prolactin-to-progesterone
concentration increased linearly in the early lactation,
which indicated that prolactin and decreasing progester-
one might be related to the onset of lactation.

Fig. 5 The gene or protein expression of GLUT1, HK1, PGM1, UGP2, GALT, GALE, SLC35A2, LALBA, and B4GALT1 on the lactose synthesis pathway
throughout lactation. The mRNA or protein expressions of GLUT1, HK1, PGM1, UGP2, SLC35A2, LALBA, and B4GALT1 were upregulated (P < 0.05).
The mRNA expression of GALE did not change, and the mRNA expression of GALT was downregulated
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Reports indicate that both prolactin and growth hor-
mone can regulate milk composition synthesis [67], and
growth hormone is likely regulated through the produc-
tion of IGF-1 [77, 78]. IGF-1 can induce ductal growth
and cell proliferation in the mammary gland [78–80]
and play an important role in mammary morphogenesis
[81]. In the current study, the milk IGF-1 concentration
increased in early lactation. This finding indicates that
the growth of mammary tissue occurs during early lacta-
tion, which is consistent with previous research [82]. It
is reasonable to hypothesize that IGF-1 induces mam-
mary gland growth to which increases lactose synthesis
in lactating sows.

Conclusion
In summary, milk and lactose yield gradually increased
with the progression of lactation in sows. Lactose syn-
thesis was not significantly influenced by lactogenic hor-
mones (e.g., prolactin, insulin, and IGF-1). The
transcript abundances or protein expressions of GLUT1,
LALBA, and B4GALT1 increased significantly along
with increased lactose concentration and yield during
lactation, indicating that they might be important in crit-
ical steps in lactose synthesis in lactating sows.
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