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Abstract

Immunotherapy sheds new light to cancer treatment and
is satisfied by cancer patients. However, immunotoxicity,
single-source antibodies, and single-targeting stratege
are potential challenges to the success of cancer im-
munotherapy. A huge number of promising lead com-
pounds for cancer treatment are of natural origin from
herbal medicines. The application of natural products
from herbal medicines that have immunomodulatory
properties could alter the landscape of immunotherapy
drastically. The present study summarizes current medi-
cation for cancer immunotherapy and discusses the po-
tential chemicals from herbal medicines as immune

checkpoint inhibitors that have a broad range of
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products and combined treatment with immune check-
point inhibitors, which could confer an improved clinical

outcome for cancer treatment.
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1 | INTRODUCTION

Millions of people with cancer die each year without receiving efficacious treatments from traditional therapies.
Since the late 19th century, scientists have attempted to develop generalizable strategies to boost the immune
system and balance the dysfunction to eliminate cancer cells. To date, immunotherapy has yielded dramatic and
durable remission for many types of advanced cancer patients, including adoptive cellular therapy, immune
checkpoint blockade (ICB), and exosome therapy.? A novel principle for cancer immunotherapy by inhibiting
immune checkpoints to regulate negative immune and activate anticancer T cells was discovered by James Allison
(cytotoxic T lymphocyte-associated protein 4 [CTLA-4]) and Tasuku Honjo (programmed cell death protein
1 [PD-1]), who won the Nobel Prize (Physiology or Medicine) in 2018. Therefore, there is now considerable
emphasis on the development and application of novel ways to further improve treatment response with satisfied
efficacy and decrease the side effects with a specific target of these revolutionary cancer therapies.

Cancer immunotherapy, a shining concept for cancer treatment, aims to restore the anticancer immune re-
sponse in tumors through modifying immune cells (e.g., macrophage cells; T lymphocytes; dendritic cells [DCs]) and
tumor microenvironment (TME). Cytotoxic T lymphocytes (CTLs) are activated by DCs to enable tumor-specific
CTLs to initiate durable anticancer immunity. DCs are activated by inflammatory stimuli and the immune signals
transmit from CD4* T to CD8" T lymphocytes to maximize the CTL response in cancer immunotherapy.® Besides,
tumor-infiltrating myeloid cells (TIMs), including macrophages, monocytes, and neutrophil, play as major regulators
to promote or limit tumor outgrowth.*

The immunosuppressive TME, a complex ecosystem, can be demolished to overcome immune evasion through
the activation of effector T (Teff) cells via suppressing oxidative and glycolytic metabolism using a glutamine
antagonist.® Gene expression profiles have proven that tertiary lymphoid structures and B cells enriched in the TME
can promote responses of immunotherapy in cancer patients with a good prognosis.®

Cancer immunotherapy faces unique challenges because those cancers present biodiversity in different pa-
tients based on different clonality of the tumor cells themselves and the multifaceted role of the TME.” Countless
cancer patients have clinical benefits by immunotherapy, however many patients have experienced a minimal
response to immunotherapeutic intervention, presumably owing to different subclasses of TME or tumor immune
microenvironment (TIME), different metabolic characteristics, and adverse effects.® Hence, the diversity of TME or
TIME and the complexity of cellular metabolism should be explored deeply. Several clinical trials are underway to
develop the interventions targeting the “metabolic circuits” of TIME to enhance immunotherapy.’ Increasing evi-
dence claims that multidrug resistance (MDR) is an obstacle that impedes the anticancer efficacy of natural pro-
ducts, including paclitaxel and vincristine. Interestingly, immunotherapy is also a potential strategy to help combat
against MDR with ICB treatment via targeting the overexpressed ATP-binding cassette (ABC) transporters.
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Until now, clinical practices and strategies are focused on primary immune escape and maximizing the immune
response of the T-cell compartment, however, only a few studies have investigated on secondary immune escape or
other immune subtypes in response to ICB treatment.'® Moreover, some patients with melanoma, urothelial cancer,
Merkel cell carcinoma, or lung cancer have benefited from ICB treatment, which targets single molecular ab-
normalities with monoclonal antibodies (mAbs). To improve treatment options for cancer patients and achieve
satisfied efficacies in ICB treatment, we should explore novel therapeutic agents, combinations or clinical trial
approaches on the immune system across various types of cancers.**

This review was summarized novel studies and viewpoints in advance of cancer immunotherapy and the use
of natural products collected from Web of Science (http://www.webofknowledge.com), Medline (https://
www.medline.com), PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Scopus (https://www.scopus.com), and
ClinicalTrials (https://clinicaltrials.gov). This key work provides an insight into the efficacy and mechanism of actions
of cancer immunotherapies, including natural products and combined treatment with ICB, which confer an im-

proved clinical outcome for cancer treatment.

2 | CANCER IMMUNOTHERAPY
2.1 | Adoptive cellular therapy
Adoptive cellular therapy aims to adoptively transfer lymphocytes to acquire antitumor effector function(Figure 1).

This includes the use of chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR)-T cells, and tumor-infiltrating
lymphocytes (TILs).
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FIGURE 1 Adoptive cellular therapy. Adoptive cellular therapy includes the use of chimeric antigen receptor
(CAR)-T cells, T-cell receptor (TCR), T cells, or tumor-infiltrating lymphocytes (TILs) [Color figure can be viewed at
wileyonlinelibrary.com]
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CAR-T cells are mainly derived from the peripheral blood of own patient or healthy donor and are rarely
derived from donated umbilical cord blood and genetically modified to generate artificial TCRs as “living drugs” for
cancer therapy. CAR-T-cell therapy has promising clinical efficacy against hematologic malignancies rather than
solid tumors, this was mainly due to antigenic mismatch and an inhibitory microenvironment.? CAR-T-cell function
can be enhanced by several novel strategies, including the promotion of donor cells through their CARs, discovery
of specific antigens by tumor-targeting adenoviruses, and enrichment of nonviral aptamer-T cells in the TME using
the sugar N-azidomannosamine for metabolic labeling in solid tumors.**** Moreover, the U.S. Food and Drug
Administration (FDA) has approved to conduct a Phase | clinical trial for evaluating the safety and anticancer
efficacy of a y-secretase inhibitor combined with B-cell maturation antigen-specific CAR-T-cell therapy against
multiple myeloma.”® Importantly, YESCARTA® and KYMRIAH® are U.S. FDA-approved CAR-T-cell therapies
modified by empowering the immune system via targeting B-lymphocyte antigen CD19 to recognize and destroy
non-Hodgkin lymphoma cells or acute lymphoblastic leukemia cells.*® In 2021, ABECMA®, first BCMA-targeted
CAR-T-cell therapy, has also been approved by U.S. FDA to treat relapsed or refractory multiple myeloma. How-
ever, CAR-T-cell therapy is not free from toxicities but can cause severe side effects, including neurologic toxicities
and cytokine release syndrome, which limit its clinical application.

TCR-T cells are generated from peripheral blood and engineered to recognize a tumor-specific protein frag-
ment/major histocompatibility complex (MHC) combination within cells in adoptive TCR-T-cell therapy. A robust
clinical response leading to cancer cell destruction can be initiated by engineering autologous TCR-T cells with the
expression of immunogenic cancer-testis antigen (CTA), thereby enhancing its affinity with synthetic biology.'” For
example, TCR New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) and L-antigen-1 (LAGE-1) are
CTAs that are overexpressed in several types of cancer cells. The clinical trials at Phase I/Il demonstrated that
NY-ESO-1-specific TCR-T-cell therapy is safe and displays promising clinical responses in multiple myeloma by
recognizing NY-ESO-1 and LAGE-1.'® As different T lymphocytes can use the same functionally distinct TCR,
sequencing of MHC and TCR a/f genes can expedite the analyses of T-cell responses and specific ligands to
understand the “immune landscape” in cancers.*”?°

TILs are white blood cells collected from the tumor tissue, which can be modified or expanded greatly and
then infused back into the body to attack cancer cells. Cancer patients normally receive TIL therapy after
chemotherapy and/or radiotherapy. Moreover, the combined therapies of TILs with interleukin-2 (IL-2) have
elicited significant clinical responses to metastatic melanoma, skin cancer, metastatic head and neck cancer, and
pleural mesothelioma in clinical trials.?* Studies have suggested that CD8*-enriched TILs are more therapeutically
beneficial than unselected immature TlLs, so future investigations should focus on exploring the use of adoptive
transfer with TILs.??

2.2 | ICB therapy

ICB therapy targeting immune checkpoints has revolutionized cancer immunotherapy. Anticancer immunity can be
restored by blocking CTLA-4, PD-1, and programmed death-ligand 1 (PD-L1) pathways (Table 1). Since 2011, the
U.S. FDA has approved seven mAbs as immune checkpoint inhibitors for the clinical treatments of melanoma, lung
cancer, urothelial cancer, Hodgkin lymphoma, cutaneous squamous cell carcinoma, head and neck squamous cell
carcinoma, hepatocellular carcinoma, renal cell carcinoma, Merkel cell carcinoma, and breast cancer, including
Atezolizumab (Tecentriq®, targeting PD-L1), Avelumab (Bavencio®, targeting PD-L1), Cemiplimab (Libtayo®,
targeting PD-1), Durvalumab (Imfinzi®, targeting PD-L1), Ipilimumab (Yervoy®, targeting CTLA-4), Nivolumab
(Opdivo®, targeting PD-1), and Pembrolizumab (Keytruda®, targeting PD-1). The use of these drugs has been
shown satisfactory responses in cancer patients via targeting the immune checkpoints of CTLA-4, PD-1, and PD-L1
(Table 2).%°
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TABLE 1 Immune checkpoints in cancer

Immune Expression in tumor or other
checkpoints cells Mechanism of action References
CTLA-4 FoxP3* Treg cells or activated CTLA-4 of activated effector T cell (Teff) 24
conventional T cells interacts with higher affinity to the ligand B7
than the receptor CD28, resulting in blocking
T-cell immune response
PD-1 Lymphocytes (T cells, B cells, PD-1 interacts with PD-L1 or PD-L2 of cancer 25
monocytes, natural killer T cells to generate immunosuppressive effect
cells, and macrophages) and suppress T-cell activation through
clustering with TCR, recruiting the inhibitory
phosphatase SHP2 via ITIM, and inhibiting
proximal TCR signaling
PD-L1 Tumor cells and lymphocytes In addition to bind to PD-1 and CD80 2627

heterodimerize in cis to activate the
costimulatory receptor CD28 while repress
the inhibitory PD-1 and CTLA-4 pathways

Abbreviations: CTLA-4, cytotoxic T lymphocyte-associated protein 4; ITIM, immunoreceptor tyrosine-based inhibition
motif; PD-1, programmed cell death protein 1; PD-L1, programmed death-legend 1; SHP2, Src homology 2 domain-
containing tyrosine phosphatase 2; TCR, T-cell receptor.

3 | CANCER IMMUNITY AND IMMUNE CHECKPOINTS
3.1 | Dysregulation of immune checkpoints in cancer

Immune checkpoints operate as brake to prevent autoimmune response and are expressed on both the surfaces of
cancer cells and T cells. The binding of immune checkpoints between cancer cells and T cells inhibits the activation
of T cells, which results in weakening the immune attack to recognize cancer cells.”® In TIMs, DCs, and antigen-
presenting cells recognize the cytokines released from cancer cells and immune cells, including adenosine, colony-
stimulating factor-1, IL-10, prostaglandin E,, transforming growth factor-f (TGF-B), and vascular endothelial growth
factor.?” The ligand B7 of DCs recognizes the receptor CD28 of T cells to activate the proliferation and migration of
CTLs towards tumors. Conversely, CTLA-4 of activated Teff cells, an inhibitory receptor of the immune response,
interacts with a higher affinity to ligand B7 than that of receptor CD28, resulting in blockade of the T-cell immune
response.’? CTLA-4 is highly expressed in some types of cancers but is downregulated in other types of cancers,
which results in different clinical outcomes.>* For example, overexpression of CTLA-4 indicates poor prognosis in
patients with melanoma, mesothelioma, non-small-cell lung cancer (NSCLC), and nasopharyngeal carcinoma, but
confers positive clinical outcomes in patients with glioma and B-cell chronic lymphocytic leukemia.®*2

Unlike the inhibitory receptor CTLA-4, expression of which is exclusive to activated T cells, PD-1 is also exerted in
myeloid and B cells, acting as a secondary immune response and requiring transcriptional activation. PD-1 interacts
with PD-L1 or PD-L2 in cancer cells to suppress T-cell activation by clustering with TCRs, thereby recruiting the
inhibitory phosphatase Src homology 2 domain-containing tyrosine phosphatase 2 via the immunoreceptor tyrosine-
based inhibition motif, and inhibiting proximal TCR signaling.>* In low-risk endometrial carcinoma, there is a significant
increase in the expression and immunophenoscore of the immune checkpoints, including PD-1, PD-L1, and PD-L2. In
contrast, the low expression of PD-1 in cytotoxic CD8" TILs confers a specific TIME in NSCLC patients with a good
prognosis. A significantly worse prognosis has been documented in patients with hepatocellular carcinoma with
overexpression of PD-L1 and PD-L2.2>°¢ The expression or prognostic value involved in PD-L1 and PL-L2 are quite

distinct depending on microenvironmental stimuli and different types of cancer. For example, PD-L2 has an
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overlapping function with PD-L1 as a second ligand for PD-1 and brakes T-cell activation, but engagement with PD-1
does not inhibit T-cell proliferation at high antigen concentrations.>” As PD-L2 exerts a key functional role in T-helper
cell 2 (Th2) response regardless of Th1 response, it seems that targeting PD-L2 alone may not be sufficient to mediate
anticancer immunity. In fact, PD-L2 status is also a valuable prognostic factor that can provide clinical benefits to
patients with anti-PD-1 therapy, because the clinical response was shown to be greater in both PD-L1- and PD-L2-
positive cancer patients (27.5%) than alone PD-L1-positive cancer patients (11.4%).° Therefore, it is a sufficient
rationale to further develop the novel strategies to enhance the therapeutic efficacy by combining the blockades of
CTLA-4, PD-1, PD-L1, and PD-L2 for cancer therapy.

3.2 | The regulatory factors of immune checkpoints in TME

The efficacy of cancer immunotherapy is affected by the TME, TIME, tumor mutational burden (TMB), TILs, and
intestinal bacteria. TME is the specific environment around a tumor, and it is built with TILs, fibroblasts, blood
vessels, exosomes, and extracellular matrix, as well as shaped by acidity, hydrogen peroxide, adenosine tripho-
sphate (ATP), TGF-B, hypoxia-inducible factor (HIF)-1, and IL-38.27° Increasing evidence supports the notion that
TME manipulation can enhance the therapeutic efficacy of ICB. Given the fact that TME shows partiality for the
ineffective Th2 immune response in the immune milieu, this allows cancer cells to evade the immune system.**
Adenosine, an immunosuppressive factor, is released in the TME owing to the degradation of extracellular ATP in
the P2 purinergic pathway. In contrast, ATP and adenosine are generated in higher levels at the tumor sites.”” In
addition, combined PD-1 and CTLA-4 blockade increase Teff infiltration, which leads to a highly advantageous
percentage of Teff to regulatory T (Treg) cells in the tumor, thereby shifting the TME from being im-
munosuppressive to becoming inflammatory status.*® Based on the exploration of TME, enhanced immune cell
infiltration and TMB are found in low-risk endometrial carcinoma, thereby indicating a better prognosis.”* TMB
indirectly represents the tumor antigenicity encoded by somatic mutations in the tumor, whereas T-cell-inflamed
gene expression profile and PD-L1 expression are inflammatory indicators of the T-cell-inflamed TME, which can
help predict therapeutic response to anti-PD-1 immunotherapy.*® Nivolumab, an anti-PD-1 mAb, induces func-
tional expansion of mutation-associated and neoantigen-specific T cells from the primary tumor to peripheral blood.
It was shown to induce a pathological response to 45% of resected lung cancer cells as predicted by the TMB with
few side effects, regardless of PD-L1 expression.*®

TILs are white blood cells and traffic towards tumor beds. This confers different and distinct immune cell
populations, including leukocytes, macrophages, DCs, and mast cells, with specific immunity against cancer
cells.*” The molecules, populations, and subsets of TILs are highly associated with the tumor prognosis and
clinical outcomes of cancer immunotherapy. High levels of CD4* and CD8" TILs are independent and good
prognostic biomarkers in cancer patients, which are significantly associated with improved overall survival
(0S).*® Besides, the density of tumor-infiltrating CD45RO" cells linked to microsatellite instability is a good
prognostic factor of longer survival in patients with colorectal cancer (CRC) that is independent of pathological,
clinical, and molecular features.”” A discrete population of PD-1-high tumor-infiltrating CD8" T lymphocytes in
patients with gastric cancer and hepatocellular carcinoma, who might benefit from combined ICB treatment.”%>*
However, PD-1-negative cytotoxic CD8"* TILs confer an immune-privileged microenvironment with a positive
prognosis and satisfactory response to immunotherapy in advanced NSCLC.%¢ These effector- and memory-TILs
rather than naive-precursor-like TILs contain tumor antigen-specific cells. Those subsets of CD8" TILs exhibit
proliferative and effector capacities in response to different types of ICB therapies across distinct tumor
models.”? Furthermore, CD39 expression of CD8" TILs is phenotypically distinct that aids to identify bystander
T cells and can help to predict diagnostic clinical parameters.”® The population of CD39-high tumor-infiltrating
CD8" T lymphocytes is increased with tumor growth towards an exhausted phenotype, which results in an

immunosuppressive TME that may promote PD-L1 upregulation in tumors.>* Moreover, tumor-infiltrating T and
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B lymphocytes play a role in functional interaction due to close proximity to enhance local immune activation,
thereby leading to a better prognosis for cancer patients.””

The host immune system involves the exchange and balance of the microbial community in the gut, known as the
gut microbiome, even for cancer patients receiving ICB treatment. Cancer patients with promising anticancer immunity
to PD-1 immunotherapy have a favorable gut microbiome owing to high alpha diversity and a commensal micro-
biome.”® For example, patients with metastatic melanoma who are undergoing ICB treatment have been shown to
have longer OS for carriership of Streptococcus parasanguinis and longer progression-free survival (PFS) for carriers of
Bacteroides massiliensis, but carriership of the family Peptostreptococcaceae predicts shorter OS and PFS.>” Moreover,
abundant bacterial species in treatment responders, including Bifidobacterium longum, Collinsella aerofaciens, and
Enterococcus faecium, can enhance the anticancer efficacy to PD-L1 immunotherapy by improving tumor control via
augmenting T-cell immune responses in patients with metastatic melanoma.® The relative abundance of Akkermansia
muciniphila could restore the efficacy of PD-1 immunotherapy by increasing the enrichment of CCR9*CXCR3*CD4* T
cells into the epithelial tumor sites depending on IL-12 secretion from DCs.”” The efficacy of CTLA-4 immunotherapy
favors the microbiota composition of Bacteroides fragilis and/or Bacteroides thetaiotaomicron and Burkholderiales with
IL-12-dependent Th1 immunity, thereby sparing intestinal integrity and leading to tumor control in patients with
metastatic melanoma or NSCLC.® Therefore, the precise ability to predict the immune response by identifying the

unique classes and subsets of the TME and TIME in cancer patients will improve the efficacy to ICB.

3.3 | The cytokines and pathways involved in ICB

Cytokines, small cell-signaling proteins, play a critical role in the integrative regulation of cancer immunity and ICB.
A blockade of CTLA-4 or PD-1/PD-L1 can increase interferon y (IFN-y) expression in response to enhanced
chemokine-driven immune cell infiltration in tumor cells. Hence, IFN-y deficiency in TME is closely associated with
primary resistance to ICB therapy.®’ ®® A blockade of anti-CTLA-4 results in a greater amount of CD4" inducible
costimulatory™ T lymphocytes and enhanced IFN-y release in tumor and lymph nodes.®*®> PD-1 expression on
CD8" T lymphocytes can be decreased by alone blockade of IFN-y or PD-1, as well as combined blockade of IFN-y
and PD-1.%¢ A successful response to PD-1 blockade requires IL-12 to be released from DCs to sensitize IFN-y
produced from T cells.®” Moreover, combined treatment with a-CTLA-4 and a-PD-1 blockade eradicates tumor
synergistically by upregulating IL-7Ra expression on tumor-infiltrating T lymphocytes depending on IFN-y/IFN-y R
pathways.®® Notably, IFN-y stimulation increases the basal level or exosomal level of PD-L1 to induce im-
munosuppression and facilitate tumor growth. However, the impairment of IFN-y signaling is not responsible for
MHC-I reduction and the anticancer sensitivity to PD-L1 blockade.’®*?’° It comes as no surprise that other key
regulators also play important roles in ICB.

Chemokine (C-X-C motif) receptor 3 (CXCR3), a chemokine receptor, is overexpressed on Teff. CXCR3 and its
ligand, chemokine (C-X-C motif) ligand (CXCL)9, can facilitate the interactions of CD8" T cells or CD103* DCs
within the TME to promote a clinical response to PD-1 blockade.”* CXCL10 and CXCL11, other key members of
chemokines, are the ligands of CXCR3 stimulated by IFN-y to induce T-cell recruitment and enhance immune
response.”””® TGF-p is a crucial “enforcer” that promotes tumor emergence and is an immunosuppressive factor
within the TME, which results in immune evasion and a poor outcome from cancer immunotherapy.”* A blockade of
phosphoinositide 3-kinase (PI3K) in DCs suppresses the expressions of TGF-B and IL-10 induced by the Toll-like
receptor 5 (TLR-5) ligand flagellin. The latter can be combined with a TLR agonist to induce IFN-y*IL-17" poly-
functional T lymphocytes to strengthen the immune response to cancer therapy.””’® A blockade of TLR7/8
expression can improve resistance to cancer immunotherapy by modulating the functional polarization of tumor-
associated macrophages towards an antitumorigenic M1 phenotype in TIMs.””

Several other important transcription factors and protein kinases are also involved in cancer immunity and

immunotherapy. The transcription factor T-cell factor 1 (TCF-1) is a useful biomarker for the adaptive immune



ZHONG &7 ae Medicinal Research Reviews WI LEYJﬂ

response to cancer and is essential for the stem-like functions of TCF1"PD-1*CD8" T cells in ICB.”® An im-
munotherapy resistance program has been identified using single-cell RNA sequencing from NSCLC and melanoma
tumors. A blockade of cyclin-dependent kinase 4/6 (CDK 4/6) expression may repress this program to promote
immunotherapeutic efficacy and overcome resistance to cancer immunotherapy in vivo.”” Alterations in serine/
threonine kinase 11 (STK11)/liver kinase B1 (LKB1) expression were identified to be the most genomic resistance
drivers in anti-PD-1 immunotherapy. This action leads to suppression of the expression of stimulator of IFN genes
(STING) in aggressive and PD-L1"~ Kirsten rat sarcoma viral oncogene homolog-mutant lung adenocarcinoma.®%€*
Emerging therapeutic strategies to restore the expressions of LKB1 or STING may promote antitumor immune
response in cancers with resistance to ICB treatment. Overall, the exact mechanisms by which immune checkpoints

act against cancers and the suppressive factors of the TME are incompletely understood (Figure 2).

3.4 | The relationship between immune checkpoints and MDR

A major drawback for successful chemotherapy is the development of cellular resistance to multiple anticancer
drugs that are structurally unrelated, in which the phenomenon is termed as MDR. Therefore, this cellular resistance
can dramatically reduce the efficacy of cancer treatments. Although several mechanisms involved in MDR were
identified, the most common mechanism is through a family of energy-dependent transporters, known as ABC
transporters. These transporters increase the efflux of hydrophobic cytotoxic drugs.®? Several ABC transporters
overexpressed in MDR were first described in the 1970s, such as P-glycoprotein (P-gp, also known as ABCB1 or
MDR1) and multidrug resistance protein 1 (also known as ABCC1). In fact, targeting a single pathway is hard to
tackle chemoresistance due to the multifaceted MDR, thus overcoming MDR has been a major goal for cancer
biologists by using novel and multiple strategies during the past 50 years.®®

Cancer immunotherapy could be a vital adjunct strategy to circumvent and overcome MDR, as resistance to
immunotherapy is generally unrelated to the mechanisms of resistance in response to cytotoxic agents.®* In this
regard, novel approaches are applied to overcome tumor MDR with immunotherapy, including (1) antibody stra-
tegies®”; (2) antibody-directed toxins®®; (3) adoptive cell therapy®’; (4) cytokine-based strategies®®; (5) cancer stem
cells or cancer-initiating cells®?7%; (6) immune checkpoint inhibitors’?; (7) cancer vaccines’?; (8) oncolytic viruses.”®

Currently, the strategy of ICB is regarded as an emerging tool for cancer treatment, which activates T cells to attack
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FIGURE 2 Immune checkpoints and tumor immune environment (TME). Immune checkpoints are expressed in
cancer cells or immune cells and include programmed cell death protein 1 (PD-1), the programmed death-ligand 1/2
(PD-L1/2), and the cytotoxic T lymphocyte-associated protein 4 (CTLA-4). TME is a specific environment and
shaped around cancer cells, T cells, tumor-infiltrating cells, fibroblasts, blood vessels, lymphatic vessels, exosomes,
and extracellular matrix [Color figure can be viewed at wileyonlinelibrary.com]
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tumor cells by blocking the negative regulatory signal. Recent studies reveal that the expression of immune
checkpoints is induced by chemotherapy in some types of cancers, thus leading to MDR. For example, che-
motherapy induces several immunological changes in ovarian cancers, including PD-L1 upregulation.”* PD-L1 or
PD-1 expression is positively associated with P-gp expression in breast and gastric cancers, respectively. Moreover,
PD-L1 or PD-1 expression is upregulated in line with P-gp expression in drug-resistant breast cancer and gastric
cancer.”® % Interestingly, 5-carboxy-8-hydroxyquinoline, a histone demethylase inhibitor, in combination with
doxorubicin does not only decrease P-gp expression but also inhibits PD-L1 expression in cancer cells, thereby
promoting T-cell infiltration and suppressing tumor growth in vivo.”® Indeed, novel drug delivery system (DDS),
including versatile nanoparticles and liposomal formulation combined with PD-1/PD-L1 or antibody-free blockade
may activate immune responses and inhibit P-gp expression in cancer therapy.’” To the best of our knowledge, few
studies have been performed to investigate the relationship between CTLA-4 and ABC transporters. Thus, new
therapeutic modalities targeting immune checkpoints combined with the inhibitors of ABC transporters used to

overcome MDR, are urged to develop as complement chemotherapy.

3.5 | The application of approved immune checkpoint inhibitors and their
disadvantages

Until now, some mAbs targeting PD-1 (e.g., cemiplimab, dostarlimab, nivolumab, and pembrolizumab), PD-L1 (e.g.,
atezolizumab, avelumab, and durvalumab), and CTLA-4 (e.g., ipilimumab) have been approved by the U.S. FDA as
immune checkpoint inhibitors for immunotherapy or monoclonal therapy of several malignancies in the United States.
Although these mAbs display favorable therapeutic effects in clinical practices, disadvantages, such as nonrespon-
siveness, immune-related adverse events, immunogenicity, difficult manufacture, and high production costs, have
been observed and restrictions are imposed for their clinical uses.®*'° Sufficient evidence indicates that ICB with
mAbs induces severe immune-related adverse events, such as myocarditis,"®* acute kidney injury,"? liver injury,"%

194 and inflammatory arthritis."°> Moreover, these mAbs have poor delivery and is permeability

neurological toxicity,
limited into the tumor tissues (i.e., high interstitial fluid pressure) due to their large molecular size (~150 kD), which
reduces their therapeutic efficacies, and it is urged to improve the DDS for monoclonal therapy.'°® The relatively long
biological half-life of these mAbs enhances the time for drug elimination, thereby leading to severe adverse effects.'®”

The use of mAbs can result in severe adverse effects, but the rechallenge of ICB with mAbs is acceptable for
cancer patients who are suffering from immune-related adverse events.'*® Alternatively, small molecule inhibitors
can penetrate into the tumor and have favorable oral bioavailability. These small molecule inhibitors have other
advantages, including fewer adverse effects, that are better for self-administration and less expensive than mAbs
and have a shorter biological half-life. Therefore, this has attracted great interest to pharmaceutical companies.
However, most of these small molecule inhibitors targeting immune checkpoints are still in the preclinical stage.*®”
At present, clinical studies have suggested that small molecule inhibitors are biosafe and can block tumor growth
potently when compared to mAbs. Some synthetic small molecules from Bristol-Myers Squibb (e.g., BMS-1166 and
BMS-202) and Curis Inc. (i.e., CA-170: Phase |) display potent antitumor activities as orally bioavailable inhibitors via
interrupting PD-1/PD-L1 interactions in advanced tumors and lymphomas.'*® However, there are only several
reports and clinical studies focusing on the use of natural products as small molecule inhibitors. Therefore, in-
creasing interest has been driven towards novel potential modulators from natural products for tumor im-
munotherapy, a worldwide hot research topic. Biological resources for the discovery of antitumor drugs from nature
remain abundant, and persistent search may identify new chemical entities with antitumor activity. Plants, a major
source of complex and highly structurally and functionally diverse phytochemicals, such as phenols, polyphenols,
polysaccharides, tannins, peptides, terpenes, and alkaloids, may serve as a source of lead compounds for the
development of novel immune checkpoint inhibitors with improved pharmacological effects that can be used as

adjuvant therapy to enhance the potency of chemotherapeutic drugs against cancers.
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4 | POTENTIAL NATURAL PRODUCTS FROM HERBAL MEDICINES
WITH IMMUNOMODULATORY EFFECTS ON IMMUNE CHECKPOINTS

Herbal medicines have been widely used as adjuvant agents for cancer treatment and can also enhance the
sensitivity of chemotherapeutic resistance. Moreover, several naturally bioactive compounds isolated from herbal
medicines have been shown to modulate immune checkpoints in tumors, as well as promoting anticancer immunity
(Table 3). As herbal medicines target multiple pathways, they do not modulate immune checkpoints only, but can
also modulate the activities of several types of immune cells that contribute to anticancer immunity, including T
lymphocytes, B lymphocytes, Treg cells, DCs, and natural killer (NK) cells, thereby modulating the TME. In addition,
herbal medicines have low toxicity and fewer side effects than that of mAb blockers, so naturally bioactive com-
pounds from medicinal herbs could be potential agents for the treatment of cancers. The chemical structures of the
natural products from medicinal herbs with immunomodulatory effects on immune checkpoints are presented in
Figure 3.

41 | Apigenin

Apigenin, a dietary flavonoid, is derived from many fruits, vegetables, and beverages, including onions, oranges, and
chamomile tea.’®® It can modulate T-cell immunity in breast, lung, and pancreatic cancer, and regulate DCs in
melanoma.***"1131%¢ Apigenin can attenuate PD-L1 upregulation induced by IFN-y in breast cancer (MDA-MB-
468, SK-BR-3, and 4T1) and melanoma (A375, A2058, and RPMI-7951) cells.*****2 This inhibition occurs through
blocking the STAT1 pathway in breast cancer (MDA-MB-468) cells and melanoma (A375, A2058, and RPMI-7951)
cells. Similarly, apigenin also dismisses PD-L1 expression induced by IFN-B in breast cancer (MDA-MB-468) cells,
but it does not affect constitutive PD-L1 expression,’** whereas it reduces PD-L1 expression in the tumor tissues
of melanoma (B16-F10)-bearing mice.’* Moreover, apigenin can stimulate the proliferation of T lymphocytes and
induce T-cell-mediated cell death in breast cancer (MDA-MB-468) and melanoma (A375) cells cocultured with
Jurkat T cells, respectively.'*>**? This suggests that T-cell response is associated with apigenin-mediated PD-L1
downregulation and cancer cell death. Furthermore, apigenin can enhance CD4"* and CD8"* T-cell infiltration in the
tumor tissues of melanoma (B16-F10)-bearing mice, and reduce PD-L1 expression in DCs, thereby activating T-cell
immunity by downregulating PD-L1 expression in DCs.**? Similarly, it also increases the populations of CD4" and
CD8* T lymphocytes and decreases the population of Treg cells in pancreatic cancer (Panc02)-bearing mice.**® This
suggests that apigenin inhibits immunosuppression and activates T-cell immunity to exert its anticancer effects.
Vaccination with E7-HSP70 DNA enhances T-cell-mediated immune response to prevent tumor growth in NSCLC
(TC-1)-bearing mice.*>” Apigenin combined with E7-HSP70 DNA vaccine can produce greater amounts of primary and
memory E7-specific CD8* T lymphocytes, as well as stimulating memory-recall response in NSCLC (TC-1)-bearing
mice.’>® Taken together, we suggest that apigenin can be used as an immune checkpoint inhibitor for cancer therapy.
Anti-PD-1 mAb alone treatment cannot effectively inhibit tumor growth in the Lewis lung carcinoma model,
but the combined treatment of apigenin and anti-PD-1 mAb has a synergistic effect through decreasing tumor
volume and lung lesions by increasing the populations of CD8" T lymphocytes and generation of tumor necrosis
factor a (TNF-a), IFN-y, and granzyme B.''* Clinical trials could be conducted to explore the combination of

apigenin with ICB therapy in future.

4.2 | Berberine

Berberine, an isoquinoline alkaloid, is mainly derived from many medicinal plants including Coptidis chinensis

Franch and Phellodendron chinense Schneid.**® It is employed widely for the treatment of cancer and
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FIGURE 3 The chemical structure of the natural products with immunomodulatory potential for immune
checkpoints from herbal medicines. Apigenin, berberine, chrysophanol, curcumin, B-elemene, EGCG, gallic acid,
ginsenoside Rg3, ginsenoside Rh2, ginsenoside Rh4, ginsenoside Rk1, -glucans, resveratrol, silibinin, and
triptolide. EGCG, epigallocatechin gallate

inflammatory diseases.'*”*¢° Berberine exerts immunomodulatory effects in breast cancer cells, NSCLC cells,
HL-60-differentiated neutrophils, and T lymphocytes.'*>11¢161 Besides, it has been identified as a negative
regulator of PD-LI expression, as it reduces PD-L1 expression and diminishes PD-L1 upregulation induced by
IFN-y in NSCLC cells. This downregulation is through enhancing its degradation via ubiquitin/proteasome-
dependent pathway. Moreover, berberine activates tumor-infiltrating T lymphocytes, and reduces im-
munosuppressive Treg cells and myeloid-derived suppressor cells (MDSCs), thereby inducing antitumor activity
in NSCLC tumor.'*® Interestingly, the anticancer effect of berberine is abolished in Lewis lung carcinoma-
bearing T-cell deficient mice, suggesting that berberine-induced anticancer activity can be attributed to the
T-cell activation in the immune response.

MDSCs and Treg cells have been identified as potent immunosuppressive cells that contribute to immune
blockade and escape in the immunosuppressive TME by suppressing T-cell immunity.®?¢® Berberine reduces the
populations of activated MDSCs and Treg cells, which indicates that berberine switches the TME from im-
munosuppression to immunoactivation. Furthermore, berberine can regulate neutrophil phenotypes to reverse
doxorubicin-induced cancer cell resistance.’*® Continuous treatment of doxorubicin has been shown to induce a
shift towards the N2 phenotype in differentiated HL-60 neutrophils. However, combined treatment of berberine
and doxorubicin can reverse this effect and polarize the cells towards the N1 phenotype. In the mice models of lung
and liver cancers, berberine treatment can ameliorate lung carcinogenesis, and its combined treatment with dox-
orubicin induces neutrophil polarization to the N1 phenotype, reduces PD-L1 levels, or expression in serum and cell
surface of splenic T cells, respectively.'*® Taken together, berberine is suggested to be developed as an immune
checkpoint inhibitor for immunotherapy against cancers.
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4.3 | Chrysophanol

Chrysophanol, an anthraquinone compound, is derived from the rhizomes of Rheum palmatum L. Chrysophanol
exerts anticancer effects against T-cell acute lymphoblastic leukemia (TALL) by reducing cell proliferation and
metastasis, as well as inducing cell apoptosis in TALL (Jurkat and TALL-104) cells in vitro.'*” However, a microRNA-
9 inhibitor and a PD-L1 inhibitor, atezolizumab, block this effect, suggesting that chrysophanol may exert anticancer
effects via the microRNA-9/PD-L1 pathway in TALL cells. More evidence should be collected to confirm the effect
of chrysophanol on immune checkpoints and TME in vitro and in vivo.

44 | Curcumin

Curcumin, a phytopolylphenol pigment, derived from the rhizomes of Acorus calamus L., Curcuma longa, and

Curcuma zedoaria.**®

It exhibits immunomodulatory effects by regulating B cells, DCs, macrophages, MDSCs,
and T cells in CRC, head and neck squamous cell carcinoma, lung cancer, melanoma, and tongue squamous cell
carcinoma.112118-121123.164 cyrcumin reduces PD-L1 protein expression in carcinogen-induced oral tumor-
igenesis mice and in melanoma (B16-F10)-bearing mice. A combination of curcumin and sildenafil can also
decrease PD-L1 expression in CRC (CT26, HCT 116, and HT-29) cells, and liver cancer (HuH7) cells.}12118164
Similarly, it can also inhibit PD-L1 upregulation induced by IFN-y via the STAT1 pathway in melanoma cells, and
prevent IFN-y-induced cell death in melanoma (A375) cells cocultured with TALL (Jurkat) cells.'*? Besides,
curcumin can inhibit the immunosuppressive response by decreasing the populations of MDSCs and Treg cells,
as well as increasing the populations of CD8" T lymphocytes in the immunosuppressive TME. Hence, curcumin
can activate the T-cell immune response and improve tumor-induced immunosuppressive TME in tongue
carcinoma.**®

Development of advanced tumor always results in immune dysfunction, for example, a loss of Teff and
memory T-cell population, and enlargement of Treg cell population.*®> Curcumin prevents this loss of T-cell
population in Ehrlich's ascites carcinoma-bearing mice, and enhances the activity of T lymphocytes to attack
cancer cells.’*? It can also enhance CD4* and CD8" T-cell infiltration in the tumor tissues of melanoma
(B16-F10)-bearing mice.**? Curcumin can also inhibit Treg-mediated immunosuppression by reducing TGF-B
and IL-10 secretion, thereby alleviating tumor-induced immunosuppressive response.**?"*?2 Besides, it can also
downregulate CTLA-4 expression, a protein that is important for the immunosuppressive activity by Treg cells,
to mediate immunosuppressive activity in CD4*CD25" Treg cells.’?® It can also enhance IL-2 secretion but
reduce IFN-y secretion in a coculture of Treg and T cells, whereas it upregulated IL-4 expression. Curcumin can
also inhibit the accumulation and immunosuppressive function of MDSCs and IL-6 levels in the tumor tissues
and spleen of Lewis lung carcinoma-bearing mice, thus leading to an inhibition of tumor growth.*?° Interest-
ingly, a study demonstrates that a low dose of curcumin increases T-cell population in tumors derived from
Lewis lung carcinoma (3LL)-bearing mice, leading to retardation of tumor growth.*?" In contrast, a high dose of
curcumin reduces T-cell population. Besides, curcumin can also enhance IFN-y secretion from CD3* T lym-
phocytes and cannot suppress tumor growth in T-cell-deficient mice. These findings suggest that curcumin is a
potential immune activator and T lymphocytes play a critical role in the anticancer immunity response to the
action of curcumin.

Growing evidence shows that curcumin can augment the anticancer effect of anti-PD-1/PD-L1 mAb through the
activation of antitumor immunity in CRC, heptatocellular carcinoma (HCC), and cervical and uterine cancer.'®*¢”
Curcumin cannot only decrease PD-1 expression, but also combine with anti-PD-1 mAb to exert a synergistic
anticancer effect on cell growth, lymphocyte activation, and TME improvement in HCC in vitro or in vivo.'?218
In clinical trials, a phase |l study has completed to discover the action of a novel combination of pembrolizumab (PD-1

blockade) and curcumin in recurrent cervical and uterine cancer.*®” Curcumin exerts a powerful effect on immune
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checkpoints via multiple targets (e.g., PD-1, PD-L1, PD-L2, and CLTA-4) with in vitro, in vivo, and in clinical evidence,
which indicates that curcumin have potent to be developed as natural ICB from herbal medicines.

4.5 | pB-Elemene

B-Elemene, a volatile terpene, is derived from many herbal medicines including Curcuma wenyujin Y. H. Chen
et C. Ling and Curcuma Zedoary."’° It can inhibit cell migration and invasion in esophageal squamous cell carcinoma
(ESCC) (TE-1 and KYSE-150) cells in vitro, and suppress tumor growth in ESCC (TE-1 and KYSE-150)-bearing mice
by regulating protein kinase B (AKT) signaling, thereby modulating PD-L1 expression.'?* Therefore, B-elemene can
reduce PD-L1 protein expression in the tumor tissues of ESCC (TE-1 and KYSE-150)-bearing mice. The underlying

of action of B-elemene on immune checkpoints and TME should be further explored in the future.

4.6 | Epigallocatechin gallate

Epigallocatechin gallate (EGCG), a polyphenol, is derived from Camellia sinensis (green tea). It plays a role in modulating
immunity in NSCLC (A549, H1299, and Lu99) cells, and coculture of melanoma (B16-F10) cells expressing ovalbumin
(F10-OVA) and tumor-specific CD3* T cells.’?> Besides, the combination of EGCG and Sig/E7/LAMP-1 DNA vaccine
exerts immunomodulatory effects in NSCLC (TC-1) -bearing mice.'?® EGCG has also been shown to attenuate PD-L1
upregulation-induced by IFN-y at both protein and messenger RNA (mRNA) levels in NSCLC (A549 and H1299) cells,
and this inhibition is through suppressing the JAK2/STAT1 pathway.’?® Similarly, EGCG can also prevent PD-L1
upregulation induced by EGF via the AKT pathway in NSCLC (Lu99) cells. Moreover, EGCG can decrease PD-L1 cell
surface protein and mRNA expressions in F10-OVA cocultured with CD3" T lymphocytes isolated from F10-OVA
immunized mice, and increase the number of CD3* T cells and the levels of IL-2 mRNA, suggesting that it can restore
T-cell immune response by inhibiting PD-1/PD-L1 pathway. EGCG is also shown to increase the population of
E7-specific CD8" T lymphocytes in NSCLC (TC-1)-bearing mice.*?® In addition, the combination of EGCG and DNA
vaccine (Sig/E7/LAMP-1) is effective in treating large and bulky tumors.*® DNA vaccine (Sig/E7/LAMP-1) is designed
to enhance E7-specific T-cell immune responses, which can induce potential anticancer effects in E7-positive tu-
mors.>’* Combined EGCG and DNA vaccine can increase the population of IFN-y-secreting E7-specific CD8" T
lymphocytes and activate the immune response of CD4" and CD8"* T lymphocytes, along with a decreased tumor
volume in NSCLC (TC-1)-bearing mice.'?® Otherwise, tumor growth is not inhibited in CD8" T-cell-deficient tumor-
bearing mice, this indicates that CD8" T lymphocytes exert an important role in the anticancer effects of EGCG. EGCG
is a safe natural product, but the combination of EGCG with ICB therapy has not been well justified.

4.7 | Gallic acid

Gallic acid, a polyphenol, is derived from many natural plants, fruits, and green tea.’’? It exerts anticancer effects
through modulating tumor immunity in NSCLC and CRC.*?”*?% |t can strongly reduce PD-L1 at both protein and
mRNA expressions by inhibiting its binding to epidermal growth factor receptor in NSCLC (A549 and H292) cells,
thereby suppressing the phosphorylation of PI3K and AKT and activating p53.1%” Similarly, gallic acid can also
decrease PD-L1 protein expression in CRC (HT-29 and HCT 116) cells.*?® Taken together, we suggest that gallic
acid inhibits immune checkpoint to exert anticancer effects in NSCLC and CRC.

In addition, combined treatment of gallic acid and anti-PD-1 mAb exerts synergistic anticancer effect through
the activation of T-cell-mediated immune response via decreasing PD-L1 expression and enhancing IFN-y

production in NSCLC.*?” It is urgent to explore the combination of gallic acid with ICB therapy in clinical trials.
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4.8 | Ginsenosides

Ginsenosides, a group of dammarane triterpenoids, are derived from the rhizomes of Panax ginseng, Panax noto-
ginseng (Burk.) F. H. Chen, and Cinnamomum cassia Presl.>”* They possess immunomodulatory effects by regulating
T cells in breast cancer, ESCC, lung cancer, and melanoma.'?”181-134174 Ginsenoside Rg3 and Rh2 have been
shown to reduce cisplatin-induced PD-L1 upregulation in NSCLC cells, whereas ginsenoside Rh4 can downregulate
PD-L1 protein expression via the AKT/mammalian target of rapamycin pathway in ESCC (Eca109 and KYSE-150)
cells, and tumor (Ecal09)-bearing mice.'??**2132 Similarly, ginsenoside Rk1 can decrease PD-L1 expression in
NSCLC (A549 and PC9)-bearing mice, through inhibiting the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) pathway.'** Moreover, ginsenoside Rh2 can enhance CD4* and CD8a* T-cell infiltration in the
tumor tissues of melanoma (B16-F10)-bearing mice, and ginsenoside Rg1 can increase CD4* T-cell proliferation and
activity in mice.***”* Importantly, carbon nanotubes-loaded ginsenoside Rg3 can reduce PD-1 expression in
activated T cells and attenuate PD-L1 expression in triple-negative breast cancer cells, thereby stimulating the
production of IFN-y, IL-2, IL-9, IL-10, IL-22, and IL-23 from the activated T cells and attenuating the MDA-MB-231
breast cancer cell growth in vivo.>>° However, it is not clear whether ginsenosides target CTLA-4.

49 | B-Glucans

B-Glucans, natural polysaccharides, derived from plants, as well as the cell walls of yeast, fungi, and bacteria.’”
They can stimulate immunomodulatory effects in tumor-associated macrophages and DCs and significantly
prolong survival prognosis in Lewis lung cancer, melanoma, and osteosarcoma.®> %€ Particulate B-glucans can
upregulate PD-L1 at mRNA and protein levels in cultured mouse peritoneal macrophages that can interact with
PD-1 on activated T lymphocytes to send downregulatory signals to T cells.**¢ Besides, treatment with oat-
derived B-glucans has been shown to alter TME by enhancing the infiltrating DCs, Teff, and memory T cells
(CD4* and CD8" T lymphocytes), activating M1 macrophages, as well as generating proinflammatory cytokines
(TNF-a, IFN-y, and IL-2) in the tumor tissues of melanoma (B16-F10)-bearing mice.'*” This treatment also
upregulates PD-L1 expression to stimulate antitumor immunity in the tumor tissues. These findings suggest
that T lymphocytes, macrophages, DCs, and NK cells are all necessary factors for the therapeutic effects of
B-glucans in melanoma. Similarly, yeast-derived B-glucans also induce tumor-educated DC maturation to
promote antitumor response.'>® They can suppress Treg cell differentiation in tumor-educated DCs cocultured
with naive CD4" T cells in vitro and promote CD8" T-cell proliferation and differentiation into teff cells. The
combination of B-glucan treatment and tumor-educated DCs enhances the infiltration of CD11b*F4/80"
macrophages and CD11b*Gr-1* granulocytes in the tumor tissues of Lewis lung carcinoma-bearing mice,
whereas it decreases the populations of CD11c*TIM-3" DCs, CD4*Foxp3* Treg cells, and CD4*PD-1*
T lymphocytes in the tumor tissues and draining lymph nodes. These data suggest that B-glucans alter immunity
to exert anticancer effects in lung carcinoma.

In Lewis lung carcinoma, breast cancer (EO771), and melanoma (B16-F10)-bearing mice, a significant increase
in F40/80" macrophage infiltration into the tumor tissues with a typical M2 phenotype and immunosuppressive
function have been observed.'*® Yeast-derived particulate B-glucans can downregulate M2 marker genes, whereas
they upregulate M1 marker genes in bone marrow-derived M2 macrophages. They also attenuate M2 macrophage-
driven immunosuppressive property involved in the proliferation of CD4* and CD8* T lymphocytes. Besides,
B-glucans suppress tumor growth with an altered tumor-associated macrophage phenotype in Lewis lung
carcinoma-bearing mice, and macrophage depletion in these mice reverse these effects, suggesting that the an-
ticancer effects are mediated via modulating these effects on macrophages. Moreover, B-glucans can also reduce
the population of CD4"Foxp3™* Treg cells in the spleen and tumor tissues of breast cancer (EO771)-bearing mice,

but increase the population of CD4"* T cells. Therefore, targeting tumor-associated macrophages by B-glucans can
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improve the efficacy of cancer immunotherapies. Taken together, we suggest that B-glucans modulate different

immune cells to mediate antitumor immune response and anticancer effects.

4,10 | Resveratrol

Resveratrol, a nonflavonoid polyphenol, derived from Polygonum cuspidatum Sieb. et Zucc. as well as other natural
resources including grapes, peanuts, soy, and berries.’’® It possesses antitumor immunomodulatory effects by
regulating NK cells, T cells, Treg cells, and tumor-evoked regulatory B (tBreg) cells in breast cancer, leukemia,

1397145177 It has been shown to act as a direct inhibitor of a-glucosidase and a-

melanoma, and renal cell carcinoma.
mannosidase, glyco-PD-L1-processing enzymes, and to promote anticancer T-cell immunity by releasing the brake
of immune checkpoint via occupying the inner surface of PD-L1.'** Besides, resveratrol can promote infiltrating
CD8* T lymphocytes into the tumor tissues of renal cell carcinoma Renca tumor-bearing mice to enhance antic-
ancer immunity. However, this effect is abolished in CD8" T-cell-deficient mice, suggesting that CD8" T lympho-
cytes is an important factor contributed to resveratrol-induced anticancer immunity in renal cell carcinoma.*® In
contrast, it reduces Treg cell population in the tumor tissues of Renca tumor-bearing mice and spleen of melanoma
(B16-F10)-bearing mice, and decreases Foxp3*CD4*CD25" Treg cell population and TGF-B secretion in the spleen

140.141.143 It 3150 increases IL-10 and IL-6 at mRNA levels but decreases IFN-y at

of lymphoma (EG7)-bearing mice.
mRNA level in the tumor tissues of Renca tumor-bearing mice.'*® Moreover, resveratrol can also enhance the
proliferation of T lymphocytes and the activity of NK cells in leukemia (L1210)-bearing mice.***

tBreg cells play a critical role in breast cancer lung metastasis by converting from non-Treg CD4" T lympho-
cytes into metastasis-promoting Foxp3™ Treg cells, thereby inducing metastasis.”® Some studies demonstrate that
resveratrol blocks the generation and function of tBreg cells, downregulates PD-1 expression on T cells, and
promotes macrophages toward M1 phenotype to induce antitumor immune response in breast cancer
(4T1)-bearing mice, thereby attenuating lung metastasis from triple-negative breast cancer.’®”**¢ Furthermore,

145 It increases the population of CD3*

resveratrol can also enhance immune function in immunosuppressive mice.
and CD4" T lymphocytes in the peripheral blood and lymphocyte proliferation in the spleen, and reduces serum IL-2
and NF-kB levels. In contrast, resveratrol increases NF-kB p65 expression in the spleen of the immunosuppressive
mice. These data suggest that resveratrol can recover from immunosuppression via the NF-kB pathway. Inter-
estingly, repeated administration of resveratrol for 28 days is safe and well-tolerated in healthy Japanese subjects,
and it increases the population of circulating y& T cells and Treg cells.>’” Similarly, resveratrol also enhances the
growth of y& T lymphocytes and Treg cells in cultured peripheral blood mononuclear cells from healthy subjects.
Even though resveratrol fails to affect CTLA-4 expression, we also suggest that resveratrol exerts a potent an-
ticancer immune response via the PD-1/PD-L1 axis in cancer treatment. Future clinical trials may be conducted to

explore the synergetic effects of resveratrol with ICB therapy.

4.11 | Silibinin

Silibinin, a flavonoid, is derived from Silybum marianum L. Gaertn. It possesses potent anticancer effects against
nasopharyngeal, lung, and pancreatic carcinoma.*®*7?18% |t also exerts immunomodulatory effects in nasophar-
yngeal carcinoma.’*® In particular, silibinin has been shown to reduce PD-L1 expression in nasopharyngeal carci-
noma (C666-1) cells and primary tumors isolated from patients with nasopharyngeal carcinoma.*“® This reduction in
expression of PD-L1 is mediated by inhibiting its transcription factor, HIF-1a. In addition, silibinin inhibits the
STATS5 activation and disrupts the STAT5/PD-L1 complex.'*’ Therefore, silibinin restores anticancer immunity via
the HIF-1a, STAT5, and PD-L1 pathways. The effect of silibinin on other immune checkpoints (PD-1, PD-L2, and
CTLA-4) should be further validated in the future.
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412 | Triptolide

Triptolide, a diterpenoid epoxide, is derived from the roots of Tripterygium wilfordii Hook. F. It has been shown to
exert immunomodulatory effects by regulating B cells, macrophages, monocytes, T lymphocytes, and Treg cells in
breast cancer, glioma, melanoma, oral cancer.*>°"*** Triptolide has been shown to reduce the upregulation of
PD-L1 induced by IFN-y in breast cancer (MDA-MB-468 and MCF-7) cells, and glioma (A172, LN18, LN229, U251,
U87, and T98G) cells.*>**>? Similarly, it can downregulate the PD-L1 expression induced by IFN-y in OSCC (SAS)
cells through the JAK/STAT signaling pathway. °® Besides, triptolide treatment has been shown to decrease PD-L1
expression in oral cancer patient-derived tumor-bearing mice and OSCC (SAS)-bearing mice.'*® Unexpectedly,
triptolide can also decrease constitutive expression of PD-L1 protein in NSCLC (H460) cells.**> Moreover, triptolide
can reverse IFN-y-induced immunosuppressive CD4* and CD8* T lymphocytes in glioma cells cocultured with
T lymphocytes, as well as enhancing IFN-y and IL-2 secretion, and decreasing IL-10 secretion.**? In addition to
cancer cells, triptolide can promote the proliferation of T and B cells in leukemic mice.’* It can also decrease
the population of Treg cells and the levels of Foxp3 mRNA in the spleen and axillary lymph nodes of melanoma
(B16-F10)-bearing mice, as well as the levels of TGF-B and IL-10 mRNA in the spleen and the production of TGF-B
and IL-10 cytokines in the serum.*° Continuing studies should be performed to explore the effect of triptolide on
other immune checkpoints (PD-1, PD-L2, and CTLA-4) and TME in the future.

Taken together, apigenin, berberine, chrysophanol, curcumin, B-elemene, EGCG, gallic acid, ginsenoside Rg3,
ginsenoside Rh2, ginsenoside Rh4, ginsenoside Rk1, B-glucans, resveratrol, silibinin, and triptolide could improve
immune response to induce cancer cell death through activating anticancer T-cell immunity via targeting immune
checkpoints and modulating the TME via regulating cytokine secretion, so we suggest that natural products from
herbal medicines can act as immune checkpoint inhibitors and TME modulators for cancer immunotherapy
(Figure 4).

* Decrease PD-L1 expression
« Inhibit cell proliferation Natural products from

<7/ * Induce cell apoptosis and cell cycle arrest Herbal medicines
T ~"« Inhibit tumor growth in tumor-bearing mice
* Enhance mouse survival rates

Multiple
targets

o

5 * Promote T cell cytotoxicity
O ~,  *Activate anti-cancer T cell immunity
O * Enhance IFN-y secretion from CD3* T cells
* Enhance T cell proliferation into the tumor and spleen of tumor-bearing mice

T cells

* Decrease PD-L1 expression

* Up-regulate CD40/80/86 and MHC-II in tumor-educated DCs

« Stimulate TNF-o and IL-12p70 secretion in tumor-educated DCs

* Reduce CD11¢*CD8* DC population in the tumor and draining lymph nodes

DCs * Increase the mRNA levels of TNF-q, IL-12, p40, iNOS and IL-6 in tumor-educated DCs

@ @ * Reduce CTLA-4 expression in Treg cells
) * Decrease TGF-B and IL-10 secretion from Tregs
% * Block immunosuppression induced by Tregs and MDSCs

Tregs & MDSCs « Decrease the populations of Tregs and MDSCs in tumor of tumor-bearing mice

FIGURE 4 The immunomodulatory potential of natural products from herbal medicines as immune checkpoints
inhibitors to fight against cancer via multiple targets. Natural products from herbal medicines act on different cells,
including cancer cells, T cells, dendritic cells (DCs), regulatory T cells (Tregs), and myeloid-derived suppressor cells
(MDSCs), to present anticancer activities via multiple targets [Color figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSION AND PERSPECTIVES

Until now, single target, immune resistance, and adverse reactions are the major challenges in the clinical use of ICB
treatment for cancer immunotherapy, so the researchers aim to develop novel agents, improve targeting responses,
and reduce side effects for cancer immunotherapy. Genetic mutations and epigenetics are complicated and re-
versible factors that are valuable indicators for the success of ICB treatment and merit further exploration. Al-
though the experience with ICB treatment in cancer therapy is limited, promising lead compounds derived from
herbal medicines could be important in cancer immunotherapy. However, the research and development of immune
checkpoint inhibitors from herbal medicines are very challenging, as herbal medicines is mainly used as an adjuvant
therapy in cancer treatment. Further studies are urgent to test whether these lead compounds from herbal med-
icines are potent enough to be used alone as immune checkpoint inhibitors. Besides, the toxicities of lead com-
pounds are also needed to be tested to check whether these lead compounds have any effects on healthy tissues.
Despite these challenges, lead compounds from herbal medicines remain to be novel agents as immune checkpoint
inhibitors for fighting against cancers.

CTLA-4 blockade is also a promising strategy to modulate the TME, but few studies have demonstrated the
relationship between CTLA-4 and natural products from herbal medicines in cancer studies. Future studies are
warranted to discover the bioactive compounds that can target CTLA-4, as well as the underlying mechanisms. As
few clinical trials were performed on immune checkpoints for natural products from herbal medicines compared to
ICB mAbs, there is still a gap in the research of the underlying mechanisms of natural products for improving ICB
therapy. A chemical library of natural products from herbal medicines could aid the discovery of promising lead
compounds targeting immune checkpoints in cancer immunotherapy.
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