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Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather
influenced by a combination of genetic, epigenetic and environmental factors. Emerging
high-throughput technologies such as RNA sequencing have been instrumental in
deciphering the molecular landscape of neurodegenerative diseases, however, the
interpretation of such large amounts of data remains a challenge. Network biology has
become a powerful platform to integrate multiple omics data to comprehensively explore
the molecular networks in the context of health and disease. In this review article, we
highlight recent advances in network biology approaches with an emphasis in brain-
networks that have provided insights into the molecular mechanisms leading to the most
prevalent neurodegenerative diseases including Alzheimer’s (AD), Parkinson’s (PD) and
Huntington’s diseases (HD). We discuss how integrative approaches using multi-omics
data from different tissues have been valuable for identifying biomarkers and therapeutic
targets. In addition, we discuss the challenges the field of network medicine faces toward
the translation of network-based findings into clinically actionable tools for personalized
medicine applications.

Keywords: Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, network biology, molecular
mechanisms

INTRODUCTION

Neurodegenerative diseases are usually sporadic in nature and commonly influenced by a wide
range of genetic, epigenetic and environmental factors. With the advent of new high-throughput
technologies such as RNA sequencing, it has become essential to develop methods beyond
the classical pathway analysis to systematically interpret large amounts of data in the context
of health and disease. Despite the progress of high-throughput genomic studies the precise
pathogenic mechanisms leading to the most prevalent neurodegenerative diseases remain elusive.
To this end, the applications of network biology have been successful to provide biological
insight and to decipher the molecular underpinnings of neurodegenerative diseases. Network
biology is based on the premise that complex diseases, like neurodegenerative diseases, are
frequently caused by alterations in many genes comprising multiple biological pathways. A
network consists of nodes and edges that may represent genes, proteins, miRNAs, noncoding
RNAs, drugs, or diseases connected through a wide range of interactions including, but
not limited to physical, genetic, co-expression and colocalization. An example of network
analysis of Alzheimer’s disease (AD) that identifies central hubs is shown in Figure 1.
Integration of multi-omic information coupled with network-based approaches is becoming
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FIGURE 1 | Representation of common biological networks. (A) Example of a network of interactions among genetic risk factors for Alzheimer’s disease (AD; black
circles) and other related genes (gray circles). The color of the lines represents the type of interaction and the thickness is proportional to the strength of the
association. (B–D) Presenilin 1 (PSEN1), PSEN2 and amyloid precursor protein (APP; red circles) are highly connected genes (hub genes) identified in the network.
Hub genes usually play a central role in the disease. These networks were retrieved by GeneMANIA application in Cytoscape 3.1.1 as of September 2016 using the
default settings to include the top 20 related genes and automatic weighting.

an essential step towards the advancement of personalized
medicine (Figure 2). Some of the frequently used terms in
network biology approaches are defined in Table 1.

Seminal work in network biology including the construction
of the human disease network (Goh et al., 2007), the
human functional linkage network (Linghu et al., 2009), the
discovery of causal genes of obesity (Chen et al., 2008),
and clinical biomarkers for cancer (Taylor et al., 2009),
prompted efforts to study many different diseases using
network-based approaches. In the last few years, there has
been a steady growth in studies exploiting the concepts
of network biology to understand neurodevelopmental and
neurodegenerative diseases (Santiago and Potashkin, 2014a).
For example, network approaches have successfully identified
putative diagnostic biomarkers for Parkinson’s disease (PD;
Santiago and Potashkin, 2013a, 2015; Santiago et al., 2014, 2016),
and progressive supranuclear palsy (Santiago and Potashkin,
2014b) reviewed in Santiago and Potashkin (2013b, 2014a,c).

In addition, network-based approaches have provided insights
into the molecular mechanisms underlying co-morbid diseases
associated with PD including diabetes (Santiago and Potashkin,
2013a) and cancer (Ibáñez et al., 2014). In this review article,
we highlight the most recent advances in network biology
applications to understand the most common neurodegenerative
diseases with an emphasis on brain specific networks.

NETWORK-BASED APPROACHES
IDENTIFIES PATHWAYS SPECIFIC TO
ALZHEIMER’S DISEASE (AD)

AD is the most prevalent neurodegenerative disease, responsible
for the majority of the cases of dementia, affecting more than
44 million people worldwide with an estimated global cost of
more than 600 billion dollars1. Although the exact mechanism

1http://www.alzheimers.net/resources/alzheimers-statistics/
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FIGURE 2 | Applications of network medicine. Biological networks can be constructed from a wide range of different omic approaches including genomic,
transcriptomic, epigenomic, metabolomic and proteomic datasets. In protein-protein interaction (PPI) networks, proteins are the nodes and their interactions are the
edges. Network-based approaches have advanced the field of personalized medicine by providing novel mechanisms of disease, diagnostics and therapeutic
targets.

of disease remains unclear, a complex combination of genetic,
epigenetic, lifestyle, environmental factors and aging are believed
to be responsible for most of the cases. Pathological features
of AD include the accumulation of amyloid beta (Aβ) plaques
and protein tau in neurofibrillary tangles (NFT). While most of
the AD cases are late onset (LOAD) and sporadic, some genetic
mutations in the amyloid precursor protein (APP), presenilin 1
(PSEN1) and presenilin 2 (PSEN2) are documented to cause
early onset AD, which accounts for approximately 2% of the
cases with symptoms appearing before the age of 65 (Goate
et al., 1991; Levy-Lahad et al., 1995; Janssen et al., 2003).
The apoliporotein E-ε4 (APOEε4) is the only genetic factor
identified in more than 60% of the sporadic AD cases, however,
it has also been found in healthy individuals thus suggesting
that other genetic factors may be responsible for the disease
(Coon et al., 2007). To date, emerging high-throughput genomic
technologies have reported more than 2900 genetic variations
associated with AD2.

Although these studies have been valuable to understand
the genetic diversity associated with AD, the multi-factorial
mechanisms leading to the disease are unclear. Network-based
approaches have been successful to systematically interpret
these results and to gain insight into the mechanisms
of disease. In particular, integrative approaches combining
multi-omic data in networks have been employed to identify

2http://www.alsgene.org/

susceptibility genes and pathways in AD. For example,
combinatorial network analysis of proteomic and transcriptomic
data revealed subnetworks enriched in pathways associated
with the pathogenesis of AD including the downregulation
of genes associated with the MAPK/ERK pathway and the
upregulation of genes associated to the clathrin-mediated
receptor endocytosis pathway (Hallock and Thomas, 2012;
Table 2). In this regard, disruption of the clathrin-mediated
receptor pathway can lead to increased levels of APP thereby
contributing to disease progression (Schneider et al., 2008;
Hallock and Thomas, 2012). Integrative approaches have led to
the identification of potential additional genetic risk factors and
biomarkers for AD. For instance, integration of genome wide
association studies (GWAS), linkage analysis and expression
profiling in a protein-protein interaction (PPI) network yielded
a 108 potential risk factors for AD including EGFR, ACTB,
CDC2, IRAK1, APOE, ABCA1 and AMPH. Among these
genes, EGFR, APOE and ACTB were found to overlap with
proteomic data from cerebrospinal fluid of AD patients (Talwar
et al., 2014) thus providing potential biomarker candidates.
Collectively, these studies reinforce the power of integrative
network approaches to identify pathways, genetic risk factors and
biomarkers for AD.

Weighted gene coexpression networks analysis (WGCNA)
are increasingly being used to find highly co-expressed gene
modules associated with a particular biological pathway or
a clinical trait of interest (Langfelder and Horvath, 2008).
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TABLE 1 | Frequently used terms in network biology.

Term Definition

Epigenetic Epigenetic studies genetic effects not encoded in the DNA sequence of an organism.

Gene ontology (GO) Gene ontology is a major bioinformatics initiative to unify the representation of gene and gene product attributes
across all species.

Genome wide association study (GWAS) A genome wide association study is an examination of the entire genome that is useful to identify genetic
variants (SNPs) associated with a trait of interest.

Module Module is defined as a group of physically or functionally linked molecules that work together to achieve a
relatively distinct function.
Modules are also called groups, clusters or communities.
Examples of modules are co-regulation, co-expression, membership of a protein complex, of a metabolic or
signaling pathway.

Network analysis Network analysis is a method to systematically analyze a group of interconnected components. Nodes and
edges are the basic components of a network. Nodes represent units in the network and edges represent the
interactions between the units. Hubs are nodes with high connectivity.

Network medicine Network medicine is an emerging field of network biology that applies the principles that govern cellular and
molecular networks in the context of health and disease.

-omes -omes are large scale networks.
Interactome refers to the entire set of interactions in a particular cell. These interactions could represent, for
example, protein-protein interactions (PPI) or interactions between messenger RNA molecules, also known as
the transcriptome.

Single nucleotide polymorphism (SNP) A single nucleotide polymorphism is a variation in a single nucleotide that occurs at a specific position in the
genome. They are the most common type of genetic variation among people.

Weighted gene co-expression network analysis
(WGCNA)

Weighted gene co-expression network analysis, also known as weighted correlation network analysis (WCNA),
represents a systems biologic method for analyzing microarray data, gene information data, and microarray
sample traits (e.g., case control status or clinical outcomes). WGCNA facilitates a network-based gene
screening method that can be used to identify candidate biomarkers or therapeutic targets.

For example, construction of gene co-expression networks
from 1647 postmortem brain tissues from LOAD patients
highlighted immune and microglia enriched modules,
containing a key regulator of the immune system, known
as TYROBP (Zhang et al., 2013). Likewise, WGCNA analysis
uncovered astrocyte-specific and microglia-enriched modules
in vulnerable brain regions that associated with early tau
accumulation (Miller et al., 2013). Implementation of WGCNA
in RNA-sequencing data using brain samples obtained from
the temporal lobe of subjects with dementia with Lewy body
(DLB), LOAD and cognitively normal patients, identified
network modules specific to each disease. For example, two
network modules enriched in myelination and innate immune
response correlated with LOAD whereas network modules
associated with synaptic transmission and the generation
of precursor metabolites correlated with DLB and LOAD
(Humphries et al., 2015). Further, genes previously implicated
in LOAD including FRMD4B and ST18 (Miller et al., 2008;
Zhang et al., 2013) were prominent hubs within the myelination
network (Humphries et al., 2015). Together, these findings
suggested the involvement of microglia and myelination
in the pathogenesis of AD and established differences in
biological pathways between LOAD and DLB. Besides innate
immunity pathways, network analysis of transcriptomic data
from the brain hippocampus of normal aged and AD subjects
identified key transcriptional regulators related to insulin
(INS1, INS2) and brain derived neurotrophic factor (BDNF)
interacting with the retinoic acid receptor related orphan
receptor (RORA, Acquaah-Mensah et al., 2015) previously

implicated in autoimmunity and diabetes (Solt and Burris,
2012).

With the growing interest in personalized medicine, it
has become essential to develop tools to stratify patients
according to symptoms, prognosis, and disease stage. This
is highly important due to the fact that some subgroups of
patients within a specific disease may experience a faster
disease progression or respond to therapy differently. There
are several documented examples on how networks could
accelerate individualized treatment. For instance, analysis
of protein interaction networks identified unstable network
modules in different brain regions, in particular, in the
entorhinal cortex of AD patients. Specifically, several protein
interactions were present or absent at different Braak stages
thus providing network modules characteristic of disease
progression in AD (Kikuchi et al., 2013). Interestingly, the
network modules with the largest number of disappearing
protein interactions at late stage were associated with the
histone acetyltransferase and the proteasome complexes.
These modules were interacting via UCHL5 thereby
indicating the perturbation of the ubiquitin-proteosome
system in AD. Likewise, network analysis of six relevant
brain regions affected in AD uncovered 136 hub genes of
which 72 correlated with the Mini Mental State Examination
(MMSE) and NFT scores, both widely utilized indicators
of disease severity in AD (Liang et al., 2012). Among
these genes, there were important transcription factors and
kinases associated with AD including LEF1, SOX9, YY1,
TCF3, TFDP1, CDK5, CSK and MAP3K3. Among these
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TABLE 2 | Brain network-based analysis of the most common neurodegenerative diseases.

Disease Networks identified Reference

AD MAPK/ERK and clathrin-mediated receptor endocytosis Hallock and Thomas (2012)

Immune system and microglia Zhang et al. (2013)

Astrocyte-specific and microglia-enriched modules Miller et al. (2013)

Myelination and innate immune response Humphries et al. (2015)

Network modules of AD progression Kikuchi et al. (2013)

Co-expression modules based on APOEε4 stratification Jiang et al. (2016)

Downregulated network of genes corresponding to metastable proteins prone to
aggregation

Ciryam et al. (2016)

Hypomethylation patterns in a myelination network Humphries et al. (2015)

PD Stress response and neuron survival/degeneration mechanisms Corradini et al. (2014)

Key protein targets including p62, GABARAP, GBRL1 and GBRL2 that modulated
1-methyl-4-phenylpyridinium (MPP+) toxicity

Keane et al. (2015)

Alvespimycin neuroprotective agent for PD Gao et al. (2014)

RGS2 as a key regulator of LRRK2 function Dusonchet et al. (2014)

Downregulation of RNA and protein expression of a network of transcription factors
FOXA1, NR3C1, HNF4A and FOSL2

Fernández-Santiago et al. (2015)

HD Modules associated with Htt CAG length and toxicity Langfelder et al. (2016)

Metalloprotein, stress response, angiogenesis, mitochondrion, glycolysis, intracellular
protein transport, proteasome, synaptic vesicle

Neueder and Bates (2014)

Protein modification, vesicles transport, cell signaling and synaptic transmission Mina et al. (2016)

Astrocyte module associated with TGFβ -FOXO3 signaling, stress and sleep phenotype Scarpa et al. (2016)

Aging,
neurodegeneration

DNA repair, RNA metabolism, and glucose metabolism shared in AD and PD Calderone et al. (2016)

242 genes enriched in pathways related to neuron differentiation, apoptosis, gap
junction trafficking, and cellular metabolic processes in AD and HD

Narayanan et al. (2014)

Inflammation, mitochondrial dysfunction, and metal ion homeostasis in aging and PD Glaab and Schneider (2015)

Chaperome critical to maintain protein homeostasis in aging and neurodegeneration Brehme et al. (2014)

genes, overactivation of CDK5 is a major trigger of tau
hyperphosphorylation and NFT formation in AD suggesting it
may be a target for therapeutic intervention (Wilkaniec et al.,
2016).

Since some genetic risk factors have a stronger influence in
the disease than others, patient categorization and stratification
according to the genetic basis would be advantageous in
personalized medicine. In the context of AD, APOEε4 is the
strongest risk factor for LOAD accounting for more than 50%
of the cases. APOEε4 carriers display different clinical and
pathological features than those of non-carriers. For example,
APOEε4 carriers perform worse on memory tasks (Marra
et al., 2004) and have a higher amyloid beta deposition than
non-carriers (Kandimalla et al., 2011; Jack et al., 2015).Moreover,
APOEε4 carriers respond to treatment differently than non-
carriers. For instance, a neuroprotective agent improved MMSE
scores in APOEε4 carriers but not in non-carriers (Richard
et al., 1997). WGCNA on a transcriptomic dataset from
human cerebral cortex of LOAD identified distinct co-expression
modules based on APOEε4 stratification (Jiang et al., 2016).
Co-expression modules of APOEε4 carriers were enriched in
hereditary disorders, neurological diseases, and nervous system
development and function whereas modules of non-carriers
were enriched in immunological and cardiovascular diseases
thus suggesting that different biological processes could play
a role in LOAD with different APOEε4 status (Jiang et al.,
2016).

NETWORK-BASED APPROACHES IN
PARKINSON’S DISEASE (PD)

PD is the second most prevalent neurodegenerative disease
after AD, affecting more than 10 million people worldwide.
Pathological features include the accumulation of aggregated
alpha synuclein (SNCA) in intraneuronal cytoplasmic inclusion
known as Lewy bodies and the progressive loss of dopaminergic
neurons in the substantia nigra pars compacta. Dopamine
restorative drugs and deep brain stimulation are current
therapies to treat patients, however, these treatments only
alleviate motor symptoms but do not impact disease progression.
Mutations in the LRRK2, PARK2, PARK7, PINK1 and SNCA
genes are known to cause familial PD. Most of the PD cases,
however, are sporadic resulting from a complex interplay
between genetics and environmental factors. In fact, some of the
same genetic variants including SNCA and LRRK2 implicated in
familial PD have been also associated with sporadic PD (Satake
et al., 2009; Simón-Sánchez et al., 2009; Lin and Farrer, 2014). To
date, advances in genomics have identified 28 genes associated
with PD (Lin and Farrer, 2014).

Several pathways have been linked to the pathogenesis
of PD including mitochondrial dysfunction, endoplasmic
reticulum stress, autophagy, inflammation and impaired insulin
signaling (Mercado et al., 2013; Nolan et al., 2013; Santiago
and Potashkin, 2013b; Lin and Farrer, 2014). Despite this
progress, the precise disease-causing mechanisms of PD are
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not fully understood. Complementation of genomic and
transcriptomic studies with system biology approaches have
provided insights into some novel mechanisms of disease. For
instance, differential co-expression network analysis (DCA)
performed on transcriptomic data from PD substantia nigra
at autopsy, uncovered a transcript isoform of SNCA with an
extended 3′ untranslated region, termed aSynL, which influenced
SNCA accumulation (Rhinn et al., 2012). Interestingly, the
pattern of expression of the long aSynL isoform relative to
the short isoforms was also observed in unaffected individuals
harboring a PD risk variant in the SNCA locus (Rhinn et al.,
2012).

Understanding the molecular events associated with the
progression of PD could help delineate a timeline for effective
therapeutic intervention. Gene co-expression network analysis
showed differences in gene modules between PD and controls
for different anatomic brain regions (Corradini et al., 2014). In
PD, hub modules in the motor vagal nucleus, locus coeruleus,
and substantia nigra were enriched in pathways related to
stress response and neuron survival/degeneration mechanisms
whereas in control samples gene modules were associated
with neuroprotection and aging homeostasis. Interestingly,
one of the main hubs in the substantia nigra of control
samples was SIRT1, which has been widely implicated in
neuroprotection in several neurodegenerative diseases (Donmez
and Outeiro, 2013; Herskovits and Guarente, 2013). Analysis
of PPI networks representing autophagy and mitochondrial
dysfunction pathways identified key protein targets including
p62, GABARAP, GBRL1 and GBRL2 that modulated 1-methyl-
4-phenylpyridinium (MPP+) toxicity (Keane et al., 2015), a
widely used toxin to mimic PD in animal and cellular models.
Strikingly, overexpression of these proteins combined, but not
each one alone, provided rescue of MPP+ toxicity. This result
further strengthens the notion that targeting a cluster of genes
rather than a single gene may be the route to an effective
treatment.

Integrative system biology approaches incorporating network
analyses have been valuable in identifying potential therapeutic
targets in PD. For instance, construction of networks integrating
genetic information from Gene expression Omnibus (GEO),
the Parkinson’s disease database (ParkDB) and the Comparative
Toxicogenomics Database (CTD), identified alvespimycin
(17-DMAG) as a candidate neuroprotective agent for PD (Gao
et al., 2014). Experimental validation showed that 17-DMAG
attenuated rotenone-induced toxicity in vitro. Another approach
combined human brain and blood transcriptomic data and
identified RGS2 as a key regulator of LRRK2 function
(Dusonchet et al., 2014), one of the most common genetic
risk factor of PD. Of note, RGS2 protected against neuronal
toxicity in a Caenorhabditis elegans model expressing wild
type LRRK2. Combination of -omics data from different
tissues, for example brain and blood, may be advantageous
to understand neurodegeneration in light of the recent
finding that demonstrated that cell types outside the brain
contain genetic risk factors associated with PD (Coetzee et al.,
2016) and thus may help uncover new putative therapeutic
targets.

NETWORK ANALYSIS IN HUNTINGTON’S
DISEASE (HD)

Huntington’s disease (HD) is one of the most common
dominantly inherited neurodegenerative disorders. The
symptoms include some motor symptoms, such as chorea
and dystonia, as well as non-motor symptoms, including
psychological changes, and cognitive decline leading to dementia
(Ross et al., 2014). These symptoms are correlated with a selective
degeneration of the striatal and cortical neurons (Ehrlich, 2012).
Currently, there are no therapies to prevent the onset or slow the
progression of HD.

This progressive and fatal disease is caused by abnormal
extension of the CAG repeat coding for a polyglutamine (polyQ)
tail in the huntingtin gene (HTT, MacDonald et al., 1993).
Unaffected individuals have fewer than 36 repeats, whereas
affected patients can have as many as 250 CAG repeats.
It has been shown that the length of the polyQ extension
is inversely proportional to the age of the disease onset
(Orr and Zoghbi, 2007). Vesicle and mitochondrial transport,
transcription regulation, neurogenesis and energy metabolism
are among the cellular functions of the normal HTT protein
(Borrell-Pagès et al., 2006). Both lost of function of the normal
protein and gain of toxic properties of mutant HTT leads to
HD pathology. In fact, it has been shown that whereas the
normal HTT protein is neuroprotective, the mutant HTT is
neurotoxic. Despite this progress, the molecular mechanisms
involved in the complex phenotype of the disease are still largely
unknown.

In order to understand the role of HTT in HD pathology,
(Langfelder et al., 2016) expressed HTT with different CAG
length in a mice model. They demonstrated that the length of the
CAG repeats modified the transcriptome of the striatum, and to
a lesser extent, the cortex. WGCNA allowed the identification of
13 striatal and five cortical gene coexpression modules that were
strongly associated with Htt CAG length. Interestingly, cadherin
and protocadherin (Pcdh) genes expression were dysregulated in
four of the modules, indicating that regulatory factors of these
genes, such as Rest, Ctcf and Rad21, could be involved in HTT
toxicity in mice (Langfelder et al., 2016).

Similarly, WGCNA was performed on transcriptomic HD
post mortem tissues including the frontal cortex, cerebellum
and caudate nucleus regions. The authors found that genes
involved in metalloprotein, stress response and angiogenesis
were positively regulated in all the networks whereas genes
involved in mitochondrion, glycolysis, intracellular protein
transport, proteasome and synaptic vesicle were downregulated
(Neueder and Bates, 2014). Analysis of the human transcriptome
from HD patients compared to healthy samples confirmed
that protein modification, vesicles transport, cell signaling and
synaptic transmission are important pathways involved in HD
(Mina et al., 2016). Interestingly, these modules were also found
in a blood transcriptomic study (Mina et al., 2016). Despite
the fact that dysregulation of similar pathways was observed
in the blood and brain, there was no overlap in any of the
individual genes common between the two tissues (Mina et al.,
2016).
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A system-based approach performed on human
transcriptomic datasets from post mortem human cerebellum,
frontal cortex and caudate nucleus from HD patients and
controls showed that an astrocyte module is the network whose
connectivity and expression is most altered in HD (Scarpa
et al., 2016). This astrocyte module was located downstream of
TGFβ -FOXO3 signaling. In this regard, the TGFβ pathway was
upregulated in neural stem cell differentiated from HD patient
induced pluripotent stem cells (iPSC; Ring et al., 2015). Analysis
of corrected iPS cells expressing shorter polyQ tails showed a
downregulation of TGFβ pathway target genes, including cyclin-
dependent kinase inhibitor 2B (CDKN2B), inhibitor of DNA
binding 2 (ID2), inhibitor of DNA binding 4 (ID4), paired-like
homeodomain transcription factor 2 (PITX2), thrombospondin
1 (THBS1), and left-right determination factor 2 (LEFTY2, An
et al., 2012). In addition, valproic acid and lithium, both affecting
TGFβ signaling, have been shown to improve mood in HD
patients (Grove et al., 2000; Liang et al., 2008; Watanabe et al.,
2011; Scheuing et al., 2014; Raja et al., 2015).

HD non-motor symptoms such as stress-related psychiatric
and sleep disturbances often precede the onset of motor
symptoms (Duff et al., 2007) and system-based approaches have
proposed that sleep and stress traits emerge from shared genetic
and transcriptional networks (Jiang et al., 2015). Interestingly,
the astrocyte network expression described by Scarpa et al also
correlated with stress and sleep phenotype in a chronically
stressed mouse model (Scarpa et al., 2016). Collectively, these
results suggest that targeting components of the TGFβ signaling
pathway may provide novel therapeutics for HD.

NETWORK APPROACHES TO
UNDERSTAND THE CONNECTION AMONG
NEURODEGENERATIVE DISEASES

Widespread protein misfolding and aggregation is a hallmark of
neurodegenerative diseases. Despite the fact that neurodegerative
diseases are defined by a set of characteristic pathological and
clinical features, there is some overlap in pathology, genetic risk
factors, and mechanisms of disease. For example, accumulation
of SNCA and Lewy body pathology, central in the pathogenesis
of PD, are present in the brains of human AD and implicated in
aberrant synapse formation (Hamilton, 2000; Kim et al., 2004).
Several studies have identified Single nucleotide polymorphisms
(SNPs) in the MAPT locus associated with PD and AD thus
suggesting that a common genetic factor may put an individual
at risk for both diseases (Desikan et al., 2015). In addition
to MAPT, other genetic variants including PON1, GSTO, and
NEDD9 have been associated with the risk of PD and AD thus
strengthening the genetic overlap between both diseases (Xie
et al., 2014). Not surprisingly, shared mechanisms related to
oxidative stress, neuroinflammation, impaired insulin signaling,
mitochondrial dysfunction, iron dyshomeostasis and nicotinic
receptors have been implicated in the pathogenesis of AD and
PD (Xie et al., 2014). Therefore, a system-level understanding of
the disease-disease connections could accelerate the discovery of
novel treatments for both neurodegenerative diseases.

A systems-based approach combining expression quantitative
trait loci (eQTL) studies from cerebellum and frontal cortex
of AD patients, GWAS from AD and PD and PPI networks
indicated that some PD variants (cisSNPs, cis-acting SNPs)
were associated with the expression of CRHR1, LRRC37A4
and MAPT located at 17q21 and suggestive of AD risk (Liu
et al., 2015). Similarly, shortest path analysis on a network
constructed from literature mining identified known genes
that already have an association with AD and PD and seven
previously unknown genes including ROS1, FMN1, ATP8A2,
SNORD12C, ERVK10, PRS and C7ORF49 that may link both
diseases (Kim et al., 2016). Besides finding shared genetic
associations, network analysis employing the computation of
a similarity matrix identified gene clusters related to DNA
repair, RNA metabolism, and glucose metabolism shared in AD
and PD (Calderone et al., 2016). Importantly, these pathways
were not detected using the conventional gene ontology (GO)
analysis thus highlighting the power of networks to uncover
novel pathways.

In addition to the studies focused on AD and PD, recent
network-based approaches have been applied to understand
the molecular networks shared among other neurodegenerative
diseases. One study focused on the dorsolateral prefrontal
cortex (DLPFC) which is commonly affected in both AD
and HD to construct coexpression networks using genome
wide expression data from 600 postmorterm DLPFC tissues
from AD, HD, and non-dementia controls. Differential
coexpression analysis revealed a subnetwork of 242 genes
enriched in pathways related to neuron differentiation,
apoptosis, gap junction trafficking, and cellular metabolic
processes (Narayanan et al., 2014). Interestingly, the
242 gene subnetwork overlapped with genes downregulated
in postmortem brains of major depressive disorder, a condition
that is associated with other neurodegenerative disorders
including PD (Aarsland et al., 2012). Further inspection of
this subnetwork identified a gained/lost gene coexpression
patterns associated with chromatin organization and neural
differentiation.

NETWORK-BASED APPROACHES TO
UNDERSTAND AGING-ASSOCIATED
NEURODEGENERATION

Aging is one of the most common risk factors associated
with neurodegeneration. With an average age of onset of
60 for the most common neurodegenerative diseases, the risk
of developing PD or AD significantly increases with age.
Dopamine synthesis, a crucial neurotransmitter that becomes
depleted in the brain of PD, declines with age (Ota et al.,
2006) and amyloid deposits, characteristic pathology in AD, are
found in the aging brain of non-demented individuals (Pike
et al., 2007). Beyond the overlap in pathological features, aging
and neurodegenerative disorders share several dysregulated
pathways. A system-based approach that identifies molecular
networks shared between aging and neurodegeneration should
reveal shared mechanisms, some of which may be targets for
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slowing disease progression. Discovering unique dysregulataed
pathways that are not aging-associated could pinpoint potential
therapeutics targets unique for a particular neurodegenerative
disease.

Several studies have employed system biology tools
to better understand age-related neurodegeneration. For
example, a comparative pathway and network analysis of the
brain transcriptome revealed shared networks and pathways
between aging and PD including inflammation, mitochondrial
dysfunction and metal ion homeostasis (Glaab and Schneider,
2015). Interestingly, the expression of the most significant shared
gene, NR4A2, gradually declined with aging and PD. They found
that this aging-associated gene expression changes in NR4A2
might increase the risk of PD by mechanisms similar to gene
mutations linked to PD (Glaab and Schneider, 2015).

Proteostasis functional decline is common in aging and
neurodegenerative diseases. In fact, several studies have
proposed a mechanistic link between aging and loss of
protein homeostasis leading to protein aggregation and
toxicity. In this context, chaperones play a pivotal role in
protein assembly and folding and its dysregulation may
lead to protein aggregation and proteotoxicity. A recent
study identified a chaperone subnetwork that exhibited
concordant repression and induction expression patterns
in brain tissues from human aging, AD, HD and PD
patients. Subsequent investigation led to the discovery of
a subnetwork comprising HSC70, HSP90, the CCT/TRiC
complex and HSP40 and TPR-domain related co-chaperones
with aberrant expression that were required to prevent Aβ

and polyQ-associated proteotoxicity in C. elegans (Brehme
et al., 2014). This shared chaperome subnetwork in aging
and neurodegeneration, which is critical to maintain protein
homeostasis, provides new targets for therapeutic intervention
in neurodegenerative diseases. Similarly, a recent meta-analysis
of about 1600 microarrays from brain tissue of AD patients
revealed a set of downregulated genes corresponding to
metastable proteins prone to aggregation (Ciryam et al., 2016).
Thus, targeting components of the proteome homeostasis
network may enable novel therapeutic opportunities for
neurodegenerative diseases.

EPIGENETICS, AGING AND
NEURODEGENERATIVE DISORDERS

Gene expression is temporally and spatially regulated by DNA
methylation or histone modifications. These epigenetic changes
could influence a global gene expression or target some specific
genes. A role for epigenetic changes in gene expression has
been proposed in aging and neurodegenerative disorders.
Interestingly, many studies have reported a genome-wide
tendency to DNA hypomethylation with age in different
organs including the brain in aging animal models (Wilson
et al., 1987; Brunet and Berger, 2014). These changes
are proposed to play a role in the progression of aging
(Benayoun et al., 2015; Zampieri et al., 2015). Interestingly,
Humphries et al. (2015) has shown that hypomethylation

was observed in a myelination network dysregulated
in AD.

DNA methylation has been proposed as a biomarker
for aging in cells, tissues and organs (Horvath, 2013). An
acceleration of the epigenetic clock has been proposed in
different neurodegenerative disorders. In this context, epigenetic
age acceleration correlated with AD neuropathological markers
such as neuritic plaques and amyloid load (Levine et al., 2015).
In addition, an association between epigenetic age acceleration
with episodic memory, working memory and cognitive decline
was observed among individuals with AD (Levine et al., 2015).
Histones modifications, such as acetylation and methylation,
have been observed in AD models and patients (for review
see Fischer, 2014). Interestingly, the epigenetic clock is also
accelerated in brain regions from HD patients (Horvath et al.,
2016).

Epigenetic modification is also proposed to contribute to
neurodegeneration in PD. A genome wide DNA methylation
and transcriptomic study in iPSC-derived dopaminergic neurons
from LRRK2-associated PD patients identified common DNA
methylation changes in LRRK2 and sporadic PD (Fernández-
Santiago et al., 2015). DNA methylation changes in PD
dopaminergic neurons correlated with the downregulation of
RNA and protein expression of a network of transcription
factors FOXA1, NR3C1, HNF4A and FOSL2, which have been
implicated in PD. For instance, FOXA1 is a key determinant
in the molecular and physiological properties of dopaminergic
neurons (Pristerè et al., 2015) and HNF4A expression in blood
has correlated with disease progression in PD (Santiago and
Potashkin, 2015).

Several computational tools have been developed to facilitate
the integration of epigenetic data in networks. For example,
EpiRegNet is a publicly available web server that allows the
construction of epigenetic regulatory networks from human
transcriptomic data (Wang et al., 2011). Another model, the
Artificial Epigenetic Regulatory Network (AERN) incorporated
DNA methylation and chromatin modification in addition
to genetic factors for the analysis of epigenetic networks
(Turner et al., 2013). More recently, another computational
model, the Biological Expression Language (BEL)3, enabled the
analysis of functional consequences of epigenetic modifications
in the context of disease mechanisms (Khanam Irin et al.,
2015). Because BEL integrates literature-derived cause and
effect relationships into networks, researchers can formulate
novel hypotheses of disease mechanisms. Notably, BEL network
modeling has been used to integrate epigenetic and genetic
factors in a functional context in PD. Using this approach, SNCA,
MAPT, DNMT1, CYP2E1, OLFR151, PRKAR2A and SEPW1,
were found to be hypomethylated in PD and suggested to cause
overexpression of genes that disrupt normal biological functions.
Further, two SNPs, rs3756063 and rs7684318, were associated
with hypomethylation of SNCA in PD patients (Khanam Irin
et al., 2015). Collectively, these models demonstrate that the
integration of epigenetic factors into networks can uncover novel
mechanisms of disease.

3http://www.openbel.org/
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CHALLENGES AND FUTURE DIRECTIONS
IN NETWORK MEDICINE APPLICATIONS
TOWARDS PERSONALIZED TREATMENT

The field of network medicine has undoubtedly accelerated
the understanding of the molecular mechanisms leading to
neurodegeneration. The most significant brain network-based
studies of the most common neurodegenerative diseases are
summarized in Table 2. While network-based methods provide
an unbiased approach to decode complex diseases and generate
novel hypothesis, experimental validation is essential for
network findings to be translated into useful diagnostics and
therapeutic applications. In this regard, a growing number
of studies have successfully identified blood-based biomarkers
with potential clinical applicability. For instance, network
analysis identified SOD2, APP, HNF4A, PTBP1 and NAMPT
as useful to distinguish PD patients from HC in blood
samples obtained from two independent cohorts (Santiago and
Potashkin, 2013a, 2015; Santiago et al., 2014, 2016). Among these
biomarkers, HNF4A and PTBP1, showed a dynamic expression
pattern in longitudinal samples thus showing potential to
track the clinical course of PD patients. Likewise, network
analysis identified PTPN1 as a useful blood biomarker to
distinguish PD from progressive supranuclear palsy, an atypical
parkinsonian disorder commonly misdiagnosed as PD (Santiago

and Potashkin, 2014b). Despite the success in PD studies,
experimental validation of network-based findings in AD and
HTT studies in clinically relevant studies is mostly lacking. For
example, a systems medicine approach identified TYROBP as a
promising target for therapeutic intervention in AD but to the
best of our knowledge there are no follow-up studies (Zhang
et al., 2013). Similarly, the involvement of RORA (Acquaah-
Mensah et al., 2015) and other potential targets in AD are yet
to be validated.

Besides experimental validation, another aspect for
consideration is the cell-type and tissue specific analysis.
This is important since the analysis of gene expression studies
from whole brain sections might lead to misleading results that
are not relevant to the specific cell type affected in the disorder.
To circumvent this problem, recent studies have successfully
employed high-throughput technologies that enable a single-cell
resolution. A notable example studied the changes in astrocyte
and microglia reactivity in AD. They observed that genes within
the immune response pathway were more pronounced in
astrocytes than in microglia thus demonstrating that cell-type
specific characterization of the molecular changes may be more
informative (Orre et al., 2014). More details about limitations in
system-biology approaches in the context of neurodegenerative
diseases have been well described recently (De Strooper and
Karran, 2016).

FIGURE 3 | Disease-drugs networks. Interaction among different diseases, drugs and genes can be represented in a multi-level network model. For example,
network-based approaches have been used to understand shared dysregulated pathways in Parkinson’s disease (PD) and diabetes. For instance, some drugs to
treat diabetes patients have shown neuroprotective effects in PD and the observed neuroprotection may be mediated through their interaction with the peroxisome
proliferator-activated receptor gamma (PPARG). Blue and gray lines represent drug interactions and disease interactions, respectively. This network was retrieved by
iCTNet application in Cytoscape v3.1.1. using genetic associations from genome wide association studies (GWAS) and drug interactions from the Comparative
Toxicogenomics Database (CTD) as of September 2016.
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Another emerging area of research in the network biology
field is the study of disease comorbidities. Several conditions
including, diabetes, cancer, major depressive disorder and
cardiovascular disease, for example, have been associated with
neurodegenerative diseases. For example, insulin resistance
and diabetes have been linked to AD and PD and drugs
to treat diabetic patients have shown promising results in
both disorders (Santiago and Potashkin, 2013b). In addition,
analyses of shared networks between PD and diabetes have
elucidated potential blood biomarkers for PD (Santiago
and Potashkin, 2013a, 2014c; Santiago et al., 2014). More
recently, an integrative transcriptomic meta-analysis of PD
and major depression identified NAMPT as a potential
blood biomarker for de novo PD patients (Santiago et al.,
2016). Furthermore, treatment with an enzymatic product
of NAMPT elicited neuroprotective effects via activation
of SIRT1 in an in vitro model of PD (Zou et al., 2016).
Therefore, understanding the molecular networks shared
between comorbid diseases could reveal novel diagnostics and
therapeutic targets. Network analysis of gene-drug interactions
in PD and diabetes demonstrates that some drugs may be
beneficial for treating both diseases (Figure 3). In this context,
treatment with commonly prescribed drugs to treat diabetes
including rosiglitazone, metformin, pioglitazone and exenatide
have shown neuroprotective effects in PD models (Santiago and
Potashkin, 2013b, 2014c; Aviles-Olmos et al., 2014; Carta and
Simuni, 2015). In particular, treatment with exenatide improved
motor and cognitive function in PD patients (Aviles-Olmos
et al., 2013, 2014). Treatment with pioglitazone, however,
did not result in disease-modifying benefits in PD patients
(NINDS Exploratory Trials in Parkinson Disease (NET-PD)
FS-ZONE Investigators, 2015; Simon et al., 2015). Nonetheless,
it has been noted that a longer exposure to pioglitazone
may have been required to observe an improvement in PD
patients (Brundin and Wyse, 2015). As shown in Figure 3,
interaction of these drugs with the peroxisome proliferator-
activated receptor gamma (PPARG) may provide a mechanistic
explanation to their neuroprotective effect. Some of these
drugs are currently in clinical trials to determine if they are
neuroprotective.

Nutrition is also recognized as an important component in the
development and treatment of neurodegenerative diseases (Seidl
et al., 2014). Given the promise of neuroprotective agents, the
field of nutrigenomics is gaining interest among neuroscientists
that are seeking to understand the complex nutrient-genetic

interactions underlying neurodegeneration and neuroprotection.
A recent example conducted a transcriptomic and epigenomic
sequencing of the hypothalamus and hippocampus from a
rodent model exposed to fructose consumption, which has been
shown to contribute to the metabolic syndrome (Meng et al.,
2016). Gene network analysis identified Bgn and Fmod as key
genes involved in the observed metabolic alterations induced by
fructose in mice. Strikingly, administration of docosahexaeonic
acid (DHA) reversed the gene network changes elicited by
fructose (Meng et al., 2016). This study provides evidence that
integration of nutrigenomics coupled with network analysis can
facilitate the identification of neuroprotective agents. Likewise,
resveratrol, an antioxidant present in red wine, may also provide
neuroprotection in PD patients and thus, could be tested in
clinical trials (Figure 3).

In addition to a nutrient-rich diet, both physical exercise
and cognitive training promote healthy aging (Kraft, 2012;
Bamidis et al., 2014). It has been proposed that a combination
of both together may be best to prevent cognitive decline
and pathological aging (Kraft, 2012; Bamidis et al., 2014).
In this regard, network analysis could be a useful tool to
characterize the effects of physical exercise and cognitive training
in the aging brain. Future studies directed at identifying gene
expression changes associated with these lifestyle changes would
be advantageous. Collectively, a multidimensional network
approach that includes information about symptoms, drug
treatments, comorbidities, nutrigenomics, physical exercise and
cognitive training will be valuable to accelerate personalized
treatment.
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