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Abstract
Objectives Fast volumetric ultrasound presents an interesting modality for continuous and real-time intra-fractional target
tracking in radiation therapy of lesions in the abdomen. However, the placement of the ultrasound probe close to the target
structures leads to blocking some beam directions.
Methods To handle the combinatorial complexity of searching for the ultrasound-robot pose and the subset of optimal
treatment beams, we combine CNN-based candidate beam selection with simulated annealing for setup optimization of the
ultrasound robot, and linear optimization for treatment plan optimization into an AI-based approach. For 50 prostate cases
previously treated with the CyberKnife, we study setup and treatment plan optimization when including robotic ultrasound
guidance.
Results The CNN-based search substantially outperforms previous randomized heuristics, increasing coverage from 93.66
to 97.20% on average.Moreover, in some cases the totalMUwas also reduced, particularly for smaller target volumes. Results
after AI-based optimization are similar for treatment plans with and without beam blocking due to ultrasound guidance.
Conclusions AI-based optimization allows for fast and effective search for configurations for robotic ultrasound-guided
radiation therapy. The negative impact of the ultrasound robot on the plan quality can successfully be mitigated resulting only
in minor differences.

Keywords Robotic ultrasound · Heuristic optimization · Treatment planning · Convolutional neural network · Simulated
annealing

Introduction

Robotic radiation therapy allows for flexible shaping of
the dose gradient to very precisely approximate the target,
while avoiding critical surrounding tissue. Furthermore, tar-
get movement, e.g., due to breathing, can be compensated for
during treatment [1]. However, to achieve this precision and
motion compensation, the position and shape of the target
need to be tracked during treatment. In clinical practice, e.g.,
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using the CyberKnife system, the target is usually tracked
by periodically observing the target’s position using X-ray
images either by implanting fiducials or by estimating the
position directly from the X-ray images [1]. To allow for a
higher temporal resolution, the target motion can be corre-
latedwith the breathingmotionwhich is tracked using optical
cameras [1].

However, this approach has several disadvantages. First,
implanting fiducials has associated risks for complications
[2]. Furthermore, correlating breathing motion with the
actual target motion can introduce additional errors and
deformation is not considered [1]. Additionally, conventional
intra-fraction imaging relies on ionizing radiation which can
be avoided with different tracking methods.

Recently, several noninvasive volumetric tracking meth-
ods based on non-ionizing imaging have been proposed
including magnetic resonance imaging (MRI) [3–6] and
ultrasound (US) [7,8]-basedmethods.WhileMRIpresents an
interesting modality for precise tracking, MR-Linacs come
at a high initial cost. For intra-fraction tracking, fast, volu-
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metric robotic US is a promising approach [9–11] since it
allows to monitor the target over an extended period of time
while maintaining sufficient image quality.

A challenge when integrating robotic US guidance is the
proximity of the US transducer to the target which can block
beams due to its radio-opaqueness [12]. While there are
advances for implementing a (approximated) radiolucent US
setup [13], they require specialized hardware and the remain-
ing influence on the beam delivery still has to be accounted
for. In general, not all beam directions are equally useful for
an effective treatment, i.e., some beam directions will not be
used after optimization. Hence, the US robot should ideally
block mostly unused beam directions while having minimal
effect on the beams used for treatment. Unfortunately, it is
not straightforward to predict which beams will be useful.
Typically, one needs to solve the inverse planning problem to
analyzewhich beamdirections are used less often.Moreover,
the inverse planning problem is degenerate in that usually a
large number of different treatment beam sets with very simi-
lar objective values exist, i.e., knowing one solution does not
imply that no other solution with similar dose distribution
but different unused beam directions exists. Considering the
combinatorial nature of the problems to find a subset of all
possible beams as the treatment beams and one of the many
possible US-robot positions and configurations, we previ-
ously used a single solution and the resulting beam set to
guide the search for a good US-robot position and configu-
ration [14].

Machine learning approaches for estimation of useful
beam directions have been proposed [15–17]. We study a
convolutional neural network (CNN) for evaluating beam
directions to overcome the limitation that a single solu-
tion does not indicate whether other solutions may exist.
The CNN is trained on a large set of different treatment
plans and hence resembles a heuristic that should give a
more inclusive evaluation whether blocking certain beam
directions will have a negative impact. A key advantage
is the very fast evaluation of possible beams [16], as no
treatment planning has to be done. We refer to the inte-
gration of different AI methods, i.e., machine learning,
heuristic search, and deterministic optimization as AI-based
optimization.

We give details on the CNN, the training, and the inte-
grated search for US-robot position and configurations. Our
results on actual prostate cancer treatment cases illustrate
that the CNN-based heuristics can effectively guide beam
selection and that the integrationwith theUS-robot pose opti-
mization leads to a plan quality comparable to plans without
US guidance.

Material andmethods

Dose optimization and patient data

We generate treatment plans based on computed tomography
(CT) scans of 50 patients previously treated for prostate can-
cer. First, prostate, bladder, and rectum are delineated and
labeled as planning target volume (PTV) and organs at risk
(OARs), respectively. Then, additional SHELL structures are
introduced around the PTV at 3 mm and 9 mm distance to
control for dose in normal tissue.

We discretize PTV, OARs, and SHELLs with a resolution
of 3 × 3 × 3 mm and optimize the coverage of the PTV,
i.e., the proportion of the PTV that receives at least the pre-
scribed dose, by minimizing the underdosage of the PTV.
We model this optimization problem as a linear program-
ming problem with hard constraints on the maximum dose
of PTV, OARs, and SHELLs. The optimization problem is
solved with respect to a set of candidate beams using our
in-house planning framework [18]. This results in a small
subset of weighted beams that are optimal with respect to the
given set of candidate beams. The weight of the beams is the
activation time (MU) of the respective beam in the resulting
treatment plan.

During treatment plan generation, multiple clinical goals
can be considered besides coverage. A pareto-optimal plan
cannot be improved with respect to one goal without impair-
ing another. Linear programming allows step-wise optimiza-
tion of every individual goal to generate a pareto-optimal
treatment plan [18]. In this study, we first optimize PTV cov-
erage. Second, we optimize total MU of all beams, while
fixing lower bounds to the dose on the voxels in the PTV.
Thereby, we can potentially decrease total MU while not
decreasing coverage when treatment plans allow for further
improvement after the first optimization step.

For our experiments, we consider a prescribed dose of
36.25 Gy for the PTV and maximum doses for the PTV and
OARs of 40.25 Gy and 36 Gy, respectively. We tune the
maximum dose to the SHELL for each patient such that the
coverage of the PTV is 95% when no US robot is used. We
fix these constraints for all experiments so that the effect of
the optimization strategies for US robot can be compared
directly.

We sample 6000 candidate beams with IRIS collimators
[19] with diameters of 10, 15, 20, 30, and 40 mm and con-
strain each beam’s activation time by 300 MU and the total
activation time by 40,000 MU.

Robotic ultrasound setup

Figure 1a shows the general setup. The US transducer is
mounted to a light-weight 7 degrees-of-freedom (DoF) robot
(KUKALBRMed 7) which is certified for human–robot col-
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Fig. 1 Setup for robotic US
guidance on the left (a) and
example for distribution of
viable viewports on the right
(b). On the right, the target is
highlighted in red, the OARs in
yellow. Color of viewports
corresponds to the maximum
HU on the respective path—blue
lower, green higher

(a) (b)

laboration.While our approach can be adapted to any suitable
US probe, we consider the matrix probe 3V-D (GE Health-
care, Chicago, USA) with a footprint of 24×26 mm, 1.5–4.0
MHz frequency and 90-degree field of view. Naturally, the
optimal setup of the US robot with respect to minimizing
the impact on the plan quality is highly dependent on the
position of the US transducer since it is usually the closest
beam-blocking part to the target. For intra-fraction tracking,
the US transducer must be positioned to have the target in the
field of view. Furthermore, the target must not be obstructed
by bones. Similarly, gas-filled cavities inside the body pre-
vent acoustic coupling and must be avoided for sufficient
image quality. Additionally, we consider constraints on the
maximum penetration depth for the US echo.

We estimate feasible viewports on the discretized sur-
face of the skin considering the CT gray scale values v

along a line between the skin point and the target center. We
exclude viewports with max(v) > 1300 HU (dense tissue)
and min(v) < 400 HU (gas) and also restrict the maximum
distance through the tissue to 120 mm. An example of a
map of feasible viewports is shown in Fig. 1b. By directing
the transducer’s axial axis at the centroid of the target, we
assume that feasible viewports allow for enough visibility of
the target to allow for tracking. The last rotational DoF of the
transducer is defined such that the mounting points towards
the base of the US robot to decrease the search space while
allowing enough kinematic flexibility for the configuration of
the US robot. Furthermore, the 7. DoF of the US robot (LIFT
angle) is also included as a decision variable. Additionally,
the LIFT angle allows the US robot to move during treatment
without changing the pose of the US transducer. Therefore,
we study the effect of including three LIFT angles for each
robot position while only consider a beam blocked if it is
blocked by all resulting US-robot configurations.

The robot’s base can be positioned anywhere beside the
patient or between the patient’s legs such that it does not col-
lidewith the patient and othermedical equipment.We restrict
the search space for the US-robot’s base position to boxes
beside the patient and between the patient’s legs (Fig. 2)
with a fixed rotation to reduce the search space. Since the
geometry of the robot is known, we can determine whether a
specific candidate beam is blocked by the robot or US trans-
ducer using a projection-based approach [20]. We consider
transducer and target motion due to breathing by adding an
extra margin of 20 mm to the projection of robot and trans-
ducer.

CNN-based candidate beam generation

In this study, we extend our approach for candidate beam
generation [16] and use it both for guiding the robot pose
optimization and for treatment plan generation.

Wepredict the quality, i.e., the activation time, of each can-
didate beam independently using a CNNbased onDenseNet-
121 [21] with pretrained weights from ImageNet [22]. We
concatenate 7 images for each beam as input to the CNN
(Fig. 3). These images are projections on the plane which is
perpendicular to the line between the beam’s origin and the
PTV’s centroid and located at the PTV’s centroid. The pixel
size corresponds to 1×1 mm at the plane and images span
150×150 pixels. The first image is a binary image encod-
ing the location and size of the beam influence relative to
the relevant organ structures. The remaining images are the
projections of the PTV and the two OARs. Here, we encode
theminimum andmaximum radiological depth in the images
to relay volumetric information to the CNN. Note that these
images contain information about the distance to the beam
source as well as the radiological properties of the tissue.
Starting with the DenseNet architecture, we adjust the kernel
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(a) (b)

Fig. 2 The considered search space for the US-robot’s base position

Fig. 3 Feature generation per beam. The input tensor consists of a beam
projection and minimum and maximum radiological depth projections
of PTV and OARs on the same plane. Note that the actual projection
plane is located at the PTV’s centroid

depth of the first convolutional layer to allow for a 7-channel
input and copy the pretrained weights of the original first
convolutional layer in the extended kernel. The last fully con-
nected layer is replaced by a fully connected layer with one
output and initialized with random weights.

The CNN is trained on treatment plans computed using
the conventional approach with candidate beams sampled
from a random heuristic. Since there is an imbalance in
the training data of more unweighted than weighted beams,
wb ≈ 19, we leave out unweighted beams during training
with a probability of pb = 1/wb. We use threefold cross-
validation for training where we split our set of 50 patients
into three groups, where each patient occurs in one group.
The groups are split such that the distribution of PTV sizes
is similar in each group. We train on two groups and evalu-
ate on the remaining group, respectively. Treatment plans for
training are generated 30 different candidate beam sets for
each patient, resulting in 30 ·50 = 1500 beam sets with 6000
beams each. We run the training for 15 epochs using Adam

optimizer [23] with β1 = 0.9, β2 = 0.999, and ε = 10−7

and decrease the learning rate from 10−3 to 10−5 by a factor
of 10 every 5 epochs. We forego extensive hyperparameter
optimization due to the large computational effort which a
complete evaluation of the CNN including beam generation
and US-robot pose optimization would mean for each set of
hyperparameters. During training, we use the following loss
function

l =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
wp − wg

)2 · cdes
cp

, for wg = 0

(
wp − wg

)2 · cp
cdes

, for wg > 0

where wp is the predicted, wg is the ground truth beam
weight, cdes = 95% is the target coverage,while cp is the cov-
erage of the treatment plan for the respective beam. While
constraints are constant for each different beam set, these
treatment plans are generated automatically and can exhibit
differences in coverage. The weighting aims to respect this
difference during training. It expresses that weighted beams
of treatment plans with high coverage are more likely to be
useful, while unweighted beams of low coverage workflows
are more likely to be even less useful. Note that by using
a constrained optimization for treatment plan optimization,
upper dose constraints are not violated in any generated treat-
ment plan.

Candidate beams for new patients are then generated
by selecting randomly sampled beams based on the CNN-
predicted beam’s weight wp. A beam is selected with the
probability p = wp

wmax
, where wmax = 300 is the maximum

weight per beam. New candidate beams are generated until
the specified number of sampled beams has been selected.
The candidate beams are then optimized by the same linear
program which is used with conventionally generated candi-
date beams.
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Fig. 4 Flowchart of treatment
plan generation with the
presented objective functions for
optimization of robot and probe
setup. In each panel, the
resulting set of beams and robot
setup is shown, representing the
state of the optimization
problem. A: CNN sampling; B:
heuristic US-robot setup
optimization; C: treatment plan
optimization; B∗: uses the
weighted beam set for pose
search but applies the found
pose to the original beam set.
For beam sets with weight,
lighter color corresponds to
higher beam weight

Optimization of robot and probe setup

Since simultaneous optimization of dose and US-robot setup
would be an infeasible combinatorial problem given the large
search space, we solve both independently using a heuristic
search algorithm to optimize the US-robot setup.We approx-
imate the impact of a US-robot setup on the search space by
the available candidate beams. However, not all beams are
equally useful for generating clinically acceptable treatment
plans. Since evaluation of the inverse problem for every US-
robot pose is infeasible, we utilize a CNN to estimate the
quality of a candidate beam. We compare four optimization
functions:

• The number of all blocked randomly sampled candidate
beams (BR).

• The total sum of the blocked randomly sampled beams’
weight (BRW). Here, the weight corresponds to the
weight after treatment plan computation without the US
robot. Therefore, only actually weighted beams influence
the optimization value.

• The number of all blocked CNN-generated beams (BC)
which reflects the idea to position to US robot such that
it covers predominantly unused portions of the available
space of candidate beams.

• The total sum of predicted weight of all blocked CNN-
generated beams provides a more continuous estimate of
useful beam directions. Therefore, we study the blocked
CNN-generated beam’s weight (BCW) as an optimiza-
tion function which may provide a smother gradient
compared to BC.

Figure 4 shows how we use these objective functions
to generate treatment plans. The CNN-based optimization
functions are essentially an approximation of the result-

ing beam set from evaluation of the inverse problem with
multiple candidate beam sets. We refer to the last two func-
tions as AI-guided, as they integrate different AI methods,
i.e., machine learning, heuristic search, and deterministic
optimization.

We use simulated annealing (SA) to optimize the US-
robot setup and optimize the state containing the robot
base position, the LIFT angle(s), and the US transducer
position. Initially, the temperature for the SA algorithm,
determining the probability of accepting a worst state as
a successor, is set to �0 = 10 and halved every 100
iterations. We iterate 1000 times. Since the algorithm is
heuristic and the solution also depends on the initial state,
we repeat the optimization with five random initial states
and consider the best state found with respect to the objective
function.

Results

We repeated treatment plan generation with 10 different can-
didate beam sets for each case to decrease the influence of
randomness in candidate beam generation. In total we gen-
erated 88 560 treatment plans for evaluation. We use the
Wilcoxon rank sum test for significance tests and apply a 0.05
cutoff for rejecting the null-hypothesis that two distributions
are the same. Note that we evaluate the dose on the same
grid that we used for optimization. This makes generated
treatment plans more directly comparable since it reduces
the effects of discretization. The resulting coverage when
generating treatment plans without a US robot and with the
introduced optimization approaches are shown in Fig. 5a.
Here, the same beam sets are used for US-setup optimiza-
tion and treatment plan generation. Both BR and BW cannot
compensate completely for the impact of the US robot on the
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(a)

(b)

Fig. 5 Boxplot of the coverage for reference treatment plans with no
US robot, optimized US-robot setup utilizing 1 LIFT angle, and uti-
lizing 3 LIFT angles for 6000 candidate beams (a) and 3000 candidate
beams (b). The same candidate beam setwas used for setup optimization

and treatment plan generation. RCB: random candidate beams; CNN-
CB: CNN-generated candidate beams; BR, BRW, BC, BCW: respective
optimization function

coverage. The mean difference between 6000 random gen-
erated candidate beams with no US robot (95.31%) and BW
with 3 LIFT angles (93.66%) is significant when considering
a Wilcoxon rank sum test (p = 2.4e−108).

However, using 6000 CNN-generated candidate beams
can more than offset the negative impact of the US robot on
the coverage compared to randomized candidate beamswhen

using 1 LIFT angle or 3 LIFT angles (97.14%, p = 2.1e−143;
97.20%, p = 2.1e−149). The differences in mean cov-
erage when using 1 or 3 LIFT angles are minor for BR
(93.58–93.66%; p = 0.28) and for BW (93.61–93.86%;p =
1.0e−4), respectively. It does not increase significantly for
BC (97.13–97.23%; p = 0.12) and BCW (97.15–97.20%;
p = 0.14).
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Table 1 Mean resulting
objective value and standard
deviation from US-setup search
for all patients

BR BRW BC BCW

1 LIFT 645 ± 234 6045 ± 1605 912 ± 283 6350 ± 1505

3 LIFT 643 ± 226 5665 ± 1443 907 ± 281 5613 ± 1614

p value 0.962 0.000646 0.828 4.38e−11

p values for difference between using one and three LIFT angles are shown for each objective function with
respect to the Wilcoxon ranks sum test

(a)

(b)

Fig. 6 Boxplot of MU after MU optimization. Treatment plans are
shown with optimized US-robot setup and without US robot for 6000
(a) and 3000 (b) candidate beams. The red cross represents the mean

MU. RCB: random candidate beams; CNN-CB: CNN-generated can-
didate beams; BR, BRW, BC, BCW: respective optimization function

Even when using only 3000 CNN-generated candidate
beams, average coverage is still over 95% while considering
the US robot as indicated by Fig. 5b. Difference in average
coverage for 3000 CNN-generated candidate beams between
no US robot and BCW with three LIFT angles is 0.97 pp
(p = 3.7e−64).

Table 1 shows the mean objective value using the differ-
ent optimization strategies. Note that relative differences are
larger and significant for theweighted optimization functions
between using one and three LIFT angles.

With 6000CNN-generated candidate beams, full coverage
can often be achieved with generated treatment plans. There-
fore, we evaluate the remaining potential for treatment plan

improvement by optimizing total MU after coverage opti-
mization. Here, minimum bounds on PTV voxels are equal
to the dose after coverage optimization allowing us to min-
imize MU while not affecting coverage. Figure 6 shows the
resulting optimized total MU while preserving the coverage
shown in Fig. 5.When using 6000 CNN-generated candidate
beams, treatment plans can be further optimized as shown in
Fig. 6a. In contrast, for 3000 candidate beams only few treat-
ment plans can be improved. Therefore, only outliers are
shown below 40,000 MU.

Still, MU improvements display a wide range. Figure 7a
shows the dependence of MU improvements on the patient’s
PTV size. The size correlates with theMU improvement with
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Fig. 7 Average total MU improvements (a) with respect to PTV size of
treatment plans with 6000 CNN-generated candidate beams over 6000
randomly sampled candidate beams without a US robot. In compari-

son, coverage improvements with 3000 beams are shown (b). Each dot
represents the average of 10 different candidate beam sets

the Spearman’s correlation coefficient rs = −0.68. When
discounting for treatment plans which did not achieve full
coverage and therefore have no improvement in total MU,
then rs = −0.73. In contrast, as Fig. 7b illustrates, that cov-
erage improvements do not show this relationship for 3000
beams. Note that we show the result for 3000 beams here
since few treatment plans could achieve full coverage and
total MU could rarely be decreased as Fig. 6b shows. There-
fore, most are pareto-optimal and can be compared directly
in terms of coverage.

Discussion

We have shown a combination of different AI methods, i.e.,
machine learning, heuristic search, and deterministic opti-
mization, for optimizing the setup of robotic US guidance
in radiation therapy. This idea is similar to other approaches
for solving combinatorial problems with machine learning
[24]. Considering Fig. 5, we have shown that combining
CNN-generated candidate beams with optimization of the
US-robot setup can improve treatment plan quality and com-
pensate for the negative impact of the US robot. Since full
coverage can often be achieved with 6000 CNN-generated
candidate beams, average difference in coverage when the
US robot is present is small compared to no US robot.

For 3000 beams, coverage is still over the targeted 95%
coverage even when considering the US robot. While the
decrease in coverage when considering the US robot is small,
it is still significant. Note that most plans could not be
improved after coverage optimization with 3000 candidate
beams as shown in Fig. 6b.

Subsequent MU optimization can decrease total MU for
treatment plans with 6000 CNN-generated candidate beams
even when using the US robot. However, subsequent MU
optimization shows that impact of the US robot is still sig-

nificant but can be reduced by optimization of the setup. Note
that treatment plans which were used for training of the CNN
were only optimized for coverage. Therefore, beams selected
by the CNN-based approach are biased towards generating
treatment plans with high coverage. Training a CNN on MU
optimized treatment plans and combining beam sets from
both CNNs may improve total MU further, especially for
larger PTVs where MU improvements are low, as Fig. 7a
shows. Note that this relationship is not true for treatment
plans only optimized for coverage as Fig. 7b shows. This
further suggests that a CNN trained for generating efficient
candidate beams with respect to MU can improve plan qual-
ity in terms of total MU.

In general, allowing for US-robot movement during treat-
ment decreases the number of blocked beams because the
robot can move out of the way of beams which would other-
wise be blockedwithout changing the end effector pose. Also
considering Table 1, the weighted versions of the objective
function can lead to significant relative improvements with 3
LIFT angles. This indicates that the more continuous nature
of the weighted objective functions (BRW, BCW) can be
optimized more effectively than the counting-based versions
(BR, BW).

In our approach, viable viewports were identified based on
simple ray-tracing on the CT grayscale values. For clinical
implementation, a more sophisticated method for generating
realistic US images from CT volumes, as has been shown
recently [25], could be used to select viewports in practice.
However, our approach for setup optimization could then still
be applied as presented in this work.

Conclusion

Wehave presented an approach combiningCNN-based beam
metrics with heuristic search to solve the combinatorial
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problem of optimizing US-robot setup and treatment plan.
While robotic US guidance can negatively impact treat-
ment plan quality by blocking beams, we have shown that
CNN-generated candidate beams can guide the US-robot
optimization to compensate for this negative impact.We have
also shown thatCNN-generated candidate beams can provide
a decrease in total MU when full coverage can be achieved.
While the plan quality is comparable using our approach,
plans without US robot are still superior to those which con-
sider the US robot.
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