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ABSTRACT We report here a chromosome-level genome assembly of the aflatoxi-
genic fungus Aspergillus flavus strain CA14. This strain is the basis for numerous stud-
ies in fungal physiology and secondary metabolism. This full-length assembly will aid
in subsequent genomics research.

The filamentous fungus Aspergillus flavus is an opportunistic pathogen of several
crops, including corn, cotton, and peanut, and colonizes many stored grains

intended for food and feed. It may be best known as a producer of aflatoxins, the most
potent carcinogens found in nature (1). Isolates of A. flavus within a field population vary
greatly with regard to aflatoxin production and microsatellite-based haplotype (2, 3).
Additionally, numerous species-specific genes and genomic rearrangements have been
documented within the A. flavus clade of Aspergillus section Flavi (4). Until recently, the
reference genome for A. flavus was the Sanger-sequenced assembly of strain 3357, with
5� coverage and 331 scaffolds (5) (Table 1). Presently, .100 sequenced genomes have
been made publicly available for A. flavus, created using various sequencing technologies
or combinations of available systems (https://www.ncbi.nlm.nih.gov/genome/browse
#%21/overview/aspergillus%20flavus). A pseudomolecule-level assembly of strain
3357 and AF13 (6) and full chromosome-level assembly of strain 3357 (7) were also
reported in 2020 (Table 1). We report here the sequence of strain CA14, assembled at
the chromosome level. Strain CA14 is a wild-type, large-sclerotia-producing, aflatoxi-
genic strain isolated from pistachio at the Wolfskill Grant Experimental Farm of
University of California, Davis (8), that has been used in numerous knockout and
functional studies of A. flavus isolates (9, 10).

Genomic DNA (gDNA) was extracted from ;107 conidia of A. flavus strain CA14 by
grinding in liquid nitrogen and extracting in hot cetyltrimethylammonium bromide
buffer (11). After gDNA cleanup, creation of a PacBio Express library, and size selection,
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TABLE 1 Assembly statistics of some representative Aspergillus flavus genomes

Aspergillus
flavus strain

GenBank assembly
accession no.

Genome
size (mbp)

Fold
coverage
(×)

No. of
contigs/
scaffolds

N50

(Mb)

No. of
genes
predicted

3357a GCA_000006275.2 36.89 5 331 2.39 13,485
3357b GCA_009017415.1 37.75 600 8
3357c GCA_014117465.1 37.0 70 8e 2.40
AF13c GCA_014117485.1 37.44 70 8e 2.39
KuPG#1d GCA_003709025.1 37.7 121 199 1.3 12,846
CA14 GCA_014784225.1 37.81 140 8 6.27
a From reference 5.
b From reference 7.
c From reference 6.
dChang et al. (12), derived from isolate CA14.
e Pseudochromosomes inferred from alignment to Aspergillus oryzae strain RIB40.

January 2021 Volume 10 Issue 1 e01150-20 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0001-9020-7264
https://www.ncbi.nlm.nih.gov/genome/browse#%21/overview/aspergillus%20flavus
https://www.ncbi.nlm.nih.gov/genome/browse#%21/overview/aspergillus%20flavus
https://doi.org/10.1128/MRA.01150-20
https://doi.org/10.1128/MRA.01150-20
mailto:mark.weaver@usda.gov
https://www.ncbi.nlm.nih.gov/assembly/GCF_000006275.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_009017415.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_014117465.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_014117485.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_003709025.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_014784225.1
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01150-20&domain=pdf&date_stamp=2021-1-7


6.75 Gb of sequence (140� coverage) was generated from a single 10-hour single-
molecule real-time (SMRT) cell using PacBio Sequel. De novo genome assembly was
done using Flye (version 2.5, settings at “genome size 37m -t 14”) (https://github
.com/fenderglass/Flye) followed by three rounds of polishing with Arrow (version
2.3.3, default settings) (https://github.com/PacificBiosciences/GenomicConsensus) yielding
8 full chromosome-length scaffolds with an N50 value of 6.27Mb. Nine to 11 telomere
repeat sequences were present on six of the contig ends.

Data availability. The GenBank accession number is GCA_014784225.1, and the
SRA accession number is SRR12683076.
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