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Abstract: The COVID-19 pandemic was impacting the health and economy around the world. All
countries have taken measures to control the spread of the epidemic. Because it is not known
when the epidemic will end in several countries, then the prediction of the COVID-19 pandemic
is a very important challenge. This study has predicted the temporal evolution of the COVID-19
pandemic in several countries using the logistic growth model. This model has analyzed several
countries to describe the epidemic situation of these countries. The time interval of the actual data
used as a comparison with the prediction results of this model was starting in the firstly confirmed
COVID-19 cases to December 2020. This study examined an approach to the complexity spread
of the COVID-19 pandemic using the logistic growth model formed from an ordinary differential
equation. This model described the time-dependent population growth rate characterized by the
three parameters of the analytical solution. The non-linear least-squares method was used to estimate
the three parameters. These parameters described the rate growth constant of infected cases and
the total number of confirmed cases in the final phase of the epidemic. This model is applied to
the spread of the COVID-19 pandemic in several countries. The prediction results show the spread
dynamics of COVID-19 infected cases which are characterized by time-dependent dynamics. In this
study, the proposed model provides estimates for the model parameters that are good for predicting
the COVID-19 pandemic because they correspond to actual data for all analyzed countries. It is based
on the coefficient of determination, R2, and the R2 value of more than 95% which is obtained from the
non-linear curves for all analyzed countries. It shows that this model has the potential to contribute
to better public health policy-making in the prevention of the COVID-19 pandemic.
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1. Introduction

Infectious diseases often have a negative impact so it remains a challenge for medical
and public health authorities. Therefore, controlling an outbreak of infectious diseases
requires immediate treatment, however, identifying and characterizing an outbreak in
real-time is still a challenge. Knowing the characteristics of an outbreak of infectious
diseases is necessary for decision-making quickly and concrete in controlling the infectious
disease. By knowing the prediction of an infectious disease epidemic in the short term
so evaluation of the impact caused by this disease can be reviewed from the preventive
measures for this disease [1]. Therefore, a prediction model is needed to obtain a prediction
result of the epidemic to contain the spread rate of the disease. The real-time mathematical
model for analyzing an epidemic is an important prevention method. Due to the limited
availability of public information on the characteristics of new epidemics and pathogens,
it will pose obstacles to the creation of reliable and credible models during public health
emergencies [2,3].
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The accuracy of a model is dependent highly on the data characteristics of the ongoing
epidemic. Some epidemic curves show multiple turning points (such as peaks and valleys)
during the early stages of the outbreak, probably due to stochastic variations and the
random nature of disease spread. There are also changes in surveillance methods, case
definitions, and turning points which can also indicate the turning times in which the
epidemic is in the process of transitioning from an exponential growth process to a decline
in growth rate. However, it can also identify the effects of disease control programs, peak-
phase waves of infection or the natural slowdown in the growth of susceptible individuals
are resulting from infection. In each epidemic, there are points in time corresponding to
the phases of a particular outbreak that can be modeled precisely and accurately, but there
are also phases outside the outbreak that are likely to occur but this can be anticipated.
Therefore, the prediction of turning points and the identification of different phases or
waves of an epidemic are very important for designing and evaluating various strategies
for controlling an epidemic [4,5].

The COVID-19 pandemic is still ongoing in several countries, so it is still a new
challenge for medical and public health authorities because this epidemic is a threat to the
whole world. This epidemic must be well controlled, therefore the early step that must
be started is to obtain accurate information about the prediction of the final time of this
epidemic. Although the prediction process will be much more difficult because it is the
result of a complex series of actions and interactions between a population and a disease
transmitter. In addition, other factors that influence predictions are the effect of quarantine,
suspect testing policies, and vaccinations, as these have an impact on the future circulation
of the virus. Today, the first wave of the COVID-19 pandemic has reached its peak in some
countries, while in other countries it is still in various stages of spread. The countries that
have managed to control this epidemic are trying to avoid a second wave of the COVID-19
pandemic, while the countries that are still experiencing this epidemic or are currently an
outbreak are trying to contain the spread of this outbreak in society.

It is well known that the logistic growth model can capture the actual data evolution of
many epidemic events that have occurred. This model can accurately describe an epidemic
in a closed population with a limited population and also follows a deterministic model
solution [6–13]. Therefore, this study aims to propose the logistic growth model as a
new approach to epidemic models that will be compared with actual data of the reported
cumulative infected cases. This study proposes the phenomenological model to match
the observation cumulative data of the COVID-19 infected cases so that this model can
describe the phases of the epidemic sequentially. This model is also a predictive method
for estimating the final time and total size of the final epidemic in several countries. This
model is used to describe the actual data on the phases of the COVID-19 pandemic. The
accuracy of the correlation relationship between the prediction results of this model and
the actual data is based on the coefficient of determination, R2 [14]. The R2 value will be
calculated as a product of the match between the prediction results and the actual data of
the number of infected cases reported to the public.

This paper is structured as follows: Section 2 describes the logistic growth model
proposed in this study. In this section, this model is described in detail. Section 3 describes
the estimation method of model parameters using the non-linear least squares. A discussion
of the prediction results of the model in this study is given in Section 3. Section 4 provides
conclusions and the main contribution of this study.

2. The Logistic Growth Model

The logistic growth equation with positive parameters has been widely applied in
economics and biology. Although this equation does not allow for adjustment to the
actual data (quantitatively), because it is still a rough estimate (qualitatively) and does
not correspond to the stochastic elements. However, the estimation of this equation can
be solved without the need for complicated techniques and only uses basic regression
methods. Even though it only needs a simple estimation method, some difficulties still
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arise to solve the estimation that arises which may limit the practical application of this
equation [15]. Therefore, choosing a suitable estimation method is often the right choice.

The development of a logistic growth model by Verhulst [16] which describes the
growth rate equation of a population is defined as follows:

dN(t)
dt

= rN(t)
(

1− N(t)
K

)
, (1)

the constant r defines the intrinsic growth rate of the population while the constant K
defines the carrying capacity of the environment. Some characteristics of the ordinary
differential equation of the logistic growth model that need to be considered are when the
N value is less than the K value (N << K), then:

dN(t)
dt

≈ rN(t) , (2)

this means that as long as the N value is still small, the population will grow exponentially.
Furthermore, if the N value approaches the K value (N→ K), then the population growth
rate is close to zero (dN/dt→ 0) which will result in the population growth starting to stop
gradually. So, it can be concluded that the N value is equal to K (N = K) or is saturated, this
means that the carrying capacity described above has reached the maximum value.

In Equation (1), this equation is separated according to the variables then followed
by algebraic rearrangement to produce a partial differential equation. Furthermore, this
equation is integrated exponentially with algebraic manipulation will produce the follow-
ing equation:

N(t) =
K

1 + A exp(−r(t))
, (3)

where

A =
K− N(0)

N(0)
(4)

The curve shape of Equation (3) is defined as sigmoid-shaped or S-shaped with a
slope symmetrical at the inflection point (peak time) for the value of N = K/2 which is
defined as follows:

tp =
log(A)

r
, (5)

and Equation (3) is characterized by two limitations as follows:

lim
t→+∞

N(t) = K,

and
lim

t→−∞
N(t) = 0 .

This shows that with increasing time, the population will reach its carrying capacity.
The peak time of the epidemic is the turning point in the total number of cumulative

infected cases. After this peak time, the time evolution of the epidemic cannot be approxi-
mated by a simple exponential growth curve, since during this phase of the epidemic there
is no more multiplication of infected cases in this time evolution. In this phase, the daily
number of infected cases will decrease.

In cases with a value of r > 0, the results of the growth curves will have a sigmoid
shape, so that there is an asymptotic bearing capacity based on Equation (3). In a case with
a value of r = 0, there is no intrinsic growth rate, so the population will always be constantly
equal to the initial value N(0). In general, biologists and ecologists of the population are
particularly interested in cases where a value of r > 0, so this study always assumes this
case. Furthermore, the population size N can always be assumed to be positive.
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In this study, the variable N represents the number of the COVID-19 infected cases
at a certain time t, the parameter r represents the growth rate of the COVID-19 cases
infected, while the parameter K represents the total number of the COVID-19 infected cases
cumulatively in the final phase of the epidemic. Therefore, the procedure to estimate the
three parameters (K, A, and r) of the model is given by Equation (3) is still difficult, this
study will use a non-linear regression method which will be explained in detail in the
next section.

3. Parameters Estimation of the Logistic Growth Model

In Equation (3), the analytical solution of the logistic growth model consists of three
parameters, namely K, A, and r. Furthermore, these parameters will be estimated using a
non-linear regression method with the initial input of the actual data set [17]. This approach
assumes that the daily cumulative number of infected cases, M(ti), is entered as a data set,
{ti, Mi}, where ti and i represent the index of time and day. The estimated method of the
parameter values (K, A, and r) use function:

s2 =
1
n

n

∑
i=1

[Mi − N(ti)]
2 , (6)

n represents the total number of days. The first derivative of Equation (6) guides the
determination for the estimation of each parameter is given by:

∂s
∂K

= − 2
n

n

∑
i=1

[Mi − N(ti)]
∂N(ti)

∂K
, (7)

∂s
∂r

= − 2
n

n

∑
i=1

[Mi − N(ti)]
∂N(ti)

∂r
, (8)

∂s
∂A

= − 2
n

n

∑
i=1

[Mi − N(ti)]
∂N(ti)

∂A
, (9)

where
∂N
∂K

=
1

1 + Ae−rt , (10)

∂N
∂r

=
rKAe−rt

(1 + Ae−rt)2 , (11)

∂N
∂A

= − Ke−rt

(1 + Ae−rt)2 . (12)

The procedure of this method requires the initial input to estimate the three parameters
when t = 0: K(0), r(0), and A(0). The corresponding initial input for the three parameters is
obtained by selecting the three initial estimates from some actual data: Mk−2m, Mk−m, and
Mk where k ≈ n and m ≈ n/2. Based on the initial input of the actual data, the equations of
the three parameters can be given as follows:

K(0) ≈ Mk−m(Mk−2m Mk−m − 2Mk−2m Mk + Mk−m Mk)

M2
k−m −Mk Mk−2m

(13)

A(0) ≈ (Mk −Mk−m)(Mk−m −Mk−2m)

M2
k−m −Mk Mk−2m

[
Mk(Mk−m −Mk−2m)

Mk−2m(Mk −Mk−m)

](k−m)/m
(14)

r(0) ≈ 1
m

log
[

Mk(Mk−m −Mk−2m)

Mk−2m(Mk −Mk−m)

]
, (15)

the input characteristic of the actual data for the initial approximation requires that all
parameters are positive and the value of K must be greater than the value of Mk (K > Mk).
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However, in some cases, the data from the initial approach already has very good values so
that no exact value is needed to minimize the variance given by Equation (6). Therefore, the
steepest descent procedure was applied as a way to minimize the variance in Equation (6).

The coefficient of determination, R2, is used to analyze and evaluate the differences
between the first variable and the second variable. In general, the measure of R2 value is
defined in the range of 0 to 1, or in the percent range, which is 0% to 100%. The measure of
the R2 value can be considered as a description of how many actual data points fit in the
line result of the model formed by the regression equation. The higher the coefficient of
determination, the higher the percentage of actual data points that the line of the model
crosses when the line is plotted on the data. If the coefficient is 0.80, it means that 80%
of the actual data points are in the regression line. A higher coefficient is an indicator of
better goodness of fit for observation. The coefficient of determination, R2, has also the
ability to find possible predictable outcomes in the future. If more actual data is added, the
coefficient will show the probability of the new points corresponding to the regression line
of the proposed model.

A data set consists of N actual data marked y1, . . . , yN, collectively known as yi or
as the vector y = [y1, . . . , yN]. Each of these actual data relates to the simulation results
of the proposed model or prediction model, which is marked f 1, . . . , fN or as the vector
f = [f 1, . . . , fN]. If y is the mean of the observed data can be defined as follows:

y =
1
N

N

∑
i=1

(yi)
2 , (16)

then the total sum of the squares of the actual data variance can be defined as follows:

SStot =
N

∑
i=1

(yi − y)2 , (17)

and the sum of the squares of the residuals or commonly referred to as the sum of the
squares of the residuals can be defined as follows:

SSres =
N

∑
i=1

( fi − yi)
2 , (18)

thus, the most common definition of the coefficient of determination (R2) can be declared
as follows:

R2 = 1− SSres

SStot
. (19)

4. Results and Discussion

This study will analyze the COVID-19 pandemic in several countries based on data
of the cumulative infected cases collected from actual data reported by WHO from the
first confirmed cases to late December 2020 [18]. This study uses a non-linear least squares
method to estimate three parameters (K, r, and A) from Equation (3). Additionally, this
study analyses the estimated peak time of epidemics or turning points, these are the points
where the growth rate of infected cases changes from increasing to decreasing in cases. The
study will analyze countries that are thought to have passed (are in the final phase of an
epidemic), are ongoing (will be in the final phase of an epidemic), or have not passed (are
still in the epidemic phase) turning points (or epidemic peak points) on the S-curve.

In this study, a data set of daily and cumulative COVID-19 of confirmed cases in
several countries, such as China, Singapore, Saudi Arabia, the Philippines, and Indonesia,
will be analyzed using the logistic growth model to validate the accuracy of the method
proposed in this study. Since there are countries that are already in the final phase of the
epidemic based on the above characteristics, this is likely to provide a good fit between
the prediction results and the actual data, so all parameters of the model proposed in this
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study can be used as validation of this model. Whereas the countries that are still in a state
that has not reached the estimated peak time of the epidemic or the turning point, it means
that they are still in a phase dominated by the growth rate phase, so this model is expected
to be suitable for the countries in this phase. This model will provide a reliable estimation
of parameters, not only in the final phase which seems appropriate for the countries in
this phase but at other phases during the epidemic. An initial analysis of the epidemic
related to the severity of infection and transmission is needed to measure the potential of
the COVID-19 pandemic, this is useful to anticipate the increase of the total number of
infected cases in the epidemic final.

The unprecedented COVID-19 pandemic has spread very intensely and is still occur-
ring in several countries, so currently, devising the predicting model of transmission of the
COVID-19 outbreak is a challenging task. This task is complicated by unreported infected
cases, population heterogeneity in infected risk, changes in population behavior, control
strategies to contain the infected rate or virus transmission after the initial phase of the
epidemic, and stochastic effects.

4.1. The Epidemic Case in China

The epidemic case in China was analyzed using data of the cumulative infected cases
collected from WHO reports from 21 January 2020, to 21 February 2020 [18]. Additionally,
this study extends the analysis using data up to 21 March 2020 [18]. Then, this study also
uses data up to the end of June 2020 to expand the epidemic analysis. The non-linear
least-squares method is used to analyze the three-time intervals to fit the three parameters
(K, r, and A) model of Equation (3). Based on the estimation of the turning point, which is
the point where the growth rate begins to decline, as is shown in Figures 1–3, the analysis of
the prediction results indicates that the epidemic cases in China have passed the estimated
turning point on the S-curve, and are now in the final phase of the epidemic. A state of this
phase provides a good fit for all model parameters from Equation (3).

Figure 1. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
China in the period 21 January to 21 February 2020.
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Figure 2. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
China in the period 21 January to 21 March 2020.

Figure 3. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
China in the period 21 January to 1 July 2020.
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Based on the prediction results of the three time-intervals of epidemic cases in China,
the results of this model show that the total number of the confirmed cases of COVID-19 is
around 81,054, 83,802, and 83,488 (these prediction results can be seen in Table 1), while
the actual data of the total number of the confirmed cases of COVID-19 is 86,619 [18], it is
shown that the actual data is bigger than the predicted results. Furthermore, the estimation
results of the epidemic growth rates are 0.260, 0.217, and 0.214 (1/day), it is indicated that
the epidemic cases in China have decreased. Then, the estimated results of the turning
point or peak time calculated from the first COVID-19 infected cases are 8 February 2020,
for the three-time intervals while the estimated end of the transition phase is 26 February
2020. It means that the estimation results from the final phase of the epidemic case in China
only lasted about 36 days. The prediction results of this model are within the actual data
ranges shown in Figures 1–3.

Table 1. The results of estimated parameters in the logistic growth model for various periods that are compared by daily
cases data of COVID-19 infected in China based on data compiled by WHO [18].

Period
2020

Turning Point
tp

Growth Rate
r

The Estimated Size of
Cases K

Parameter
A

Value
R2

21 January–21 February 8 February 2020 0.260 81,054 411,141 0.993
21 January–21 March 8 February 2020 0.217 83,802 465,153 0.993

21 January–1 July 8 February 2020 0.214 83,488 267,044 0.997

4.2. The Epidemic Case in Singapore

Based on the actual data available for the four periods in Singapore, which were taken
as input data to the logistic growth model, the prediction results of the final size of the
COVID-19 pandemic using the logistic growth model were around 31,835, 42,432, 57,639,
and 58,422, respectively. These prediction results can be seen in Table 2. Meanwhile, the
estimation results of the turning point or peak time of the epidemic occurred on 30 April,
7 May, 22 May, and 25 May, respectively. The peak time is obtained around 123 days since
the first confirmed case of COVID-19. It can be seen that the transition phase towards
the final phase of the epidemic will be at the end of May 2020. This is also confirmed by
the prediction results of the growth rate which has started to decline, estimated results
of around 0.115, 0.081, 0.046, and 0.042 (1/day), respectively. The actual number of cases
infected with COVID-19 was 58,432 cases at the end of December 2020, while the prediction
result was around 58,422.

Table 2. The estimation results of parameters in the logistic growth model for various periods from daily cases data of
COVID-19 infected in Singapore based on data compiled by WHO [18].

Period
2020

Turning Point
tp

Growth Rate
r

The Estimated Size of
Cases K

Parameter
A

Value
R2

23 January–23 May 30 April 2020 0.115 31,835 47,179 0.990
23 January–23 June 7 May 2020 0.081 42,432 57,981 0.996

23 January–23 September 22 May 2020 0.046 57,639 76,005 0.988
23 January–23 December 25 May 2020 0.042 58,422 72,928 0.991

In the first and second periods, modeling was still not complicated (as shown in
Figures 4 and 5), however, modeling uses actual data in Singapore is a much more compli-
cated process. Hence, Figures 6 and 7 show some of the peaks in the time series of new
daily cases of COVID-19 in Singapore. As a result, the logistic growth model built using
data from the first period, 23 January to 23 May 2020, failed to reach a new peak after that
date. When this model is used to estimate using more actual data and the time limit set is
extended to 23 June and 23 September 2020, respectively, the prediction results show how
this logistic model has evolved and adapted better to the actual data.
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Figure 4. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Singapore in the period 23 January to 23 May 2020.

Figure 5. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Singapore in the period 23 January to 23 June 2020.
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Figure 6. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Singapore in the period 23 January to 23 September 2020.

Figure 7. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Singapore in the period 23 January to 23 December 2020.
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Although this model still fails to provide an estimation of outbreaks in the early stages,
because this model only produces a maximum increase in single cases or can only predict
the first wave, however, the analysis carried out on the parameter r and this study found
that each period shows a decrease in the growth rate of the COVID19 infected cases. This
study suspects that this is due to better public health policies, better public behavior, or
better measures to prevent the spread of the virus. This study also analyzed that the
variation of the R2 value of the non-linear curve in each period was different, this shows
that there is a better serial correlation for each period.

4.3. The Epidemic Case in Saudi Arabia

The logistic growth model approach has been used to predict the cumulative con-
firmed cases in Saudi Arabia from the start of the epidemic on 2 March to 2 May 2020. The
first period for predicting short-term forecasts was carried out for preventive measures in
Saudi Arabia. The parameter estimation results are presented in Table 3. Furthermore, other
short-term estimates of cumulative confirmed cases in Saudi Arabia are also presented
in Table 3. The prediction results of cumulative confirmed cases of COVID-19 infected in
Saudi Arabia are arranged into three periods, starting from 2 March to 23 December 2020.
Based on the estimated turning point or peak time of the epidemic in Saudi Arabia is at
the end of June or around 26 June 2020, it means that it has been around 116 days since
the first confirmed case of COVID-19. The estimation results of the cumulative number of
COVID-19 confirmed cases in Saudi Arabia is around 361,010, while the actual data ob-
tained from the WHO source is around 361,178 [18]. It shows that the results obtained from
the prediction results are smaller than the actual data. The growth rates of infected cases
obtained by this model also decreased: 0.118, 0.053, 0.048, and 0.041 (1/day), respectively.

Table 3. The estimation results of parameters in the logistic growth model for various periods from daily cases data of
COVID-19 infected in Saudi Arabia based on data compiled by WHO [18].

Period
2020

Turning Point
tp

Growth Rate
r

The Estimated Size of
Cases K

Parameter
A

Value
R2

2 March–2 May 30 April 2020 0.118 47,795 52,847 0.999
2 March–2 July 14 June 2020 0.053 273,139 326,863 0.996

2 March–2 September 21 June 2020 0.048 320,760 467,156 0.999
2 March–23 December 26 June 2020 0.041 361,010 480,959 0.997

A data-based prediction model that relies on time series data shows that the simulation
results look more optimistic if the actual data does not fluctuate. This can be seen from
the peak number of virus infections leading to its peak time (see Figures 8–11) and the
transition of the epidemic phase from 14 June to 26 June 2020. The prediction results based
on current data show that the epidemic continues to decline in Saudi Arabia, however, we
need further predictions to ensure this when more data become available.

In general, an estimation of the parameters of an epidemiological model is always
difficult and requires strong assumptions to obtain values that are consistent and robust
throughout the epidemic. The new estimate developed in this study, a phenomenological
model of infection growth based on the classic Verhulst model derives explicit formulas
for the values of important parameters, such as intrinsic growth rate and the accumulated
number of infected cases, which provides a near-perfect estimate of the observed dynamics.

The use of this phenomenological model can also be considered as a way of smoothing
data because errors in predicting the newly infected cases can occur if tracking of the
newly infected cases is rarely carried out regularly so that the reporting of the new cases is
delayed for several weeks and at certain times it will be adding data excessively than the
actual calculation. Since the number of new cases observed may still be underestimated
so the number of new cases that are not reported will always be a difficult problem. The
actual data is sometimes reduced due to reasons of poor diagnosis or lack of detection
tools, or reasons of country policies.
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Figure 8. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Saudi Arabia in the period 2 March to 2 May 2020.

Figure 9. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Saudi Arabia in the period 2 March to 2 July 2020.
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Figure 10. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Saudi Arabia in the period 2 March to 2 September 2020.

Figure 11. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Saudi Arabia in the period 2 March to 23 December 2020.
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4.4. The Epidemic Case in the Philippines

Based on an estimation of this model, at least 459,784 infected cases of COVID-19 will
be reached by the final time the epidemic in the Philippines (as shown in Table 4). This
number is slightly smaller than the number of infections reported by WHO [18] of around
461,505. However, the estimated daily growth rates for COVID-19 in the Philippines are
still fluctuating, namely 0.118, 0.032, 0.038, and 0.033 (1/day), respectively. This means
indicates that the total number of COVID-19 cases in the Philippines will still double if there
are no anti-epidemic action measures. The estimation of the turning point or peak time for
daily new infected cases is also not yet on a specific date. In this study, the predicted peak
time will be around 5 September 2020, or about 184 days from the start of the epidemic
on 5 March 2020. However, based on the predicted growth rate, these prediction results
indicate that changes in COVID-19 cases before and after the predicted turning point on 5
September will follow the same pattern.

Table 4. The estimation results of parameters in the logistic growth model for various periods from daily cases data of
COVID-19 infected in the Philippines based on data compiled by WHO [18].

Period
2020

Turning Point
tp

Growth Rate
r

The Estimated Size of
Cases K

Parameter
A

Value
R2

5 March–5 May 11 April 2020 0.118 9,230 3,711 0.991
5 March–5 July 19 July 2020 0.032 108,239 13,100 0.993

5 March–5 October 26 August 2020 0.038 396,985 83,389 0.998
5 March–23 December 5 September 2020 0.033 459,784 113,105 0.999

Equations (13)–(15) will adjust to the parameters estimated in this model based on
actual data in each country, then these parameters are used as input in the prediction model.
Based on the epidemic case in the Philippines (see Figures 12–15), the non-linear regression
method shows consistent results, this is consistent with actual data based on the R2 value
for each epidemic period. It is also because the actual data in the corresponding time series
are on a non-linear curve, i.e., the peak period of the outbreak with most cases and the
period after the peak covering the rightmost tail with some cases. This study identifies that
if the prediction results are close to new cases that are sporadic or fluctuating, the R2 value
is still stable, even though the R2 value is in the 90–100% interval but the value is not below
90%. Consequently, the probability of the R2 value in each part of the period differs from
the non-linear curve, but it may still be possible to use it to compare the suitability in each
part of the period.

4.5. The Epidemic Case in Indonesia

This study proposes an epidemic model as a function of time-series data to fit a logistic
growth curve with the number of cumulative infected cases over the time series. This model
uses a phenomenological approach that is not complex, but it can describe the approach
from epidemic data that is changing rapidly and allows the results of this approach to be
fairly accurate predictions. This prediction logistic growth model is applied to actual data
from cumulative or daily infected cases in Indonesia. The reason is, Indonesia is still a
country with active transmission, based on data from WHO [18] which still notes that the
estimate of confirmed positive cases continues to increase. It is also indicated by the high
transmission of COVID-19, and the outbreak which is still far from over (see Table 5 and
Figures 16–19).

In each period, the actual data was taken when the first COVID-19 cases appeared,
starting 2 March 2020, then the actual data were collected on 2 May, 2 July, 2 September, and
23 December 2020. The prediction results from this model produced estimated cumulative
infections, namely around 13,268, 103,283, 260,316, and 896,504 in the final phase of the
COVID-19 pandemic (as shown in Table 5). This model also estimates the per capita growth
rates of the infected population are 0.109, 0.041, 0.047, and 0.049. The prediction results
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obtained for the turning point or peak time of the epidemic have not yet reached a certain
time. Each period has a determinant coefficient value (R2) above 95% which shows the
prediction results are following the actual data.

Figure 12. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in the
Philippines in the period 5 March to 5 May 2020.

Figure 13. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in the
Philippines in the period 5 March to 5 July 2020.
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Figure 14. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in the
Philippines in the period 5 March to 5 October 2020.

Figure 15. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in the
Philippines in the period 5 March to 23 December 2020.
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Table 5. The estimation results of parameters in the logistic growth model for various periods from daily cases data of
COVID-19 infected in Indonesia based on data compiled by WHO [18].

Period
2020

Turning Point
tp

Growth Rate
r

The Estimated Size of
Cases K

Parameter
A

Value
R2

2 March–2 May 19 April 2020 0.109 13,268 10,830 0.989
2 March–2 July 26 June 2020 0.041 103,283 46,139 0.996

2 March–2 September 10 August 2020 0.047 260,316 124,384 0.997
2 March–23 December 7 November 2020 0.049 896,504 412,832 0.999

Figure 16. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Indonesia in the period 2 March to 2 May 2020.

Although this model is phenomenological by mimicking the spread of the epidemic,
the prediction of daily infected cases and the prediction of the cumulative case size at
the final epidemic can be used as a preventive measure, so that controlling the spread
of this outbreak as a preventive measure can be carried out based on the prediction of
the COVID-19 pandemic. Any deviation from the prediction curve can indicate that the
epidemic may have gotten out of control, which could be if the actual data appear distorted
and do not follow a typical logistic curve. In the earliest period, based on actual data
reported, the number of confirmed COVID-19 cases grew slowly during the spread of the
epidemic. Then, the next stage of growth is exponential growth. When saturation begins to
emerge, growth slows down to a linear rate, and during the final phase of the epidemic,
growth will stop. The epidemic process can be predicted well by this model.
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Figure 17. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Indonesia in the period 2 March to 2 July 2020.

Figure 18. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Indonesia in the period 2 March to 2 September 2020.
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Figure 19. In the above figure, the prediction results of the logistic growth model for cumulative
infected cases are compared with the actual data, while the two red lines between the black lines
represent a prediction error limit of about 5%. The dashed green line predicts the total size of infected
cases in the final phase of the epidemic. The red line intersects the cumulative case curve to predict
the turning point or peak point of the epidemic (this line is parallel to the top of the curve from the
below figure). In the below figure, the prediction results of this model for daily infected cases in
Indonesia in the period 2 March to 23 December 2020.

5. Conclusions

In this study, a simple equation of the logistic growth model with the three parameters
estimated using the non-linear least-squares method has been proposed to analyze cases of
the COVID-19 pandemic in several countries. This model has provided knowledge about a
current epidemiological study and can be used as a reference in the future. This study is
also able to provide a qualitative estimation of COVID-19 infected cases reviewed in terms
of this model accuracy is based on the R2 value of the non-linear curve formed. Although,
this model still does not provide a quantitative estimation of COVID-19 infected cases
(there are differences in the daily and the cumulative number of COVID-19 infected cases).
However, this model provides good prediction results in terms of the patterns of increases
and decreases in the number of daily and cumulative infected cases of COVID-19.

This study has conducted an analysis based on the value of the parameter r, there
were differences in the intrinsic growth rate of cases of the COVID-19 infected. It can be
due to the possibility of differences in public health policymaking in restraining the trans-
mission process, such as community behavior (wearing masks, wearing hand sanitizers,
and physical distancing), handling infected patients by medical personnel, methods of
diagnosing newly infected cases, and others. Therefore, this model has the potential to
contribute to formulating public health policies to suppress the transmission process better
and to prevent the COVID-19 pandemic in each region.

However, all predictions of this model are based on the assumption that there is
always one peak or a maximum value of the epidemic on the curve of daily infected cases
modeled by the complete logistic curve. Whereas the epidemic curve is real, there are likely
some small peaks during the epidemic due to differences in epidemic prevention measures,
mainly tracking and detection (diagnosis) of individuals suspected of being infected in
each country.
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In this study, the logistic growth model has been used to predict the COVID-19
pandemic. The prediction procedure of this model is easy to implement and can be run
with commercially available software or free access software (not commercial). This model
can also analyze the severity during the COVID-19 pandemic. It may be that the actual
available data is limited or incomplete during the COVID-19 pandemic, but initial input
from this simple model requires only actual data that can be easily obtained in an epidemic
situation. Therefore, this model offers the best opportunity for practical solutions to
identify and predict and then control the epidemic on time. Although this simple model
does not provide accurate numerical predictions, it can be used to predict qualitatively or
in other terms quantitatively, which is still quite rough. Therefore, the prediction accuracy
of this model is highly dependent on the absence of stochastic events occurring during
(the remaining days) of the epidemic as this could significantly change the course of this
epidemic phase.
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