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There is a strong need for procedures that enable context and application dependent validation of
antibodies. Here, we applied a magnetic bead assisted workflow and immunoprecipitation mass
spectrometry (IP-MS/MS) to assess antibody selectivity for the detection of proteins in human plasma.
A resource was built on 414 IP experiments using 157 antibodies (targeting 120 unique proteins) in
assays with heat-treated or untreated EDTA plasma. For each protein we determined their antibody
related degrees of enrichment using z-scores and their frequencies of identification across all IP assays.
Out of 1,313 unique endogenous proteins, 426 proteins (33%) were detected in >20% of IPs, and
these background components were mainly comprised of proteins from the complement system.

For 45% (70/157) of the tested antibodies, the expected target proteins were enriched (z-score > 3).
Among these 70 antibodies, 59 (84%) co-enriched other proteins beside the intended target and mainly
due to sequence homology or protein abundance. We also detected protein interactions in plasma,
and for IGFBP2 confirmed these using several antibodies and sandwich immunoassays. The protein
enrichment data with plasma provide a very useful and yet lacking resource for the assessment of
antibody selectivity. Our insights will contribute to a more informed use of affinity reagents for plasma
proteomics assays.

Antibodies are important tools used in a wide range of assays within life science, but there is a growing awareness
about the importance to carefully validate the data generated'. To address this challenge, the recently formed
International Working Group for Antibody Validation (IWGAV) proposed five strategies to assess the experi-
mental performance of antibodies?. However, there is a need to expand the analytical possibilities for evaluating
antibodies in the given context (= sample type) and application (= assays). In particular for body fluids there are,
besides adding or depleting a protein of interest, currently no tools for modulating the system to overexpress or
inhibit expression of a target of interest. Performing correlation analysis using paired antibodies or orthogonal
methods is a commonly used approach. Recently, the use of correlation between the variation found in loci of
the genome and plasma protein profiles provides a powerful method to determine if the information in a gene
of interest or encoded elsewhere in the genome is driving differences in plasma abundance®*. Such studies allow
to infer the specificity of an affinity reagent, but they do not provide direct and molecular information about the
physical interaction between the protein target and affinity reagent. Hence, there is still a missing element to
experimentally assess selectivity of the affinity reagents and to enable the development of reliable and sensitive
assays for protein analysis in fluids such as plasma or serum.

Here, we describe our efforts and observations from the assessment of antibody selectivity in plasma. We uti-
lized immunoprecipitation (IP) of endogenous proteins in combination with shotgun mass spectrometry (MS)
to systematically analyze the proteins enriched by the antibodies. Similar strategies have been applied previously
on cellular level to identify interactors and co-immuno-precipitated targets in protein-protein interaction stud-
ies>®. Until now, the utility of shotgun MS for a systematic antibody validation has been less explored, however,
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Marcon and colleagues evaluated the performances of 1,000 recombinant antibodies for IP in cell lysates’. A more
recent study presented an approach to generate and validate even 1,400 antibodies for IP of transcription factors®.
While apart from studies using cell lysates and those focused on specific, smaller number of targets®?, there are
no systematic studies applying IP of endogenous full-length proteins and MS for antibody validation in human
plasma. For plasma, trypsin digestion and peptide enrichment has been more frequently applied in combination
with MS readout for quantification!'!~!*. Additional approaches such as iMALDI'* and MS-based immunoassays'®
complement activities using protein-enrichment before MS analysis in plasma.

The composition of the plasma proteome was recently updated and now lists around 3,500 proteins detectable
using MS techniques'®. It is well-known that only a small set of about 20 abundant proteins make up ~90% of the
total protein content, hence the protein content and distribution of protein concentrations differs greatly when
compared to cellular samples. For MS-based techniques, one of the keys is to use enrichment as a strategy to
enhance the sensitivity for the quantification of a peptide/protein of interest'’. Purely affinity-based techniques
will greatly benefit from the utility of highly selective binder in multiplexed assay systems'®. Understanding how
other plasma proteins, such as the abundant and frequently observed contaminants, contribute to enrichment
profiles will consequently improve the utility of affinity reagents for plasma proteomics assays.

We performed and compared the label free quantification (LFQ) MS data from more than 400 IPs, to build
a library with the detected proteins and annotated them using frequencies of identification (f) and z-scores (z).
This assisted us in identifying those proteins detected with high frequency as “plasma background contami-
nants”. As a novelty in respect to previous studies focused on immune-precipitation®” we wanted to overcome
the problem of background contaminants by considering the large number of independent IPs produced as a
population. Previous studies compared replicated IPs for a specific antibody against IPs performed with same IgG
species as negative control using fold-changes, univariate statistics and p-values as assessment criteria. We found
zZ-scores a convenient statistical approach for the scope of our study, as they determine whether a specific sample
represented or deviated from the populations of samples population or if it deviates. This approach allowed us
to identify the endogenous proteins that were either most uniquely or commonly enriched by each antibody in
the analyzed plasma sample. Statistics using z-scores have been widely used in clinical population studies'® and
for the analysis of omics data types®~?2 but not in the contest of the analysis of immunoprecipitation data. These
scores built the foundation of our resource that we used for the systematic evaluation of antibodies selectivity in
plasma by IP-MS/MS, where data analysis is often complicated by the high number of proteins commonly iden-
tified in each experiment.

Results and Discussion

Study overview. To establish a plasma-centric resource for selectivity analysis of antibodies, we applied a
common workflow to analyze 157 antibodies (targeting 120 proteins) (Fig. 1A). The assays were built on a previ-
ously described procedure, in which antibodies are covalently coupled onto magnetic polystyrene beads prior to
incubation with the sample?. Following target enrichment, washing and digestion on beads, the data files obtained
from LC-MS were searched and normalized by MaxLFQ. Next, z-score analysis was performed to rank proteins
specifically enriched by each antibody. The study included mostly polyclonal binders from the Human Protein
Atlas (HPA) but also monoclonal antibodies from mouse and other species. In order to compare the performance
of different antibodies raised against a common antigen, a subset of 25 proteins (21%) were targeted by more than
one antibody (S-Fig. 1A). The selection of presented targets was driven by giving priority to antibodies raised
against proteins known to be part of the plasma proteome and to those associated to a disease (S-Excel Table,
sheet: “Selected Targets”). As described in Fig. 1B, the majority of binders (65%, N =101) were raised against tar-
get proteins detected previously ‘in plasma’ (48% N =75) or annotated as ‘extracellular’ (17%, N = 26), and fewer
proteins were annotated as ‘cellular’ (36%, N =56). As reference for protein abundance in plasma, we considered
the estimated concentrations found in the 2017 version of the plasma proteome draft hosted in PeptideAtlas'®. In
order to reduce the number of MS runs and reagent consumption, at least two replicated incubations per antibody
were performed. The established resource was comprised of >400 IP assays, hence it was possible to compare and
classify the antibodies based on whether their enrichment profiles showed the expected target proteins or not.

Plasma samples. The measurement and data obtained in this study have been acquired in compliance with
the Declaration of Helsinki for research on humans. The research was conducted on pools of anonymous donors
and did not require sensitive personal information about the donors. The research did not include any type
of intervention, surgery, or treatment. The Ethical Review Board in Uppsala (Dnr 2009/019) deemed that this
research was not subjected to formal ethical review and approval. For the first 139 IPs, we used a pool K2 EDTA
plasma samples collected by the Department of Laboratory Medicine (LABMED) at Karolinska hospital under a
protocol approved by the Ethical Review Board in Stockholm (Dnr 2015/1570-31/4) and with written informed
consent was obtained from all individuals. For the remaining 275 IPs, samples of human K2 EDTA plasma were
purchased on two occasions from Sera Laboratories International Ltd (HMPLEDTA2, now part of BioIV'T, West
Sussex, UK), who collects samples under IRB-approved protocols in use at their FDA-licensed donor centers with
written informed consent was obtained from all donors. The pools of plasma samples that were generated by the
supplier from mixing plasma from donors of which 50% were females.

Assessing the resource. It is well accepted that MS provides in-depth information about the protein con-
tent of a sample, however hundreds if not thousands of proteins can be identified in a single IP experiment?.
This calls for a careful assessment and interpretation of data from IP assays where many other proteins than the
intended target can be identified in the same range of spectral counts or precursor intensities. As described in the
context of cell lysates, the necessity to compare the outcome of several experiments, including negative controls
or unrelated antibodies is essential®~’”. Mellacheruvu and colleagues showed how lists of background proteins that
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Figure 1. (A) Workflow and study overview. Antibodies were covalently coupled to magnetic beads and
incubated one-by-one with EDTA plasma, and between 2-4 replicated incubations were performed for each
antibody. Following target enrichment, washing and digestion on beads, the obtained data files from LC-MS
were searched and normalized by MaxLFQ. Then z-score analysis was performed to rank proteins specifically
enriched by each antibody. Using the resource generated by >400 IP assays, antibodies were classified based

on their enrichment profiles: (1) ON-target, only the target protein was enriched showing a z-score >3 (2)

CO- target, the target protein was enriched together with other proteins also associated to a z-score >3 (3)
OFF- target, only proteins other than the expected target were enriched; as well as (4) NO- target, in case no
protein was enriched (z-scores < 3). (B) Distribution of antigen annotation. The target proteins of the 157
antibodies were grouped as follows: “Plasma by MS”, were identified in plasma previously by mass spectrometry
as reported by Peptide Atlas. Cellular and Extracellular were assigned according to Gene Ontology classification
(see Materials and Methods). Numbers stated inside the pie chart refer to the number of antibodies (Abs) in

the category and corresponding number of target proteins. (C) Distribution of frequencies of identification.

The 1313 proteins obtained from the IP-MS/MS assays conducted in heat-treated (red) vs untreated plasma
(black) were collected in terms of the number of times they were observed in the IP-MS data. For both sample
types, the majority of the 1313 proteins were found in less than 20% of the IPs. (D) Frequency vs Concentration.
Estimated concentrations reported in PeptideAtlas were compared between frequent (>20%) and less frequent
(<20%) protein identifications.

were obtained from negative control assays (which were performed in similar experimental conditions), and that
even different experiments from different laboratories can be used to assess specific enrichments in IPs’. In our
case, we aimed to build and use a large data set to compare all the IPs and not only those of control measurements
with IgG matching the species of the primary antibody. We generated data in separate experiments, referred to as
batches, in order to analyze our data. Building a large library of IP data, we wanted to extract information about
background contaminants in plasma and annotate all identified proteins by their frequency of identification (f)
and antibody-related enrichment z-scores (z). This collection of data files could then serve as a resource to assist
the interpretation of IP-MS/MS data when used for the assessment of antibody selectivity in plasma.
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The data containing a total of 414 plasma IPs were prepared in 6 independent experimental batches (S-Excel
Sheets “Experimental Batches”), and the raw data was analyzed in one unique session of MaxQuant. Applying the
function MaxLFQ for label free quantification, a total of 1,313 unique proteins were identified, excluding com-
ponents such as the variable domains of immunoglobulin for heavy and light chains. The resulting list of proteins
can be found in S-Excel Sheet: “Frequencies of identification”. To provide an overview of the data, we performed
two ways hierarchical clustering analysis and principal component analysis (S-Fig. 3A,B), which showed that IPs
prepared during the same experimental batch and sample treatment type clustered together. As discussed previ-
ously by Mellacheruvu, small variation in sample-to-sample preparation may indeed influence protein recovery
and therefore the number of identifications®. Nevertheless, the comparison of IP data from different experimen-
tal batches will allow us to determine true interactors over background contaminant given that we used similar
experimental settings. In our study, a major difference between IPs experiments was the use of different batches
of plasma and whether plasma was heat-treated or not (S-Fig. 3A). Samples experiencing heat treatment clustered
together independently from the experimental batch. As further discussed below, an evident difference in the
proteins commonly recovered in the IP procedure included mostly background contaminants.

In Fig. 1C, the distribution of frequencies of protein identifications is shown. The proteins obtained from
assays conducted in heat-treated (red) vs untreated plasma (black) were collected in terms of the number of
times they were observed in the IP-MS data. Comparing the proteins detected for each of the pre-treatment
types, the majority (66%) of the 1313 proteins were found in less than 20% of the IPs. In Fig. 1D, we connect these
frequencies with the estimated concentrations as provided by the 2017 draft of the plasma proteome hosted by
PeptideAtlas'®. We called those proteins frequent if they appeared in >20% of the IPs and less frequent if there
were identified in <20%. Protein LFQ intensity values showed poor correlation with estimated concentration
from PeptideAtlas and z-scores (S-Fig. 4C,D). Protein composition of IP samples was expected to be different
from crude plasma, even if the proteins most abundant in plasma tend to be also the most abundant contami-
nants. The z-score values, which indicate the proteins mostly enriched in a specific IP, were not necessarily related
to the abundance of the protein in plasma. The z-scores also did not correlate with LFQ intensities (S-Fig. 4E).
LFQ intensity provides semi-quantitative values of abundance and very high LFQ values were observed for high
abundant background contaminants. LFQ values did not directly indicate the most enriched proteins.

The resulting GO analysis revealed that terms related to the complement activation and wound healing
(G0O:0002576, GO:0006956, GO:0050817, GO:0009611, GO:0007596) were enriched for the frequent proteins
(S-Excel Table Sheet: “GO enrichment analysis”). Other terms enriched for the frequent proteins were related
to lipoprotein and their complexes (GO:1990777, GO:0032994, GO:0034358) as well as vesicles (GO:0031983,
G0:0060205). Further details on frequency of identification and intensities along with insights on the impact of
experimental batches can be found in the S-Excel Table Sheet:”Batches Kruskal Wallis test”.

Effect of heat treatment. Previously, we have shown that heat treatment of plasma samples at 56 °C, which
is also often used in proteomics sample preparation to enhance reduction and alkylation, can improve the limit of
detection of some proteins in plasma profiling assays using antibody bead arrays*>?°. Heat treatment has also been
shown to improve the detection of proteins from the complement system?”. Depending on the proteins, heat treat-
ment of plasma may indeed have diverse effects on their analytical detectability. Consequences of heat-induced
unfolding could lead to protein complexes breaking up and retrieve previously hidden epitopes. This would facil-
itate proteins to be more accessible to antibody binding. However, heat may also cause the proteins to aggregate
and precipitate?®? or to become more prone to non-specific binding®. These effects could either lead to a loss in
protein of interest or be beneficial if the amount of off-target proteins can be reduced.

As shown for all IPs in Fig. 2A,B, we compared the frequencies of protein identification in heat-treated and
untreated samples. We defined those proteins that were detected in either sample in >20% of all assays as con-
taminants. We found a total of 444 proteins in heat-treated and 389 proteins in untreated plasma. There were 104
proteins classified as contaminants only for heat-treated plasma and 49 proteins classified as contaminants only
for untreated plasma. The fusion of these lists were 493 proteins, of which 340 (69%) were detected in >20% of the
assays in both types of sample preparations. In addition to the frequency, we also compared the average and the
maximal z-scores determined for the 340 common contaminants (Fig. 2C,D). Highlighted are the most differen-
tial proteins in terms of the z-scores and we related these to fibrinogens (FGA, FGB and FGG), as discussed below.

Further investigations also found a significant association (p-value <2 * 107°) between the frequencies
and estimated protein abundance in plasma (Fig. 1D and S-Fig. 4A,B). When we considered LFQ intensities,
we observed that in heat-treated samples particularly fibrinogens (FGA, FGB and FGG) were more abundant
(S-Fig. 5A,B). All three fibrinogen chains were otherwise detected in >98% of all samples. Their maximum
z-scores were z < 1.8 in untreated plasma compared to z > 4.4 in heat-treated plasma. Fibrinogen was enriched
particularly in the IPs performed in not-heated plasma with anti-LCN2 antibodies and anti-Furin antibodies
(S-Fig. 5C and Supplementary Excel Table, Sheet z-scores > 2.5). Previous observations state that fibrinogen is
particularly affected by heat-treatment at temperature close to 56 °C. Denaturation of fibrinogen starts at 55°C
and this property was exploited in the past to develop fibrinogen assays?. At this temperature the D fragment
is particularly affected?. The affinity of fibrinogens to plastic surfaces has also been reported to increase in
heat-treated samples®. Via a similar mechanism, fibrinogen’s unspecific binding to surfaces of magnetic beads or
to heavy chains of IgG antibodies coupled onto the beads may be enhanced®*2. Hence, heat-induced denatura-
tion of fibrinogen could have altered the magnitude with which proteins of this family are identified via a variety
of mechanisms.

Another example is given for fibulin 1 (FBLN1), a frequent and abundant plasma protein ( f=65%; [c] =34 ug/ml).
A monoclonal antibody raised against FBLN1* enriched a total of 22 proteins in heat-treated and 12 in untreated
plasma. FBLN1, however, was only among these enriched proteins in heat-treated plasma (z=3.7). This indicated
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Figure 2. Comparison of heat-treated and untreated plasma. (A) The relation between the frequencies of all
identified proteins in heat-treated and untreated plasma is shown. The red line represents the line of identity.
The Spearman correlation was rho=0.83 (p < 2 x 10719). (B) Using the differences between frequencies in
heat-treated and untreated samples highlights the proteins prone to be more commonly detected in either
preparation. This is related to the fibrinogens (FGA, FGB, FGG), which were the proteins found to be most
different when using LFQ intensity as a measure of abundance (S-Fig. 5A-C). In (C) is the comparison of the
enrichment using the difference in average z-scores between the 340 proteins noted as common contaminants
in both heat-treated and untreated plasma. (D) Comparison of enrichment scores of using the difference in
maximal z-scores between the 340 proteins.

that heat-treated plasma was the preferred condition of this antibody to enrich this abundant target protein.
Other plasma proteins such as albumin, apolipoproteins (APOB, APOC2, APO2, APOE), Keratines (KRT1,
KRT?2, KRT10), Fibulin, Fibronectin 1 or IgM were less common among the frequent contaminants (see also
S-Excel Sheet: “Frequencies of identification”).

Analysis of selectivity. In the following, we describe our approach to investigate antibody selectivity in
plasma. Knowing that proteins commonly identified as background in plasma may differ between assays due
to how plasma was treated before the experiment, we calculated the z-scores from the respective assays using
heat-treated and untreated plasma separately (S-Fig. 10). We found that the average number of identifications
per experiment were slightly higher in heat-treated plasma (300 £ 97 in 276 IPs) compared to untreated plasma
(283 £97 in 138 IPs). We considered a protein as being enriched by an antibody in EDTA plasma, which was
derived from pool of healthy donors, when the z-score > 3. For the antibodies used to build this resource, we
found a total of 600 unique proteins above this threshold.
All antibodies were annotated according to the following categories (Fig. 3A):

(i) Supportive: The expected target was enriched with a z-score > 3 was assigned.

a. ON-target category: when a z > 3 was only assigned to the expected target.
b. CO-target category: when a z > 3 was assigned to the expected target but also other proteins besides
the expected targets were detected with z> 3.
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Figure 3. (A) Classification of antibodies. Three representative examples are shown for each of the enrichment
categories (ON-target, CO-target, OFF-target, and NO-target). On the top of each plot are the target gene,
antibody ID and the number of replicated IP performed for the antibody. The dots in each plot represent protein
identifications made in all the replicates available for the specific antibody. Green dots: z-score >5 and LFQ
intensity >1e+ 07; yellow dots: z-score > 3 and LFQ intensity >1e 4 07; red dots: z-score > 3 and LFQ intensity
<le+07. Text: expected target and hypothesized off-targets or interactors. A complete list of identified protein
and relative z-scores are available in Supplementary Excel Table (Sheet: z-score > 2.5). (B) Paired antibodies and
co-enrichment profiles. The z-score/LFQ intensity plots of paired antibodies raised against IGFBP2 are shown
for HPA004754, HPA045140, HPA077723. (H+) refers to heat treated plasma and (H—) to untreated plasma.
IGF2 was identified as P01344, and P01344-2 (*).

(ii) Uncertain: The expected target was not identified or enriched with z-score < 3.

a. OFF-target: other proteins than the expected targets were enriched with z> 3.
b. NO-target: all detected proteins were classified with z < 3.

The outcome of the analyses is also shown in Tables 1 and 2, where the classification of 70 out of 157 antibodies
(45%) was denoted as ‘supportive. When assessing only those antibodies targeting proteins previously annotated
in plasma, the fraction increased to 61% (46/75). We noted that in almost all of the supportive evaluations, the
highest z-score and the highest LFQ intensity was assigned to the expected target, and therefore this protein can
be considered as the primary target even though other proteins were identified.

We defined the category of IPs where we could not detect the intended target as ‘uncertain, and we acknowl-
edge that there are several different factors leading to this observation: It could be that the actual target is (i)
not present in the sample derived from pooling those from healthy donors, (ii) not accessible due to aggrega-
tion or formation of complex or (iii) present but at a concentration below the limit of detection of our method.
Additionally, the presence of an extensively higher abundant off-target could either mask the binding site or limit
the detectability of target peptides. A limited performance, such as ionization, could also be intrinsic to the pep-
tides of the target itself.

ON-target enrichment. Applying IP-MS analysis has been reported to improve the sensitivity of protein
quantification!>**. Hence, IP-MS may allow the detection of lower abundant proteins, aiding to identify those
proteins that presently remain more challenging for other MS protocols. Our investigations lead to the identifi-
cation of 9 extracellular proteins (e.g. CXCL8, TGFA) and 15 cellular proteins (e.g. TP53, CASP2) in plasma, that
were not listed in the plasma PeptideAtlas at the time of our study Sheet: “Antibodies experim. annotation”. For
almost 50% of the antibodies annotated as ON- or CO-target, the identified peptides aligned with the sequence of
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Supportive | Uncertain | Sum
Annotated target location N % N % N %
Cellular 15 27 41 73 56 36
Extracellular 9 34 17 65 26 16
Plasma (MS) 46 61 29 39 75 48
Total 70 45 87 55 157% 100

Table 1. Annotation of antibodies. *Total number of antibodies used in the study, including 4 antibodies
used only in the phase of optimization, for which a z-score was not calculated. These 4 antibodies were anyway
classified as supportive if they immuno-precipitate and enriched their target.

N %
On-target 11 7
Co-target 57 37
Oft-Target 72 47
No-Target 13 9
Total 153%%* 100

Table 2. Annotation and categorization and of antibodies by subcategories. **Antibodies classified in the four
sub-categories according to z-scores.

the antigens used to generate and affinity purify the antibodies (S-Fig. 1B). As previously discussed?”, affinity puri-
fication of antibodies may bare the risk of co-eluting the target used as bait from the columns and thereby carry
the baits over into the assay. These ‘passenger’ proteins or peptides may consequently simulate the enrichment of
an endogenous target. In our case, this would lead to a false positive classification of the antibody and may ham-
per the performance of downstream applications. To address this concern, we analyzed antibody-coupled beads
for the presence of the protein fragment that was used as antigen and that could have introduced the passenger
peptides. Out of 47 tested antibodies, 11 indicated a possible presence of passenger proteins (S-Fig. 6), from
which we categorized 1 as ON-target, 1 as OFF-target and 9 as CO-target.

CO-target enrichment and sub-categories. Evaluating antibodies in terms of target selectivity (Fig. 3),
the CO-target category includes those antibodies for which other proteins were enriched alongside the intended
target. In our study, most antibodies were categories in this group, suggesting that single-binder assays frequently
detect more proteins than only the intended targets. The reasons for observing additional proteins could be due to
(i) off-target binding by the antibodies (direct co-enrichment) or due to (ii) an interaction of the intended target
with another protein (indirect co-enrichment).

For the first sub-category, sequence homology and abundance of the OFF-target could serve as reasons for
co-enrichments. In the coming section, we focused on using our frequency and z-score values to annotate the
co-targets and relate these to the plasma concentration values estimated by PeptideAtlas. While it remains nec-
essary to investigate at which concentration ratios on- or off-target binding is dominating, using existing data
and sequence homology searches can provide a first lead for judging the selectivity of an antibody. For the sec-
ond sub-category, we propose to use paired antibodies against a common target in order to determine indirect
co-enrichment. As presented further below for the example IGFBP2, we shown how our IP data can be used to
identify interacting proteins in plasma and guide the development of immunoassays for these interacting proteins.

CO-target enrichment stemming from related proteins. Examples of CO-target enrichment
driven by sequence homology are presented for antibodies raised against CCL16 (HPA042909) and SERPINA4
(HPA002869). Both of these binders enriched additional members of the respective protein families, namely
CCL18 and SERPINAG6, which both shared sequence homology with the intended on-target.

The proteins CCL16 and CCL18 are estimated to be present at 29 ng/ml and 2 ng/ml levels in human plasma.
The estimated 15-fold difference in abundance was not found when comparing the z-scores to which HPA042909
captured CCL16 (z=10.7) and CCL18 (z=10.1). Both proteins were otherwise rarely observed in any of the
other IPs (f < 4%) and they have not been predicted to interact directly with another (S-Fig. 7A), however they
do share a 27% sequence homology (S-Fig. 7B). In the case of HPA002869, the antibody enriched SERPINA4
(z=8.2) and SERPINAG6 (z=38.1) in heat-treated plasma. SERPINA4 and A6 are estimated to be present at 17
and 41 pug/ml levels (2.4-fold difference) and share a 40% sequence similarity (S-Fig. 7D). Both proteins were
observed in 91% (SERPINA4) and 59% (SERPINAG6) of all conducted IPs with heat-treated plasma and found to
be less frequent in untreated plasma. Serpins are a large family of highly homolog blood proteins but no direct
interactions between the members have yet been observed in the String database (S-Fig. 7C). However, infor-
mation found in another database of predicted human protein-protein interactions®® (http://www.compbio.
dundee.ac.uk/www-pips/index.jsp) indicated an interaction between SERPINA4 and SERPINAG (total interac-
tion score = 128.0). Further experiments will be needed to determine if SERPINA4 and A6 indeed interact or if
HPA002869 shares specificity for both of these proteins.
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Approaches to differentiate between direct or indirect co-enrichment could, for example, include to spike
in the off-target in presence and absence of the on-target (see analysis of IGFBP2 interactions further below).
Otherwise, diluting the samples that contain both on- and off-targets at roughly equal concentrations can be used
to determine if the ratio between the detected amounts of on- or off-target changes at a certain sample dilution.
Optimally, several antibodies with independent epitopes would be needed to investigate the possibility that inter-
actions between these proteins exist. Since we did not find literature supporting the actual physical interaction
between the proteins discussed in the examples above, we would judge the described antibodies still as valuable
for the development of sandwich immunoassays, because the specificity of a second antibody will add certainty
about which protein is being measured.

CO-target enrichment of frequently observed and abundant proteins. In another sub-category,
protein enrichment may also be driven by more frequently observed and abundant proteins, for which z-scores
tend to remain <3 in our resource.

An example is given by CD5 antigen-like (CD5L, [c] = 5.9 ug/ml), which was detected in almost all IPs
together with IGHM (f>99%). It is indeed known that CD5L binds to the Fc region of IgM through its SRCR
domains®. Further to this, the immunoglobulin J chain (IG]J) is known to be required to stabilize the bind-
ing of CD5L to IGM, but a direct interaction has not been experimentally observed®. Using HPA026432 to
enrich CD5L (z=5.1), we also detected immunoglobulin light chain lambda (IGHV3-23; z = 3.4), kappa (IGKC;
z2=3.4),IGM (z=2.7) and IGJ (z=2.8). The distribution of z-scores among these known binding partners may
also possibly indicate that the antibody is more selective for CD5L rather than for the additionally identified pro-
teins. Considering the abundance of IGM at around 1 mg/ml and that IGM frequently appeared as contaminant
(f=98%), an increased z-score for IGM in this particular IP pointed at a more specific enrichment due to the
interaction with the primary target CD5L.

In order to determine how and if more frequent and abundant proteins interact, become off-targets or inter-
fere with detection of the intended target, it is suggested to further dilute the plasma samples. Using the currently
applied assay conditions (1:10 plasma dilution), it remains a challenge to judge the enrichment profiles of anti-
bodies raised against the more frequently observed proteins. Further analyses will be needed to determine the
mode of co-enrichment, meaning, if the co-target was detected due to interacting with the on-target or due to be
serving as an off-target for the antibody.

Studying protein interaction with paired antibodies. A particularly interesting annotation category
grouped those antibodies for which physiologically meaningful interactions between the intended target and
the additional proteins could be expected. To limit the search space, we chose stringent criteria to z>5 and
LFQ intensity >107 before calling a protein a potential interactor. In general, we observed that most of the con-
sistent identifications (identified in several replicates) were found for LFQ precursor intensities above this level
(S-Fig. 8D). In addition, examples of potential protein interactions should preferably be limited to those proteins
for which multiple antibodies raised against different antigens of same target protein revealed matching protein
interaction profiles. In such cases, concordant enrichment data of both ON-target and CO-targets provides sup-
portive evidence for protein complexes rather than artefacts. The example we chose to highlight from our study
was the insulin growth factor binding protein 2 (IGFBP2), but other examples existed for FBLN1 and IGF1R (see
S-Excel Table Sheet: “Antibodies against same protein”).

The example given here used three antibodies raised against IGFBP2 (HPA077723, HPA045140, HPA004754)
of which the latter two were raised against the same antigen. The binders revealed consistent identifications for
LFQ intensities >107 (S-Fig. 8E-H). As shown in Fig. 3B for untreated plasma, HPA077723 and HPA045140 both
enriched IGFBP2 ([c] =1.1 ug/ml; f=21%) as well as previously known interactors insulin growth factor 1 (IGFI:
[c] =0.46 ug/ml; f=18%) and IGF2 ([c] =1.6 ug/ml; f=8%). In addition, the proteins butyrylcholine esterase
(BCHE: [c] =11.0pg/ml; f=18%) and deoxyribose-phosphate aldolase (DERA: [c] =0.5ng/ml; f=7%) were
detected with HPA077723. For the third binder HPA004754, IFGBP2 and BCHE were only enriched upon prior
heat treatment of plasma (Fig. 3B), even though the antibody was raised against the same antigen as HPA045140.
This difference in performance indicated the necessity to investigate each of the different batches and lots sepa-
rately when using polyclonal antibodies. While an interaction and functional relationship between BCHE and
IGF1 was previously hypothesized®, the concordant enrichment data from two different antibodies suggests
that both proteins may likely be bound another in plasma.

In order to provide further support for the possible interactions between the identified proteins, we conducted
multiplexed sandwich assays. Here, recombinant IGFBP2, IFG1, IGF2 and BCHE were analyzed in a concen-
tration dependent manner to annotate the assays’ functionality and target specificity (Table 3) and to confirm
the selectivity of the matched antibody pairs in plasma. Then, we investigated if even pairs of antibodies with a
different selectivity revealed plasma concentration dependent results. As shown in Fig. 4, we found pairs of anti-
bodies with mixed specificity in the following capture-detection configurations: IGFBP2-IGF2, IGF2-IGFBP2
as well as BCHE-IGFBP2. For IGF1 and IGF2 antibody pairs, it was not possible to obtain a dilution curve with
the respective recombinant proteins in solution, but they were functional in plasma (S-Fig. 9C,D,M,N,P). Also,
IGF2-IGFBP2 and IGFBP2-IGF1 confirmed the presence of the previously known complex IGFBP2-IGF2
(Table 3, Fig. 4B,C). Antibody pairs for IGFBP2 and BCHE described a sample dilution depended trend with
their corresponding intended recombinant proteins as well as in plasma (S-Fig. 9A,E,EH,I). Since we did not
observe cross-reactivity towards these two proteins with other antibodies in the assay (Table 3), the functional
antibody pair BCHE-IGFBP2 supports the indications provided by IP, which pointed at a physical interaction
between these two proteins in plasma (Fig. 4A). To further strengthen this observation, the use of an inverted
assay configuration (IGFBP2-BCHE) and an assay including additional IGFBP2 antibodies, such as HPA077723
(Fig. 3B), would be preferred. Even though it was not possible to confirm a physical BCHE-IGF1 interaction,
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anti-IGFBP2 + + + - —
anti-IGF2 + + — — _
Plasma anti-BCHE - - + — —
anti-IGF1 — — — + —
anti-DERA - — — — —
Rec-IGFBP2 anti-IGFBP2 + — — — —
Rec-IGF2 anti-IGF2 — - — — _
Rec-BCHE anti-BCHE — - + — —
Rec-IGF1 anti-IGF1 — - — — _

Table 3. Antibody pairs tested in plasma and with recombinant proteins. Annotation (+): Trends from sample
dilution assays were obtained with at least one combination of antibodies for the same protein either in heat-
treated or untreated samples. Annotation (—): No sample concentration dependent data was obtained. (Details
regarding each single pair are listed in Supplementary Excel Sheet “Reagents_Lot_Numbers”. Catalog numbers
of the functional pairs are indicated in Fig. 4 and S-Fig. 9).

Detection antibody :
anti-IGFBP2 HPA004754

Capture antibodies :
IGF2 HPA007993 H+

BCHE R&D capture H+
IGF2 HPA007993 H-
BCHE R&D capture H-

L] T L] L 1J T L]
Blank 1/20480 1/5120 1/1280 1/320 1/80  1/20
Plasma dilutions

B
3009 Detection antibody :

250 anti-IGF2 HPA007993 Capture antibodies :

=¥~ IGFBP2 HPA077723 H+

= 200

3 = IGFBP2 HPAQ04754 H+

= 1504

£ - IGFBP2 HPA004754 H-
100

T T 1 T ) | T
Blank 1/20480 1/5120 1/1280 1/320 1/80  1/20
Plasma dilutions
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< anti-IGFBP2 HPA077723
180 : Capture antibodies :

6 IGF2 HPA007993 H+

¢ IGF2 HPA007993 H-
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Blank 1/20480 1/5120 1/1280 1/320 1/80  1/20
Plasma dilutions

Figure 4. IGFBP2 protein interaction analysis by sandwich immunoassay. Dilution curves of plasma analyzed
by sandwich assays using different combination of capture and detection antibodies. Dots represents mean value
with standard error (SD) bars. In black, heat treated plasma (H+); in gray, untreated plasma (H—).

our data suggested that an interaction between BCHE and IGF1 or IGF2 could involve also IGFBP2 forming
a larger complex built on IGFBP2-IGF2 (or IGF1)-BCHE (Fig. 4A). We acknowledge that not all antibodies
allowed building mixed sandwich pairs with the chosen assay protocol, and above all, in the presence of protein
complexes. HPA004754 and HPA077723 were raised against two different epitopes of IGFBP2, hence this could
explain their different performance as either capture and detection antibody. HPA004754 was though functional
as capture and detection antibody both using heat-treated and untreated plasma for the detection of IGFBP2, as
well as in combination with anti-BCHE (S-Fig. 9B,G). HPA077723 was not functional with anti-BCHE either as
a capture or detection antibody. This suggested that the binding of one antibody might hinder the binding other
antibody to a complex of IGFBP2-BCHE. Further investigations could investigate if this incompatibility was due
to the proximity of the two binding sites or other steric effects such as epitope accessibility of a captured complex.
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OFF-target enrichment category. At last, we will discuss off-target enrichments. Here the abundance of
the off-target over the intended analyte is most likely the main reason for failing to enrich the expected target in
plasma. As the community is starting to acknowledge the fact that the performance of antibodies is indeed sample
context and application dependent, certifying which other proteins or off-targets are bound may still allow gener-
ating novel hypotheses given that these are followed-up and thoroughly validated by appropriate targeted analysis.

One example for selective off-target binding in plasma is presented by the antibody HPA004920, raised against
matrix metalloproteinase 1 (MMP1). We classified this antibody as OFF-target in untreated plasma because it
enriched mannose-binding protein C (MBL2; z=28.3; f=12%) as well as MMP3 (z=6.8; f=6%) in the IP
assays (Fig. 3A). As described above for CCL16 and SERPINA4, also here a 53% sequences similarity between
the intended target (MMP1) and the off-target (MMP3) exists (S-Fig. 10B) and an interaction between these
two proteins has been predicted (S-Fig. 10A). The other off-target MBL2 and MMP1 have only a 10% sequence
similarity (S-Fig. 10C). MBL2 is though estimated to be present at 1.7 ug/ml in the blood circulation, hence it is
almost 1000x more abundant than MMP1 ([c] = 1.1 ng/ml) and MMP3 ([c] = 0.5 ng/ml)'%. MBL2 has also been
described to reside in a complex with the MBL-associated serine protease (MASP)*, and its collagen-like domain
may serve as a substrate for MMPs to nest in. Studies on MBL mutations suggest that MMPs may be involved in
physiological regulation of MBL levels®. This could explain the presence of MBL2-MMP3 complexes in plasma.

Conclusion

In summary, this study describes a resource that was built from proteins enriched from plasma and it was applied
for the determination of antibody selectivity in plasma. The antibodies analyzed in this study include IgGs derived
from different species and both polyclonal and monoclonal binders. We have conducted >400 IP assays in plasma
and built a library of proteins with their frequencies of identification in plasma. Constructed on the systematic
analysis of 157 antibodies, we described the occurrence of common proteins, denoted plasma background. This
allowed us to determine the selective capture of endogenous proteins in plasma and their protein interactions via
the z-scores. Some of these antibodies had been was used for exploratory plasma analysis on bead arrays and the
development of immunoassays, where either heat-treated or untreated plasma served as samples.

Our approach, which we also compared with Western blot (Supplementary Section 2.12, S-Table 1), could
serve as a valuable method to narrow down larger numbers of antibodies by determining which antibodies bind
to their endogenous protein of interest. It can also provide information about interference from off-target bind-
ing events as well as possible proteins interactions. The intention behind using z-scores was to apply a measure
for protein enrichment that would identify those proteins that were enriched above the large number of com-
monly detected background contaminants. The background was comprised of mostly abundant proteins that
possibly bound to the antibody-coupled beads mainly due to their high concentration. Proteins often enriched
in heat-treated plasma were C4A, TBC1D10C, MASP1 and PRRT3, while in untreated plasma EFEMP1, FBLNI,
CAPZA2 and TTN were more frequently enriched (S-Fig. 8A,B). We also found that only a few proteins were
commonly enriched when comparing more than 3 antibodies raised towards a common target.

This concept may though not yet fully elucidate (i) if the antibodies bind to proteins as full-length or frag-
ments, (ii) if the antibodies will be functional in pairs in sandwich assays, (iii) how potential protein interactors
and off-targets compete with on-target binding, and (iv) how contaminations from passenger antigens affect the
assay’s selectivity and sensitivity. For antibodies annotated for ON-target and CO-target binding, further inves-
tigations are required to clarify the technical aspects mentioned above and to expand on the biological implica-
tion of protein interactions in plasma. While targeted fit-for-purpose experiments to further assess the protein
complexes should include dose-response-curves using dilutions of plasma, these assays should preferentially be
coupled to quantitative mass spectrometry analysis that rely on a set of peptides identified from the potential
co-targets and/or contaminants. Nevertheless, IP-MS is also an informative approach for the identification of
paired antibodies to study protein complexes in plasma by sandwich assays, where each antibody targets a differ-
ent protein.

The presented study builds one foundation towards a more detailed assessment of the utility of antibodies for
plasma proteomics assays, and may contribute to the development and application of more specific, robust and
reliable immunoassays that can use mass spectrometry or other means of detection’.

Methods

Antibody coupling to magnetic beads. Covalent coupling of antibody to magnetic beads (MagPlex,
Luminex Corp.) was performed as previously described® using Sulfo-N-hydroxysulfosuccinimide and ethyl-car-
bodiimide (both Thermo). Each antibody (1.6 ug) was diluted in MES buffer with 500 000 beads and incubated
for 2h at room temperature, beads were subsequently washed and stored in blocking buffer at 4 °C.

Immunocapture-mass spectrometry. Aliquots of 0.5 ml from each of the plasma pools (Seralab) were
stored in cryogenic vials at —80°C and thawed at 4 °C before use. Catalog and lot numbers are listed in S-Excel
Table sheet “Experimental Batches”. Plasma (100 ul) was diluted 1:10 in assay buffer containing PVA (0.5% w/v),
PVP (0.8% w/v), casein (0.1% w/v, all Sigma-Aldrich) and 10% of rabbit IgG (Bethyl Laboratories, Inc.). Diluted
plasma and antibody-coupled beads were incubated overnight on a rotation shaker at 23 °C. Samples undergoing
heat treatment were incubated for 30 min at 56 °C in water bath, before being combined with beads and incubated
overnight. Using a magnetic bead handler (KingFisher™ Flex Magnetic Particle Processors, Thermo Scientific),
beads were separated from the sample, washed with 0.03% Chaps in PBS and re-suspended in digestion buffer
containing ammonium bicarbonate (50 mM) and sodium deoxycholate (0.25%). Proteins were reduced with DTT
(I1mM) at 56 °C for 30 min, and alkylated by iodoacetamide (4 mM, all Sigma-Aldrich), at RT in the dark for
30 min. Alkylation was quenched adding 1 mM DTT. Proteins were digested using a mixture of Trypsin and
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LysC at 1:25 trypsin-to-protein ratio (Promega, USA) overnight at 37 °C. Enzyme inactivation and sodium deox-
ycholate precipitation was obtained adding 0.005% TFA. Peptides were then separated from beads, dried and
re-suspended in solvent A containing 3% acetonitrile (ACN) and 0.1% formic acid (FA).

LC-MS/MS. MS analysis was performed using a Q-Exactive HF (Thermo) operated in a data dependent mode,
equipped with an Ultimate 3000 RSLC nanosystem, Dionex). Samples were injected into a C18 guard desalting
column (Acclaim pepmap 100, 75um X 2 cm, nanoViper, P/N 164535, Thermo) and then into a 50 cm X 75 pm
ID Easy spray analytical column packed with 2 jum C18 (EASY-Spray C18 P/N ES803, Thermo) for RPLC. Elution
was performed in a linear gradient of Buffer B (90% ACN, 5% DMSO, 0.1% FA) from 3% to 43% in 50 min at 250
nL/min. Buffer A for the chromatography wa: 90% water, 5% ACN, 5% DMSO, 0.1% FA. Buffer B was increased
stepwise to 45% in 5min, then to 99% in 2 min, and then held for 10 min. Full MS scan (300-1600m/z) proceeded
at resolution of 60,000. Precursors were isolated with a width of 2 m/z and listed for exclusion for 60's. The top five
most abundant ions were selected for higher energy collision dissociation (HCD). Single and unassigned charge
states were rejected from precursor selection. In MS/MS, a max ion injection time of 250 ms and AGC target of
1E5 were applied.

Data processing. Shotgun MS data search was performed on MaxQuant (v1.5.3.30)*! using the inte-
grated algorithm MaxLFQ. Spectra were searched against a human protein database from Uniprot (accessed on
03/17/2016, Canonical and Isoforms, 20,198 hits customized adding sequences of immunoglobulins chain C from
rabbit, rat and mouse, LysC (PSEAE) and Trypsin (PIG). Settings allowed for two missing cleavages, methionine
oxidation and N-term acetylation as variable modification and cysteine carbamidomethylation as fixed modifi-
cation. In order to conduct a Label Free Quantification (LFQ) analysis with “delayed normalization”, we applied
the “Fast LFQ” and “match between runs” functions of MaxQuant and set parameters to three minimum number
of neighbors, and six average number of neighbors. Raw data produced to assess experimental conditions were
analyzed using MaxQuant but excluding the function for LFQ.

The total data set was built on 465 unique data files including those from replicated injections. These repli-
cated injections were performed for some IPs if the instrument did not perform optimally. When two technical
replicates were available for the same IP, we excluded the replicate with the lower median LFQ intensity (data not
shown). We included 414 IPs representing independent incubations of the 153 antibodies and control antibodies
performed in independent incubations with EDTA plasma (biological replicates). The number of replicates per
antibody is indicated S-Excel Tables.

No technical replicate (= replicated injections) were included for data analysis. Due to reasons related to
costs, sample and reagent consumption, it was not possible to conduct the same number of replicates for all the
antibodies and controls. A minimum number of two incubations were performed for each antibody. The different
numbers of replicates reflect a limitation when validating those antibodies from which only low quantities are
available. All raw files from the 414 unique IPs including replicate IPs for 153 antibodies plus negative controls
and bare bead (S-Excel Tables, sheet “products and lot numbers”) were analyzed in a single MaxQuant session.

From a first data matrix of 1518 protein identifiers for 414 IPs, we excluded proteins from the analysis that we
considered as contaminants: (i) proteins belonging to the list of contaminants in MaxQuant that do not belong
to Homo sapiens, (ii) Ig gamma chain C region from Oryctolagus cuniculus (Rabbit) because we purposely
add rabbit IgG to the assay buffer in order to reduce binding to rabbit IgG on the beads, as well as (iii) human
Immunoglobulin variable chains. The final data matrix considered missing values as missing not at random
(MNAR)* but missing because of concentrations below the limit of detection (LOD). We therefore used min =0
as minimum detected intensity (Single-value imputation approach). Consequently, LFQ =0 were substituted to
LFQ =1 to allow for log10-transformation of the data. A data matrix with 1313 proteins related to 414 IPs were
then used for further analysis.

Data analysis. Using the processed data, we calculated the z-scores. First, we divided the data frame of 1313
proteins and 414 IPs into two parts containing 276 IPs with heat treated plasma and 138 IPs performed with
untreated plasma. Using this data, we determined the frequency of identification ( f) for each protein by dividing
the number of times a protein was detected (LFQ > 0) in the total number of IPs.

For each protein present in either of the two data sets, we then calculated an average LFQ intensity (up) and
determined the standard deviation of these LFQ intensities (sp), hence using all of the either 276 or 138 IPs. For
each protein identified in the two data sets, we calculated the z-score according to the following formula:

zx in Abl = (LFQintx — up)/sp

where zx is the z-score for a protein x identified in each of the IPs performed for one of the 153 antibodies ana-
lyzed (Ab1), and LFQint the intensity of a detected protein. If biological replicates of IPs for specific antibodies
were available, we merged the data into one by calculating the average of LFQint of these replicates and we only
considered proteins identified in all replicates and disregarded all others.

This means that each protein will receive an antibody-related z-score. Proteins were considered enriched by
an antibody when associated to a z-score > 3. To visualize the enriched proteins for each antibody, z-scores and
LFQint values were plotted as x and y axes and proteins found above the set threshold were annotated accordingly
(Fig. 3 and S-Fig. 2B).

Data analysis and representation was performed with R*>. Data analysis summary is represented in S-Fig. 11.
Alignments were performed using the Clustal Omega program available at EMBL-EBI*%. GO enrichment system
was performed using the PANTHER Classification System (http://pantherdb.org/). Comparison of GO terms was
conducted using ToppCluster (https://toppcluster.cchmc.org/), regarding Bonferroni corrected p-values < 0.01 as
significant.
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Sandwich immunoassay. The capture antibodies towards IGFBP2, IGF1, IGF2, DERA, BCHE, and
rabbit-Immunoglobulin G (rIgG) and mouse-IgG, as negative controls (S-Excel Table, sheet: “Reagents Lot num-
bers”), were covalently coupled to color-coded magnetic beads and analyzed in Luminex Platform as previously
described®, using on-bead labeling for the detection antibodies*. The antibodies were tested in different combi-
nation of capture and detection pairs (S-Excel Table).

EDTA plasma was thawed on ice and centrifuged for 1 min at 2000 rpm and diluted from 1:20 following 4-fold
dilutions in PVX casein (PVXC) buffer 10% rabbit IgG. The dilution series consisted of 6 points in duplicate and
plasma was either heat-treated at 56 °C for 30 min or left on ice for 30 min. The plasma was subsequently incu-
bated with the antibody-coupled beads overnight.

The recombinant proteins IGFBP2 and IGF1 were produced as full-length version in CHO cells*’ and were a
kind gift from Hanna Tegel and Johan Rockberg (AlbaNova University Center, KTH). IGF-II (R&D systems, cat-
alog # 292-G2-050, lot DS2416011) and BCHE (DuoSet kit R&D systems, Catalog # DY6137-05, lot # 1387842)
were commercially available. IGFBP2 and IGF2 were diluted in buffer from 500 ng/mL following 3-fold dilutions,
IGF1 from 12000 pg/mL following 3-fold dilutions and BCHE 10000 pg/mL following 2-fold dilutions. The detec-
tion antibodies were applied at 1 ug/mL for HPA antibodies or 25ng/mL anti-BCHE (R&D systems) for 90 min.
Streptavidin-R-phycoerythrin (R-PE) conjugate (Life Technologies; SA10044) was used for the fluorescence read
out in FlexMap3D (Luminex Corp.).
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