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We regularly interact with moving objects in our
environment. Yet, little is known about how we
extrapolate the future movements of visually perceived
objects. One possibility is that movements are
experienced by a mental visual simulation, allowing one
to internally picture an object’s upcoming motion
trajectory, even as the object itself remains stationary.
Here we examined this possibility by asking human
participants to make judgments about the future
position of a falling ball on an obstacle-filled display. We
found that properties of the ball’s trajectory were highly
predictive of subjects’ reaction times and accuracy on
the task. We also found that the eye movements
subjects made while attempting to ascertain where the
ball might fall had significant spatiotemporal overlap
with those made while actually perceiving the ball fall.
These findings suggest that subjects simulated the ball’s
trajectory to inform their responses. Finally, we trained a
convolutional neural network to see whether this
problem could be solved by simple image analysis as
opposed to the more intricate simulation strategy we
propose. We found that while the network was able to
solve our task, the model’s output did not effectively or
consistently predict human behavior. This implies that
subjects employed a different strategy for solving our
task, and bolsters the conclusion that they were
engaging in visual simulation. The current study thus
provides support for visual simulation of motion as a
means of understanding complex visual scenes and
paves the way for future investigations of this
phenomenon at a neural level.

Introduction

We live in a dynamic world that contains an
abundance of moving stimuli. To navigate this world,

we must interact with these stimuli on a daily basis, and
indeed we are able to do so with remarkable
sophistication. From reactions to objects already in
motion (for example, reaching to catch a football) to
acting upon stationary objects to place them in motion
(for example, deciding how to roll a bowling ball), we
are continuously and often effortlessly carrying out
computations of motion. This is especially noteworthy
given the extended temporal window inherent to
movement. One might then conclude that our ability to
interact with moving objects relies crucially upon
predictions of what might happen in the future. In spite
of how fundamental this ability is to our daily
functioning, relatively little is known about how we
prospect upon the movements of visually perceived
objects. One possible strategy for how one might
predict future movement is by internally picturing the
likely upcoming trajectory of an object in a visual
scene, a faculty we refer to from here on as ‘‘visual
simulation.’’

From a theoretical standpoint, one might conceive of
visual simulation as being similar to mental imagery, a
subject which has a rich history in the field of cognitive
neuroscience. As the name suggests, mental imagery
refers to our ability to internally envision a known
object, even when it is not actually visible to us
(Kosslyn, Ganis, & Thompson, 2001). This ability has a
tangible biological basis, as numerous studies from the
past few decades have shown that early visual areas
(such as the primary visual cortex, V1) are active not
only when human subjects see visual stimuli, but also
when they merely attempt to visualize or imagine these
same stimuli with their eyes closed (Kosslyn et al., 2007;
Kosslyn, Thompson, Kim, & Alpert, 1995; Kosslyn,
Thompson, & Alpert, 1997). Notably, the precise
regions of activity across both these conditions (i.e.,
perception and imagery) overlap in a retinotopically
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congruent fashion, suggesting that our ability to
imagine things has at least some sensory basis. The use
of targeted transcranial magnetic stimulation (TMS)
over occipital cortex has also been shown to induce
deficits in mental imagery, which has further corrob-
orated this idea (Kosslyn et al., 1999). However, most
work on mental imagery has relied on the use of
relatively static stimuli. A key difference between
mental imagery and visual simulation, then, is the
essential incorporation of both space and time into
internal constructions of the outside world—mental
imagery entails generating an internal representation of
a static object, whereas visual simulation extends this
same idea to dynamic events.

A few previous studies have explored motion
imagery and have found that when subjects are shown a
moving stimulus and then asked to imagine the same
stimulus shortly thereafter, cortical area MT, which is
specialized for the perception and processing of motion
(Born & Bradley, 2005), is indeed activated (Goebel,
Khorram-Sefat, Muckli, Hacker, & Singer, 1998;
Emmerling, Zimmerman, Sorger, Frost, & Goebel,
2016). However, given the relatively few studies that
have attempted to directly address the question of
motion imagery, important questions remain unre-
solved. For one, both of the previous studies used
relatively simple stimuli, as the entire motion trajectory
consisted of target displacement in a single, constant
direction. As such, whereas the existence of motion
imagery and the recruitment of area MT has received
some support, how flexible or dynamic it is, and
whether it bears specificity is not known. An attempt to
decode the imagined motion direction based on fMRI
activity in area MT produced surprisingly mixed
results, with only two out of fifteen subjects actually
exhibiting differentiable activation in an MT ROI
(Emmerling et al., 2016). Other work has attempted to
explore the question through behavioral demonstra-
tions of the functional consequences of motion imagery
(Winawer, Huk, & Boroditsky, 2010; S. Chang &
Pearson, 2018). These studies, however, have reached
conflicting conclusions, highlighting the need for
additional research. It is worth nothing that all of the
previous experiments on motion imagery have directed
subjects to imagine motion trajectories that were
directly cued earlier in the trial (Goebel et al., 1998;
Emmerling et al., 2016; S. Chang & Pearson, 2018;
Winawer et al., 2010). This raises the possibility that
the observed neural correlates may reflect short-term
memory retrieval, which is known to reactivate sensory
areas involved in motion processing such as MT
(Barsalou, 2008; Bisley, Zaksas, Droll, & Pasternak,
2004; Pasternak & Greenlee, 2005). One study did
attempt to address this issue by having subjects engage
in motion imagery on the basis of predetermined but
random rules that dictated how certain exemplars on

screen were permitted to move (Kaas, Weigelt,
Roebroeck, Kohler, & Muckli, 2010). This study
reported that engagement of area MT during this type
of motion imagery was surprisingly left lateralized and
only observed in half of the recruited subjects (six out
of twelve). The reported intersubject variability thus
makes it challenging to draw general conclusions.
Finally, a number of the aforementioned studies have
required subjects to maintain fixation for the entirety of
the task (Goebel et al., 1998; Kaas et al., 2010). While
this constraint removes confounds directly attributable
to oculomotor dynamics, it remains to be seen if and
how naturally occurring eye movements interact with
imagined movements of objects.

A number of past studies have examined oculomotor
dynamics during tasks requiring predictions of motion
and future position. For instance, when visually
pursuing moving objects, humans are able to make
anticipatory eye movements that precede the motion of
the pursuit target (Kowler & Steinman, 1979a, 1979b,
1981). Such anticipatory pursuit can be directed either
by learning-driven expectation of the target’s future
motion (Kao & Morrow, 1994), or by symbolic cues in
the environment (Kowler, 1989). This suggests that the
oculomotor system is able to successfully predict how
an object will continue to move in the future and use
this information to guide an appropriate motor output.
The same has also been shown to be true for saccadic
eye movements. When subjects are directed to saccade
to a target whose onset is impending but predictable,
they initiate their saccades prior to the actual target
onset time, thus arriving at the target location with
little to no delay (Dallos & Jones, 1963; Stark, Vossius,
& Young, 1962). This too demonstrates the oculomotor
system’s ability to predict and accommodate future
events. While such past studies have been illuminating,
they also remain subject to certain constraints that limit
their generality. First, the stimuli in the aforementioned
studies have either been in motion at the time of
presentation, or have been presented with a predictable
periodicity. In such conditions, the observer has access
to informative sensory input that can be used to entrain
or initiate predictions of future target position.
Whether or not such predictive eye movements might
occur with completely static stimuli that lack any
motion remains unknown. Further, the anticipatory
eye movements reported in these studies have only been
shown to ‘‘look’’ a few hundred milliseconds into the
future. While this makes sense given the tasks
employed, it is unclear whether or not such prospection
might extend across a longer temporal window. Visual
simulation, as we propose here, incorporates both of
these elements (i.e., implementation in the absence of
any directed motion cues and prolonged predictions of
future movements and events), thus distinguishing our
approach from simpler A to B predictions of motion or

Journal of Vision (2019) 19(6):13, 1–17 Ahuja & Sheinberg 2



future position previously explored in studies on
motion imagery and anticipatory eye movements.

Finally, some evidence for our ability to simulate
rich and complex motion comes from research on the
motor system. For instance, one study showed that a
subset of neurons in the macaque premotor cortex
(area F5) fired not only when monkeys executed a hand
movement, but also when they were made aware of an
experimenter executing the same hand movement
behind an occluder (Umiltà et al., 2001). The pattern of
activity for these neurons in the two conditions was
remarkably similar, suggesting that the monkeys were
able to extrapolate and simulate a motor plan for a
movement that was both extrinsic and not visible to
them. A similar study with human participants showed
that a readiness potential measured using EEG over the
premotor cortex was observed not only when subjects
moved their own hand, but also when they observed a
video of a moving hand (Kilner, Vargas, Duval,
Blakemore, & Sirigu, 2004). Moreover, the onset of this
readiness potential actually preceded the hand move-
ment in the video, suggesting that subjects were able to
predict the impending motion. This ability has been
termed action simulation (Springer, de Hamilton, &
Cross, 2012; Springer, Parkinson, & Prinz, 2013). The
fact that humans and monkeys are capable of action
simulation suggests both species do engage in tempo-
rally extended internal constructions of the external
world. Importantly, however, research on action
simulation has focused largely on the movements of
animate actors, and findings of neural correlates have
been limited to early motor areas (Kilner et al., 2004;
Umiltà et al., 2001; Flanagan & Johansson, 2003;
Doerrfeld, Sebanz, & Shiffrar, 2012). Given all that we
know about simulation in the motor system, the
possible existence of similar, specific and dynamic
forms of motion prediction via imagined simulation in
the field of vision could be incredibly useful in the
improvement of brain-computer interfaces (Banca,
Sousa, Duarte, & Castelo-Branco, 2015).

In the present study, we sought to determine whether
human subjects might engage in visual simulations of
inanimate objects as they take on complicated trajec-
tories of motion spanning one’s visual field. We were
especially keen on ensuring that all possible attempts at
motion imagery and prediction were entirely self-
derived, complex, unrestrained, and situated within a
naturalistic context. To probe this question, we
designed a novel task in which subjects had to make
predictions about the future path of a moving ball. As
human subjects performed this task, we made behav-
ioral and oculomotor observations. We found that
properties of the ball’s future motion were good
predictors of subjects’ behavior, as might be expected if
subjects were engaging in a simulation of its motion.
We also compared subjects’ predictive saccades on a

static stimulus to their pursuit of the moving ball.
Through this comparison, we found that the eye
movements they made while trying to determine the
ball’s trajectory were remarkably similar to those made
while observing the ball execute that same trajectory.
We point to these data as likely correlates of visual
simulation.

Methods

Participants

Sixteen individuals (seven male, nine female) partic-
ipated in this study. Participants were compensated a
base amount for their time, with additional compen-
sation provided for correct responses on trials. Signed
consent was received from all participants. The study
was approved by the Brown University IRB.

Task

Each trial began with the presentation of a fixation
spot at the center of a blank screen. This was followed
by the presentation of a static image (referred to from
here on out as a ‘‘board’’), which comprised one ball at
the top, ten semirandomly arranged planks throughout
the middle, and two ‘‘catchers’’ at the bottom. The ball
and the catchers always appeared in the same position
on each board (centered, and just to the left and right
of the center, respectively). Figure 1A depicts an
example of one such board used in this study (for more
information on the pseudorandom board generation
procedure, see Supplementary File S1). Upon presen-
tation of this board, participants were asked to judge
which of the two catchers the ball would land in, if it
were to be dropped from its central position. This
required participants to make assessments about how
the ball would move as it traversed the field of planks
that lay between the ball and the catchers. The physics
of our virtual world were determined using Newton
Dynamics (http://newtondynamics.com), a ‘‘cross-
platform life-like physics simulation library.’’ Partici-
pants were given no explicit instructions on how to
approach this problem, but were told to take as much
time as necessary to solve the problem correctly.

Responses were indicated by pressing one of two
buttons, each corresponding to one of the two catchers
on the screen. Once a response was made, the ball was
then dropped, providing participants with visual
feedback about their choice. Subjects were instructed to
visually pursue the ball as it fell, until it landed in the
appropriate catcher. After the ball landed in the
catcher, a tone indicated whether the subject had made
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the correct choice, and the next trial was then initiated
with the presentation of the fixation spot. A schematic
depicting the progression of a single trial is shown in
Figure 1B.

At the start of each session, participants were
allowed to practice for as many trials as they desired
(generally 10–20) in order to learn the physics of the
virtual world being presented, as well as to generally
gain familiarity with the progression of a trial. Once
subjects reported feeling comfortable in their under-
standing of the paradigm, we initiated the actual
experiment. Each subject was shown 200 unique boards
for this experiment. We reused the exact same set of 200
boards (shown in Supplementary Movie S1) for every
subject, allowing us to compute board specific metrics
averaged across subjects. The proportion of boards on
which the ball fell into the left or the right catcher was
matched (i.e., 0.5 for each). We also counterbalanced
the number of planks the ball interacted with on its
trajectory. Specifically, the ball could hit anywhere
from one to five planks, resulting in 40 boards per
category (40 3 5¼ 200). On approximately 2/3 of the
boards, the direction of the first change in the ball’s
trajectory was congruent with the final catcher (i.e., if
the initial ball deflection from the midline was towards
the left, the answer would be left and vice versa). On
these boards, the ball did not cross the midline. On the
remaining 1/3, the initial ball deflection was in the
opposite direction to the final catcher. On these boards,
the ball did cross the midline. Subjects were given a
short break halfway through the experiment in order to
prevent fatigue. Each session lasted approximately one
hour, including both practice and actual trials.

Eye tracking

We used an Eyelink-1000 camera (SR Research) to
track participants’ eye movements for the entirety of

the session. Eye position was sampled at 1 kHz and
stored to disk at 200 Hz.

Behavioral analyses

As indicated above, each subject saw exactly the
same set of 200 boards. We thus were able to average
all sixteen subjects’ behavioral data for each board in
order to generate a single, high confidence measure of
reaction time and accuracy per board. Before doing
this, however, we first normalized our data, accounting
for the between-subject variability in raw reaction times
by transforming each subject’s range of reaction times
to a 0–100 scale (for more information, see Supple-
mentary File S1). We then averaged these normalized
reaction time values in a board-wise fashion. To
investigate the question of visual simulation, we asked
two key questions for every board: (a) How long of a
simulation would be required to mentally recreate the
ball’s full trajectory for the board? And (b) How much
uncertainty would be involved in simulating this
trajectory?

To address the first question, we used the number of
planks hit by the ball on any trial as a metric for
simulation length. This is because as the number of
planks hit increases, the total length of the trajectory
the ball must travel before arriving at its final
destination also increases. Furthermore, each plank hit
represents a discrete event that must be factored into
the simulation, and thus is likely to contribute to the
total length of the simulation process. An example of
the relationship between simulation length and the
number of planks hit by the ball is shown in Figure 2A.
Since we did not place any time constraints on our
subjects, we hypothesized that if subjects were engaging
in visual simulation, then increasing simulation length
would lead to an increase in reaction time, but would
have no effect on accuracy.

Figure 1. (A) An example the stimuli used. Subjects were shown a static display and asked to judge which catcher the ball would land

in, were it to be dropped. (B) An outline of one complete trial.
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To address the question of simulation uncertainty,
we attempted to characterize the number of realistic
alternative trajectories one might consider while
simulating the ball’s path for a particular board. This
was based on the assumption that as the number of
possible alternatives increased, so would uncertainty.
We modeled this uncertainty by introducing some
positional jitter to the planks on a given board, and
then recalculating the path of the ball on the jittered
configuration using our physics engine. This process
was carried out offline. Examples of this are shown in
Figures 2B and 2C. For some boards (Figure 2B), slight
jitter of the planks caused major deviations to the ball’s
calculated path (relative to the path in the original
plank configuration). On others (Figure 2C), jitter had
only a minor effect on the trajectory—the ball generally
ended up in the same place. We thus used this property
of our boards to compute a metric for simulation
uncertainty. Specifically, we jittered and recalculated
the ball’s path for each board 500 times, and then used
the proportion of jittered configurations leading to a
different outcome (relative to the original configura-
tion) as a metric of simulation uncertainty (for a
demonstration of this process, please see Supplemen-
tary Movie S2). Boards on which the outcome was
rarely altered by plank jitter were classified as being
low-uncertainty boards. Conversely, boards on which
the outcome was frequently altered by plank jitter were
classified as high-uncertainty boards. After assigning
each board an uncertainty score, we finally transformed
this metric to a 0–100 scale to match our reaction time
data. We hypothesized that if subjects were engaging in
visual simulation, then they would exhibit higher

Figure 2. (A) Examples of boards where the ball hit one, three,

or five planks (ordered from left to right). The number of planks

hit served as an indicator of simulation length, since it dictated

both the length of the ball’s trajectory, as well as the number of

discrete events contained within it. (B) An example of a board

where introducing some jitter to the position of the planks had

a significant impact on the calculated outcome of the ball’s

trajectory. Boards like this were assigned high uncertainty

scores. (C) An example of a board where this same jitter never

changed the calculated outcome of the ball’s trajectory. Boards

like this were assigned low uncertainty scores. A demonstration

�

 
of our jitter/uncertainty assignment method can be found in

Supplementary Movie S1. (D) A schematic depicting our

method for determining spatial overlap. A pre-response saccade

trace (left) was overlaid with a post-response smooth pursuit

trace (middle), and the intersection of the two was divided by

the union (right). This allowed us to assess the degree of spatial

similarity between saccades made while determining the ball’s

final location, and pursuit of the falling ball. (E) As a control, we

repeated this same analysis with randomly shuffled, unrelated

sets of eye movements to determine a chance level of spatial

overlap. (F) A schematic depicting our method for determining

temporal overlap. We used edit distance to calculate the

sequence similarity between the ordered list of planks hit by

the ball and the ordered list of planks looked at by the subjects.

(G) As a control, we randomly shuffled the order of the

saccades (as indicated by the dotted arrows) to generate a new

plank viewing sequence that had no cohesive temporal

progression. We then repeated the edit distance calculation

with this string to determine a chance level of temporal

overlap.
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reaction times and lower accuracy on high-uncertainty
boards relative to low-uncertainty boards.

Oculomotor analyses

In keeping with the paradigm established by past
studies on mental imagery (Kosslyn et al., 1995;
Kosslyn et al., 1997; Klein et al., 2004; Kosslyn et al.,
1999), we compared subjects’ pre-response eye move-
ments (i.e., saccades made while viewing the static
image of the board) to their post-response eye
movements (i.e., smooth pursuit of the ball falling). The
basic idea behind this was simply that if the eye
movements made while attempting to ascertain the
ball’s final position showed significant overlap with the
eye movements made while perceiving the ball’s actual
falling trajectory, then one might conclude that subjects
visually simulated this movement path in order to solve
the task. Note that the eye movements in the pre-
response period occur during the static presentation of
the board whereas the post-response eye movements
occur while the ball smoothly falls toward the catcher.
From an oculomotor perspective these are very
different, because only saccades will be present in the
former, whereas a mixture of pursuit and saccades are
likely to occur in the latter. As saccadic and smooth
pursuit eye movements have inherently distinct kine-
matic characteristics (saccades are ballistic and punc-
tuated, whereas smooth pursuit movements are
continuous and dependent on the motion attributes of
the target), we were unable to rely on traditional
measures of oculomotor features such as timing,
position, and velocity for our desired comparison. We
thus devised two new means of quantifying overlap
between pre and post-response eye movements, which
were broken down into distinct spatial and temporal
domains.

We quantified spatial overlap by overlaying the eye
movement traces from the pre-response (hypothesized
simulation) and post-response (perception) epochs on
top of one another, and then determining the ratio of
the intersection and the union of their areas. An
example demonstrating this analysis is shown in Figure
2D. We refer to the resulting metric of spatial overlap
as simply the intersection, for short. We carried this
process out for each trial, and then averaged the
resulting intersection values in a subject-wise fashion.
This yielded a mean intersection value for each subject.
It is important to note that our stimuli do have an
inherent directionality to them (top to bottom, left to
right, depending on the final position of the ball), which
is likely to result in some incidental spatial overlap even
for eye movement traces that are entirely unrelated to
one another. This is shown in Figure 2E, where we have
overlaid two eye movement traces coming from

completely separate trials. We were able to capitalize
on this form of incidental spatial overlap to quantify a
chance intersection level. We did this by simply
randomly shuffling the post-response eye movements
across trials and redoing the aforementioned intersec-
tion analysis on mismatched pairs of traces. In order to
ensure that this method of determining chance was
sufficiently stringent, we only shuffled traces amongst
trials that were matched both in the ball’s final position
(left vs. right), as well as the number of planks hit by
the ball (1–5). We implemented this shuffling protocol
for every subject 20 times, and averaged the resulting
incidental intersection values on each trial for each
iteration. Subsequently, we ended up with a distribu-
tion of 20 chance intersection values per subject. We
could then compare this distribution to the actual,
observed intersection level. We hypothesized that if
subjects were engaging in visual simulation, then the
degree of spatial overlap between pre-response and
post-response eye movements would be greater than
that of chance.

To incorporate a temporal dimension in our
analysis, we compared pre-response eye movements to
the actual trajectory of the ball using a measure known
as edit distance. Edit distance indicates the degree of
similarity between two alphanumeric strings, with a
lower edit distance value reflecting greater similarity
(for more details on edit distance, see Supplementary
File S1). Thus, if it were possible to discretize subjects’
pre-response eye movements into an ordered sequence
of numbers, one could use edit distance to compare this
to a second string of numbers that reflected the ball’s
progression in time. An edit distance calculation is
particularly well suited for this type of comparison
because of it is highly sensitive to order—comparing
two strings that contain the same digits in unrelated
sequences will result in a high edit distance value,
indicating a low degree of similarity. In this context, we
used subjects’ pre-response eye movements to deter-
mine which planks they looked at on the screen, and in
what order they did so—this comprised the first string.
The ordered list of planks that the ball hit on its
trajectory comprised the second string. We then used
edit distance to compute the degree of similarity
between these two ordered lists on every single trial.
This allowed us to probe whether participants were
looking at the same planks that the ball was bound to
hit, and more importantly, whether the temporal
progression of viewing these planks reflected the order
in which the ball hit them. This process was carried out
for every trial, and the resulting edit distance scores
were averaged across trials for each subject. A
schematic depicting this procedure is shown in Figure
2F. Since we were primarily concerned with the
temporal order of eye movements, we defined chance
for every trial by randomly reordering the same eye
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movement/plank assignment strings, and then recalcu-
lating the edit distance (Figure 2G). This provided a
benchmark for the degree of temporal similarity to the
ball’s path that one might expect even if the eye
movements were made in no specific order. This
process was repeated 20 times for every trial and the
resulting chance edit distance values were averaged in a
subject-wise fashion. We thus ended up with a
distribution of 20 chance edit distance values per
subject. We could then compare this distribution to the
actual, observed edit distance value. We hypothesized
that if subjects were engaging in visual simulation, then
the degree of temporal overlap between pre-response
and post-response eye movements would be greater
than that of chance.

Finally, we reanalyzed our metrics of spatial and
temporal overlap, broken down by whether subjects
correctly or incorrectly judged the trial outcome. We
expected that if subjects were employing visual
simulation to solve this task, then incorrect decisions
might be the result of simulating an incorrect path for
the ball. We thus hypothesized that the degree of both
spatial and temporal similarity between pre-response
and post-response eye movements would be lower on
incorrect trials relative to correct trials.

Computational analyses

We wondered whether there might be a realistic,
nonsimulation based strategy that one could use to
solve the present task. An example of such a strategy
might involve simply scanning the display to gain a
general sense of the overall position and tilt of the
intervening planks, and using this heuristic to guide
one’s answer. In this scenario, one would not have to
simulate a moving ball in order to get to the answer,
but could instead glean all the information needed via
statistical learning of informative, nonsimulation re-
lated features of the display. This could subsequently
be used to ascertain the appropriate classification via a
direct stimulus-response mapping. To see whether such
a strategy might indeed be possible, we used a
Convolutional Neural Network (CNN). CNNs share
numerous organizational motifs with the human visual
system, and are known for their exceptional ability to
classify images into prelearned categories based purely
on salient visual patterns (Fukushima, 1980; LeCun et
al., 2008; Ciresan, Meier, & Schmidhuber, 2012). They
do this by applying a series of transformations to
groups of pixels in an image. In most cases, the end
result of these transformations allows the network to
ascertain relevant features, and subsequently make the
correct classification (Rawat & Wang, 2017). In spite of
how successful CNNs often are, subtle manipulations
of image properties have also been known to grossly

throw off a network’s ability to make correct predic-
tions (Szegedy et al., 2013; Nguyen, Yosinski, & Clune,
2014). Human observers, on the other hand, are not
affected by these same manipulations, likely owing to
various top-down influences (Szegedy et al., 2013). For
this reason, it is believed that CNNs are not modeling
any real cognitive process, and that they rely purely on
the visual elements in a scene. Further, while it is
possible to teach a CNN to predict physical dynamics,
doing so requires the network to be trained with
explicit physical information as opposed to simple
images (M. Chang, Ullman, Torralba, & Tenenbaum,
2016; Ehrhardt, Monszpart, Vedaldi, & Mitra, 2017).
Given all this, we felt that a CNN could serve as a
useful and appropriate tool for emulating an alternate,
nonsimulation based strategy like the one described
above. For more details on the CNN we employed
(including the exact model architecture), please see
Supplementary File S1.

We trained the CNN by providing it with images of
75,000 sample boards generated using the same
procedure we used to create the 200 boards used in the
actual task. For each board image, we assigned the
correct response based on the physical simulation.
From these training data, the network generated a
model, which we then evaluated using the same set of
200 boards that had been shown to our human subjects.
Strikingly, we found that the CNN’s model was able to
predict the correct answer for the 200 board set with
84% accuracy. This falls comfortably within the range
of accuracy values we observed with our human
subjects (as shown in Figure 5A). Thus having
confirmed that an alternate strategy did in fact exist, we
wanted to see if this strategy too might predict our
subjects’ behavioral data. Our model provided its
prediction output in the form of two probabilities,
indicating the likelihood that the answer was either left,
P(L), or right, P(R). Since there were only two possible
options, the sum of these probabilities was always 1.
We were able to use these probabilities to devise a new
way of assigning an uncertainty score to each board,
within the context of this particular strategy. We
determined this alternate uncertainty score with the
following formula: Uncertainty¼ 1 � jP(L) – P(R)j.
Thus, a board for which the model predicted a P(L)

value of 0.99 and P(R) value of 0.01 would be classified
as being low uncertainty. On the other hand, a board
for which the model predicted a P(L) value of 0.51 and a
P(R) value of 0.49 would be classified as being high
uncertainty. Here again, we transformed our uncer-
tainty scores to a 0–100 scale. We then analyzed
whether this new, image-analysis based method of
assigning board uncertainty was predictive of reaction
time and accuracy, and if so, how it compared to the
simulation-based method of assigning uncertainty
described above.
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Results

Behavioral evidence of visual simulation

To assess whether subjects were employing visual
simulation in this task, we classified each board based
on the potential length of and uncertainty associated
with the simulation that would have to be carried out
on that board. We then compared these board
characteristics to average normalized figures of reaction
time and accuracy. Figure 3A depicts the effect of
simulation length on these behavioral parameters.
Using a simple linear regression, we found that
simulation length predicted reaction time on this task,
F(1, 198)¼ 44.39, p , 0.001, R2 ¼ 0.1831. This is
congruent with our hypothesis, and is compatible with
the idea that subjects were indeed carrying out visual
simulations. To ensure that this effect was not being
driven primarily by a small subset of subjects (note that
the previous regression was carried out using the mean
reaction times of all of our subjects), we repeated this
same analysis on a subject-by-subject basis. We found
that simulation length was a significant predictor of
reaction time for each individual subject. The distri-
bution of the slopes for the 16 individual regressions is

shown in Figure 3C. A single sample t test revealed that
the mean of this distribution was significantly greater
than zero, t(15)¼ 15.28, p , 0.001. We also noted that
accuracy on this task was not significantly predicted by
simulation length, F(1, 198) ¼ 2.406, p¼ 0.122, R2 ¼
0.012. This too is unsurprising, since subjects’ overall
accuracy was very high. Further, as we did not impose
any time constraints on our subjects, the effect of the
speed-accuracy trade-off was largely reflected in the
reaction time, with no notable effect on accuracy.
Figure 3B depicts the effect of simulation uncertainty
on reaction time and accuracy. Here we note that as
simulation uncertainty increased, so did reaction time
F(1, 198) ¼ 240.5, p , 0.001, R2 ¼ 0.5485). As before,
we repeated this same analysis on a subject-by-subject
basis. We found that simulation uncertainty was a
significant predictor of reaction time for each individ-
ual subject. The distribution of the slopes for the 16
individual regressions is shown in Figure 3D. A single
sample t test revealed that the mean of this distribution
was significantly greater than zero, t(15)¼ 24.258, p ,
0.001. Finally, an increase in simulation uncertainty
predicted a decrease in accuracy, F(1, 198)¼ 44.46, p ,
0.001, R2¼ 0.1834. These findings too are consistent
with our hypotheses.

Because simulation length was not a clear predictor of
accuracy on this task while simulation uncertainty was,

Figure 3. (A) Across subjects average normalized reaction time and accuracy as a function of the simulation length value assigned to

every board. Each black point represents one board from the set of 200 boards that was shown to all subjects. The gray shaded

regions represent the 1st–3rd quartile of each distribution. (B) Across subjects average normalized reaction time and accuracy as a

function of the simulation-based uncertainty value assigned to every board. In both (A) and (B), the solid line represents the slope of

the linear regression, and the dotted lines represent the 95% confidence interval (CI) for the slope of the regression line. The red bars

in the accuracy sections of both graphs represent the standard error of the across-subject means for the boards falling in each

category/bin. (C) A histogram showing the slopes of the regression in (A) when carried out with each individual subject’s data instead

of sample wide averages. (D) A histogram showing the slopes of the regression in (B) when carried out with each individual subject’s

data instead of sample wide averages.
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we were interested in a possible interaction between the
two measures that might have been missed in the linear
regression models. We thus implemented a multiple
regression model of simulation length, uncertainty, and
their interaction onto subjects’ accuracy. We found that
while simulation uncertainty was a significant predictor
of accuracy (b¼�0.0050111, p , 0.001), this was not the
case for length (b ¼ 0.0027728, p , 0.889), or the
interaction term (b¼ 0.0004302, p , 0.224). The results
of this multiple regression model confirm that simulation
length and uncertainty do indeed have differential effects
on task accuracy. In summary, we found that mean
reaction time and accuracy across subjects on this task
could successfully be predicted by metrics describing the
ball’s trajectory. Our data thus support the idea that
subjects were carrying out visual simulations as a
strategy for solving this task.

Oculomotor evidence of visual simulation

Our oculomotor analyses were based on the hy-
pothesis that if subjects were carrying out visual
simulations, then their eye movements in the pre-
response period (when attempting to ascertain the final
position of the ball) ought to bear a high degree of
similarity to their eye movements in the post-response
period (when actually perceiving and pursuing the
falling ball). We split this comparison into two distinct
dimensions—spatial and temporal. Figure 4A depicts
the percentage of observed spatial overlap between pre
and post-response eye movements relative to a chance
distribution of values, broken down in a subject-wise
manner (for details on how each subject’s chance
distribution was generated, see ‘‘Oculomotor analyses’’
section of Methods). As is clear from this figure, the
majority of subjects showed a far greater degree of
spatial overlap between pre- and post-response eye
movements than would be expected by chance. This
result indicates that eye movements made while
prospecting upon the ball’s movement greatly resem-
bled those made while perceiving the ball’s movement
and suggests that subjects were actively simulating the
ball’s future path in the pre-response period. Figure 4B
replots this same data, but with the boxplots in Figure
4A averaged to a single chance value (represented by
the black points) for each subject. A paired samples t
test of the means of the intersection in the actual and
shuffled conditions revealed a significant difference
between the two, t(15) ¼ 6.6626, p , 0.001.

Figure 4C depicts the degree of similarity in the
temporal progression of pre-response eye movements
and the ball’s trajectory relative to chance, broken
down in a subject-wise manner (for details on how each
subject’s chance distribution was generated, see ‘‘Ocu-
lomotor analyses,’’ above). Recall that for the edit

distance metric used here, a lower value indicates
greater similarity. We found that almost all subjects
showed a significantly greater degree of temporal
overlap than would be expected by chance. This is
congruent with our analyses of spatial overlap, and
provides further evidence suggesting that subjects were
likely carrying out visual simulations. Figure 4D shows
this same data, but with the boxplots in Figure 4C
averaged to a single chance value (represented by the
black points) for each subject. A paired t test of the
means of the edit distance in the actual and shuffled
conditions revealed a significant difference between the
two, t(15)¼�7.7454, p , 0.001.

Figure 4E and 4F show the same metrics of spatial
and temporal similarity, but with trials sorted by
correct or incorrect responses. We found that both
spatial, t(15)¼ 2.1525, p , 0.05, and temporal, t(15)¼
�3.7013, p , 0.001, similarity between pre- and post-
response eye movements was lower on trials that
subjects incorrectly responded to compared to correct
trials. This finding is in line with our hypothesis, and
suggests that one possible factor explaining why
subjects may have incorrectly responded on a trial is
that they simulated the wrong ball path, leading to the
wrong answer. Finally, we separately analyzed and
compared each subject’s degree of spatial and temporal
overlap across the first 20 and last 20 trials of the
session. This comparison is crucial because subjects
were explicitly asked to pursue the falling ball, raising
the possibility that over time, this instruction might
have implicitly trained them to use eye movements to
predict where the ball would fall. A paired t test of the
mean intersection of the first 20 versus last 20 trials for
each subject showed no significant difference, t(15)¼
�0.89119, p¼ 0.3869. A paired t test of the mean edit
distance of the first 20 versus last 20 trials for each
subject yielded the same outcome, t(15)¼ 0.71735, p¼
0.4842. Based on these results, we do not consider it
likely that repeatedly pursuing the falling ball neces-
sarily led to an evolution in strategy or entrainment of
simulation.

Computational evidence of visual simulation

To investigate possible alternate strategies, we
trained a convolutional neural network on this task.
The network’s model was able to predict the correct
answer with 84% accuracy on the same boards that we
showed to our human subjects, indicating that at least
one alternate, neurally plausible, nonsimulation-based
strategy does exist. Using our CNN model outputs, we
computed a new measure of uncertainty for each of the
200 boards (for more detail, please see ‘‘Computational
analyses’’ section of Methods). We then asked if the
CNN-derived uncertainty metric predicted human
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Figure 4. (A) A breakdown of each subject’s chance intersection values versus their actual intersection value. Box plots represent a

distribution of twenty chance intersection values generated by shuffling (whiskers span maximum to minimum), and blue points

represent actual mean intersection values. (B) Pairwise comparisons of chance versus actual intersection values for each subject.

Black points represent the average of each box plot in (A). (C) and (D) Same as (A) and (B), but for edit distance instead of

intersection. (E) and (F) Pairwise comparisons of intersection and edit distance values on trials that subjects got correct versus

incorrect.
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behavior, and if so, how this relationship compared to
the previously shown relationship between behavior
and simulation-derived uncertainty. Figure 5B depicts
the same across-subject averaged behavioral data as in
Figure 3B, now plotted as a function of CNN
uncertainty as opposed to simulation uncertainty. We
found that CNN uncertainty was in fact predictive of
subjects’ average reaction times, F(1, 198)¼ 15.49, p ,
0.001, R2¼ 0.072, and accuracy, F(1, 198)¼ 16.72, p ,
0.001, R2¼ 0.077, on this task. We thus had two
possible, valid models for explaining subject behav-
ior—one based on simulation of the ball’s trajectory,
and the other based purely on computations of the
spatial relationships between onscreen objects. To
distinguish between these two possibilities, we assessed
how much variance in subject behavior was accounted
for by the two uncertainty metrics pertaining to each
strategy (i.e., simulation uncertainty in Figure 3B and
CNN uncertainty in Figure 5B. We note that the
variance in reaction times explained by the CNN model
is extremely small (R2¼ 0.072), whereas the variance
explained by the simulation model is far greater (R2¼
0.5485). The same applies for task accuracy (i.e., R2

values of 0.07 and 0.18 for the CNN and simulation
models respectively). The fact that the simulation
model is a much better predictor of subjects’ behavior
strongly suggests that subjects were likely engaging in
visual simulation. To corroborate this finding, we ran
these same regression analyses on a subject-by-subject
basis. We found that CNN uncertainty was in fact not a
significant predictor of reaction time for six of our

subjects, whereas simulation uncertainty was a signif-
icant predictor for all 16 subjects. A comparison of the
slopes and R2 values of these two regression models
across subjects shows that the simulation uncertainty
model consistently yielded significantly higher slope,
t(15)¼16.931, p , 0.001, and R2 values, t(15)¼12.31, p
, 0.001. Notably, for the majority of subjects (12 out
of 16), the R2 value for the CNNmodel barely exceeded
0. The nonoverlapping distributions of these values for
all 16 subjects is shown in Figure 5C and 5D. Finally,
calculating the Akaike information criterion for both
models returned a lower value for the simulation model
compared to the CNN model (D AIC: 143.956), further
supporting the idea that subjects were likely simulating
the ball’s motion trajectory. Overall, we conclude that
while there may be various valid approaches to solving
this task, our subjects’ behavior is best explained by a
visual simulation strategy as opposed to a global image
analysis strategy that might be exploited by a CNN.

Discussion

In the present study, we were interested in obtaining
evidence for visual simulation—a process through
which one might be able to internally imagine the
upcoming motion trajectory of an object in her or his
visual field. We liken this ability to mental imagery,
except with a dynamic internal representation of the
external word, as opposed to a static one. The result of

Figure 5. (A) Subjects’ accuracy on this task versus the CNN model’s accuracy. (B) Across subjects average normalized reaction time

and accuracy for each board as a function of the CNN-based uncertainty value assigned to that board. The dotted lines represent the

95% CI for the slope of the regression line. (C) A histogram showing the slopes of the regression of reaction time onto CNN

uncertainty (as shown in 5B) and simulation uncertainty (as shown in 3B) when carried out with each individual subject’s data instead

of sample wide averages. (D) A histogram showing the same comparison as in (C), but with the R
2 values for each model.
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this simulation process (i.e., an internal imagery-like
representation of a complex motion) may then serve as
a guide that one can rely on to predict an upcoming
trajectory and direct an appropriate behavioral re-
sponse. We also posit that a correlate of this cognitive
phenomenon exists in the eye movements made while
one engages in a simulation. We thus relate the internal,
imagery-based aspect of the simulation process to an
explicit, observable motor output. We tested these ideas
by designing a novel task in which subjects had to
ascertain the path of a ball that was subject to the
normal laws of gravity. This task could, in theory, be
solved by employing visual simulation. As subjects
performed this task, we recorded their eye movements
as well as behavioral metrics such as reaction time and
accuracy. We found that subjects’ eye movements made
while determining the ball’s final location overlapped
heavily with their eye movements made while perceiv-
ing the same trajectory just a few seconds later. We also
found that reaction time and accuracy on our task were
predicted by the properties of the ball’s trajectory.
Together, these findings indicate subjects were engaging
in a temporally extended construction of an imagined
motion (observable through a systematic series of eye
movements), which they then used to inform their
responses. This provides overt evidence that humans
are in fact capable of employing visual simulation to
solve problems of complex motion prediction. Of
course, this does not mean that visual simulation is the
only strategy people employ to predict motion in one’s
daily life, especially because predictions of motion
occur at various levels of abstraction, and at various
levels of spatial and temporal resolution. We suggest
that this ability may be most likely employed when
prospecting upon the movements of objects that are at
rest but may move in the future, especially in time-
permitting contexts (for example, when deciding how to
navigate carrying a couch up a winding staircase).

It is worth noting that we designed our task to obey
the laws of basic Newtonian physics. We are certainly
not the first to adopt this strategy—indeed a number of
previous studies have specifically investigated how our
intuitive understanding of physics can be used to solve
cognitive problems (Battaglia, Hamrick, & Tenen-
baum, 2013; Fischer, Mikhael, Tenenbaum, & Kan-
wisher, 2016; Ullman, Spelke, Battaglia, & Tenenbaum,
2017). In most of these studies, however, the motion of
the stimulus has been relatively simple, and the key
cognitive process in focus has been physical reasoning.
Our motivation in the present study differed from the
previous studies in that we were primarily interested in
the process of predicting a complex motion, and we
relied on people’s understanding of rigid body dy-
namics simply to arrive upon an easily understood,
common set of rules governing this motion. Further,
previous research on predictive pursuit has shown that

subjects are able to make more anticipatory responses
when the spatial cues indicating an upcoming motion
are based in physical rules as opposed to arbitrary ones
(Kowler, Aitkin, Ross, Santos, & Zhao, 2014). This
research has focused on smooth pursuit of already
moving stimuli, whereas we have extended this finding
to saccades on a static display. While the physical basis
of our approach does place some limitations on the
breadth of conclusions we are able to draw, we felt it
was nonetheless useful, especially in the early stages of
investigating visual simulation. In future experiments
we intend to broaden the scope of motion types to
better understand whether visual simulation remains
viable when motion properties are not congruent with
physics.

A significant line of evidence we present in support
of visual simulation comes from our oculomotor
analyses. Past studies on mental imagery and action
simulation have long relied on comparing neural
correlates across two conditions, one involving visual
perception, and the other involving the cognitive
phenomenon of interest (Kosslyn et al., 1995; Kosslyn
et al., 1997; Klein et al., 2004; Kosslyn et al., 1999). In
the present study, we adopted this same idea, using
oculomotor measures in place of neural recordings. The
concept of utilizing eye movements as a window into
cognition is not new, and studies on scan paths during
complex tasks date back over four decades (Noton &
Stark, 1971; Chase & Simon, 1973). In fact, the theory
of deictic coding posits that eye movements can serve to
orient a cognitive process by anchoring it in the
physical world (Ballard, Hayhoe, Pook, & Rao, 1997).
Past research on action simulation has also shown that
when tracking an actor carrying out a series of hand
movements, subjects make predictive saccades as
opposed to reactive ones, indicating an ability to orient
gaze to accommodate future events (Flanagan &
Johansson, 2003). Similarly, other work examining the
pursuit of already moving objects has shown that
people are capable of making predictive saccades based
on where the object of interest is likely to be in the near
future (Diaz, Cooper, Rothkopf, & Hayhoe, 2013).
With this in mind, it then makes complete sense that the
process of carrying out a visual simulation of an
object’s future motion trajectory (that spans significant
distance in visual space) could be read out through a
sequence of eye movements. Here, we have shown that
there is a remarkable degree of similarity in the spatial
organization of eye movements made while attempting
to determine a ball’s future motion and those made
while perceiving that motion. Further, we have
demonstrated that the temporal order of these eye
movements bears a degree of overlap with the
progression of the ball’s path that far exceeds chance.
The improvement in temporal granularity gained by
looking at sequences of saccades (relative to simple
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metrics such as reaction time) is especially important,
since it allows one to tie discrete events in the pre-
response period to discrete properties of the upcoming
motion. Our emphasis on understanding the properties
of unrestrained eye movements during the simulation
process distinguishes this research from past experi-
ments on motion imagery where subjects have been
required to maintain fixation (Goebel et al., 1998; Kaas
et al., 2010). The predictive eye movements we have
shown here also differ fundamentally from past work
on anticipatory saccades and pursuit in that (a) they
were entirely internally derived (i.e., there was no
existing sensory motion to entrain to), and (b) they
were carried out across an extended window of time (on
the order of many seconds). Altogether, we conclude
that eye movements appear to be indicative of a
systematic attempt to plot out a future motion, as one
might be expected to do when engaging in visual
simulation.

Of course, we are also able to look at broader
behavioral metrics (in this case reaction time and
accuracy) as a function of the stimulus’ properties. It is
worth pointing out that while simulation length was
predictive of reaction time, it did not predict accuracy.
However, this is not entirely surprising, since subjects
were not given a time limit within which they had to
respond, and so any effect of a speed-accuracy trade-off
would be reflected primarily in reaction times. Further,
it is not guaranteed that an increase in simulation
length would actually lead to an increase in perceived
difficulty on our task. To provide an analogy, if asked
to count to 10 or to 100, one would take longer to
complete the latter because the process has more steps,
but that doesn’t necessarily mean that more errors
would be made as a result of the longer process. Even if
the probability of making counting errors were greater
in the case of counting to 100, these errors would likely
not be frequent enough to result in a statistically
significant decrement (since people are generally quite
good at counting). This is in fact exactly what we
observed—overall, people were very good at our task,
and although there was a mild negative trend of
decreasing accuracy with increasing simulation length,
this trend was not statistically significant.

On the other hand, simulation uncertainty predicted
both reaction time and accuracy. Here the decrease in
accuracy is expected (even though there were no time
constraints) because our metric of uncertainty was
primarily driven by the number of plausible alternatives
on a given board. As the number of viable possibilities
increased, the likelihood of ultimately picking the
correct one was reduced. Overall, the fact that the
properties of the ball’s trajectory could be used to
predict reaction time and accuracy is noteworthy
because it demonstrates a direct relationship between
subjects’ behavior and the complex future movements

that they had to ascertain, which is precisely what one
might expect if people were carrying out visual
simulation.

Our final line of analyses was aimed at addressing
two questions: (a) are there any potential alternative
strategies one might adopt to solve this task, and if so,
(b) might they be used to explain our behavioral data.
We utilized a convolutional neural network to emulate
a possible alternative strategy because such networks
are organizationally similar to the human visual
system, but lack any explicit ability to carry out
physics-driven simulations. Additionally, past work
with neural networks has shown a striking congruence
with both human behavior and neurophysiological
data obtained from areas within the visual pathway,
making them a powerful computational modeling tool
within the field of neuroscience (Yamins et al., 2014).
We found that our very simple—off the shelf—network
was able to successfully predict correct outcomes on the
set of 200 boards at a level consistent with that of our
human participants. This allowed us to answer the first
question and conclude that there is at least one other
possible strategy for tackling our task. The limitation
to this type of analysis is that we only have a rough
understanding of the operations occurring within the
hidden layers of the network, and research is still
ongoing into the question of how or why CNNs
perform as well as they do (Yosinski, Clune, Nguyen,
Fuchs, & Lipson, 2015). We are thus unable to state
with complete certainty how exactly the network solved
this task. However, given what we do know about the
basic structure and function of CNNs, it seems likely
that the network was able to ascertain informative
features of the overall plank configuration on every
board, and use this information to generate probabil-
ities for the two possible answers (i.e., left and right).
We hope to probe this question further in future
iterations of this study to pinpoint what exactly these
features might be, and whether they can be related to
salience in perception among human observers.

To address our second question, we utilized the
model’s output metrics to devise a new, nonsimulation
dependent method of assigning uncertainty values to
our boards. We then simply regressed our behavioral
data onto this metric to see if it could predict subjects’
reaction times and performance on the task. Interest-
ingly, we did find a relationship between our behavioral
data and the CNN-based uncertainty metric, although
this relationship was extremely weak at the population
level and did not achieve significance for two-thirds of
our subjects when tested at the individual level. This is
in stark contrast to the strong relationship we observed
using our simulation-based uncertainty metric using
both population and individual subject data. It is not
entirely surprising that the CNN model predicted some
variance in some subjects’ behavior, since the positional
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relationships between the planks on screen do indeed
affect the ball’s actual trajectory. However, we have
shown that this low-level framework for extrapolating
uncertainty is only loosely related to subject behavior,
and that a model that factors in the ball’s trajectory as
determined through simulation is much better at
explaining reaction time and accuracy at this task.
From this, we conclude that our subjects were not
simply generally scanning plank configuration patterns
for relevant clues, but were indeed simulating a
dynamic motion trajectory.

This finding also raises the possibility that familiarity
plays a role in determining the strategy that people rely
on. Previous research with chess players has shown that
while less advanced players tend to engage in more
time-consuming, ‘‘look-ahead’’ strategies in order to
determine their next move, grandmasters are often able
to make rapid, high quality moves even when only
briefly presented with the configuration of the pieces on
the board (Holding & Reynolds, 1982; Calderwood,
Klein, & Crandall, 1988; Gobet & Simon, 1996). Since
our human subjects were not familiar with the set-up of
this task prior to their participation in the experiment,
one might conceive of them as relative novices who
would need to ‘‘look-ahead’’ or simulate possible
outcomes in order to arrive upon an answer. Our
network, on the other hand, was trained on 75,000
example boards, making it somewhat analogous to a
grandmaster who would have likely witnessed various
chess piece configurations many thousands of times. It
is fair to hypothesize, then, that with extended practice,
human subjects’ behavior on this task might be
predicted by the network’s outputs. It is also entirely
possible that there are other strategies we have not yet
considered for explaining human behavior on this task.
Given the current evidence, however, we conclude that
subjects were carrying out visual simulations of the
ball’s future motion path.

Conclusion

In the present study, we have combined three
complementary lines of evidence—behavioral, oculo-
motor, and computational—to demonstrate that hu-
man subjects can and do engage in visual simulation as
a strategy for predicting the future motion of objects. A
deeper understanding of motion simulations in the
visual system has the potential to not only improve our
grasp of the brain as a whole, but could also provide
valuable enhancements to existing brain-computer
interfaces. In future studies, we plan to characterize this
phenomenon at a neural level in both humans and
nonhuman primates.

Keywords: imagery, visual simulation, eye movements,
object motion, motion prediction
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Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L.,
Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I
know what you are doing. A neurophysiological
study. Neuron, 31(1), 155–165, https://doi.org/10.
1016/S0896-6273(01)00337-3.

Winawer, J., Huk, A., & Boroditsky, L. (2010). A
motion aftereffect from visual imagery of motion.
Cognition, 114(2), 276–284, https://doi.org/10.1016/
j.cognition.2009.09.010.

Yamins, D., Hong, H., Cadieu, C., Solomon, E.,
Seibert, D., & DiCarlo, J. (2014). Performance-
optimized hierarchical models predict neural
responses in higher visual cortex. Proceedings of
the National Academy of Sciences, USA, 111(23),

Journal of Vision (2019) 19(6):13, 1–17 Ahuja & Sheinberg 16

https://doi.org/10.1162/jocn.1993.5.3.263
https://doi.org/10.1038/35090055=
https://doi.org/10.1038/35090055=
https://doi.org/10.1126/science.284.5411.167
https://doi.org/10.1006/nimg.1997.0295
https://doi.org/10.1006/nimg.1997.0295
https://doi.org/10.1038/378496a0
https://doi.org/10.1038/378496a0
https://doi.org/10.1016/0042-6989(89)90052-7
https://doi.org/10.1016/0042-6989(89)90052-7
https://doi.org/10.1167/14.5.10
https://doi.org/10.1167/14.5.10
https://www.ncbi.nlm.nih.gov/pubmed/24839290
https://jov.arvojournals.org/article.aspx?articleid=2121469
https://doi.org/10.1016/0042-6989(79)90238-4
https://doi.org/10.1016/0042-6989(79)90239-6
https://doi.org/10.1016/0042-6989(79)90239-6
https://doi.org/10.1016/0042-6989(81)90113-9
https://doi.org/10.1016/0042-6989(81)90113-9
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1016/0042-6989(71)90213-6
https://doi.org/10.1016/0042-6989(71)90213-6
https://doi.org/10.1038/nrn1603
https://doi.org/10.1038/nrn1603
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1007/s00426-012-0443-y
https://doi.org/10.1007/s00426-012-0443-y
https://doi.org/10.3389/fpsyg.2013.00387
https://doi.org/10.1109/THFE2.1962.4503342
https://doi.org/10.1109/THFE2.1962.4503342
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/S0896-6273(01)00337-3
https://doi.org/10.1016/S0896-6273(01)00337-3
https://doi.org/10.1016/j.cognition.2009.09.010
https://doi.org/10.1016/j.cognition.2009.09.010


8619–8624, https://doi.org/10.1073/pnas.
1403112111.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., &
Lipson, H. (2015). Understanding neural networks
through deep visualization. arXiv1506.06579.

Supplementary material

Supplementary Movie S1.

Supplementary Movie S2.

Journal of Vision (2019) 19(6):13, 1–17 Ahuja & Sheinberg 17

https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1073/pnas.1403112111
https://arvo.silverchair-cdn.com/arvo/content_public/journal/jov/938046/jovi-19-05-23_s02.mp4?Expires=1559941652&Signature=zk32DV991U5jQ4j-RyMIU~kpfGyRnnb1nrWyz47VHuQer34T4M6R9xPHsbtqgbONChSGIWjMZwP6spTSW1GxNvPb7SMZPl5CykkXUK2K3mmyPTLAGLtvTcKqfFf0PEJMF88LZLEdZKhVOi3Aw7v4jyldqdB7OAsPCyt1AIS~B2aKSHog9UXcb2rcmOtSiGtddmzc1xuU8XCd5yN1I18y1tD1qltL98UQ3iC3m5PAwT02oY6fyxdlyTGTb8GyK0w~UlXWY5uiS4GfmvmSTMWewZVomEr1Tm-U-Po1adFaBENSBPHuHyl1mJOk-2lTsf5YpeSb2BI6GYPZINmEQ~ZrKQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://arvo.silverchair-cdn.com/arvo/content_public/journal/jov/938046/jovi-19-05-23_s03.mp4?Expires=1559941652&Signature=XXtrCRY3OefnzVn63kwy2hFa6miDNvV5avPhI7m~KzTmnN8McLxPMOZjAVSosxPXLBYqbPb1D~Q-2azBNIQatihYKV4gFtyPRUwMrd-f0tA7RBMTt7OwhMcfdRjDu2AolGIvO8brdNFlZCO20ZXLFff8KlPOEabczHRYZPKBfyjt7QoVS4aDi-0oUnm-qCSqAK~SsF468ceOpAKqT6xN4imesw8wHS3xH0oqCwDatI8zKALa9a17TwSZdlm~gXoipk22F8TBYD4qMQijJOK~64R22ZnltC9i~MXnlN~n7db-pcd9AMuT4FZaPP7kUuy9FhSh72nJQ0AVwpy4eyZ-QQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA

	Introduction
	Methods
	f01
	f02
	Results
	f03
	f04
	Discussion
	f05
	Conclusion
	Ballard1
	Banca1
	Barsalou1
	Battaglia1
	Bisley1
	Born1
	Calderwood1
	Chang1
	Chang2
	Chase1
	Ciresan1
	Dallos1
	Diaz1
	Doerrfeld1
	Ehrhardt1
	Emmerling1
	Fischer1
	Flanagan1
	Fukushima1
	Gobet1
	Goebel1
	Holding1
	Kaas1
	Kao1
	Kilner1
	Klein1
	Kosslyn1
	Kosslyn2
	Kosslyn3
	Kosslyn4
	Kosslyn5
	Kowler1
	Kowler2
	Kowler3
	Kowler4
	Kowler5
	LeCun1
	Nguyen1
	Noton1
	Pasternak1
	Rawat1
	Springer1
	Springer2
	Stark1
	Szegedy1
	Ullman1
	Umilta1
	Winawer1
	Yamins1
	Yosinski1

