
CO
M

PU
TE

R
SC

IE
N

CE
S

Efficiency of quantum vs. classical annealing in
nonconvex learning problems
Carlo Baldassia,b,1,2 and Riccardo Zecchinaa,c,1,2

aBocconi Institute for Data Science and Analytics, Bocconi University, 20136 Milan, Italy; bIstituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125
Turin, Italy; and cCondensed Matter and Statistical Physics Group, International Centre for Theoretical Physics, 34151 Trieste, Italy

Edited by William Bialek, Princeton University, Princeton, NJ, and approved January 2, 2018 (received for review June 26, 2017)

Quantum annealers aim at solving nonconvex optimization prob-
lems by exploiting cooperative tunneling effects to escape local
minima. The underlying idea consists of designing a classical
energy function whose ground states are the sought optimal solu-
tions of the original optimization problem and add a controllable
quantum transverse field to generate tunneling processes. A key
challenge is to identify classes of nonconvex optimization prob-
lems for which quantum annealing remains efficient while ther-
mal annealing fails. We show that this happens for a wide class
of problems which are central to machine learning. Their energy
landscapes are dominated by local minima that cause exponential
slowdown of classical thermal annealers while simulated quan-
tum annealing converges efficiently to rare dense regions of opti-
mal solutions.

nonconvex optimization | machine learning | quantum annealing |
neural networks | statistical physics

Quantum annealing (QA) aims at finding low-energy con-
figurations of nonconvex optimization problems by a con-

trolled quantum adiabatic evolution, where a time-dependent
many-body quantum system which encodes for the optimization
problem evolves toward its ground states so as to escape local
minima through multiple tunneling events (1–5). Classical sim-
ulated annealing (SA) uses thermal fluctuations for the same
computational purpose, and Markov chains based on this prin-
ciple are among the most widespread optimization techniques
across science (6). Quantum fluctuations are qualitatively differ-
ent from thermal fluctuations, and in principle, QA algorithms
could lead to extremely powerful alternative computational
devices.

In the QA approach, a time-dependent quantum transverse
field is added to the classical energy function leading to an inter-
polating Hamiltonian that may take advantage of correlated fluc-
tuations mediated by tunneling. Starting with a high transverse
field, the quantum model system can be initialized in its ground
state, i.e., all spins aligned in the direction of the field. The adi-
abatic theorem then ensures that by slowly reducing the trans-
verse field, the system remains in the ground state of the inter-
polating Hamiltonian. At the end of the process, the transverse
field vanishes, and the systems ends up in the sought ground
state of the classical energy function. The original optimization
problem would then be solved if the overall process could take
place in a time bounded by some low-degree polynomial in the
size of the problem. Unfortunately, the adiabatic process can
become extremely slow. The adiabatic theorem requires the rate
of change of the Hamiltonian to be smaller than the square of the
gap between the ground state and the first excited state (7–9).
For small gaps, the process can thus become inefficient. Expo-
nentially small gaps are not only possible in worst-case scenar-
ios, but have also been found to exist in typical random sys-
tems where comparative studies between quantum and classical
annealing have so far failed in displaying quantum exponential
speed-up, e.g., at first-order phase transition in quantum spin
glasses (10, 11) or 2D spin-glass systems (12–14). More positive
results have been found for ad hoc energy functions in which

global minima are planted in such a way that tunneling cascades
can become more efficient than thermal fluctuations (4, 15). As
far as the physical implementations of quantum annealers is con-
cerned, studies have been focused on discriminating the presence
of quantum effects rather than on their computational effective-
ness (16–18).

Consequently, a key open question is to identify classes of rel-
evant optimization problems for which QA can be shown to be
exponentially faster than its classical thermal counterpart.

Here, we give an answer to this question by providing analytic
and simulation evidence of exponential speed-up of quantum vs.
classical SA for a representative class of random nonconvex opti-
mization problems of basic interest in machine learning. The
simplest example of this class is the problem of training binary
neural networks (described in detail below): Very schematically,
the variables of the problem are the (binary) connection weights,
while the energy measures the training error over a given
dataset.

These problems have been very recently found to possess a
rather distinctive geometrical structure of ground states (19–22):
The free-energy landscape has been shown to be characterized
by the existence of an exponentially large number of metastable
states and isolated ground states and a few regions where the
ground states are dense. These dense regions, which had previ-
ously escaped the equilibrium statistical physics analysis (23, 24),
are exponentially rare, but still possess a very high local internal
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entropy: They are composed of ground states that are sur-
rounded, at extensive but relatively small distances, by exponen-
tially many other ground states. Under these circumstances, clas-
sical SA (as any Markov chain satisfying detailed balance) gets
trapped in the metastable states, suffering ergodicity breaking
and exponential slowing down toward the low-energy configura-
tions. These problems have been considered to be intractable for
decades and display deep similarities with disordered spin-glass
models, which are known to never reach equilibrium.

The large deviation analysis that has unveiled the existence
of the rare dense regions has led to several novel algorithms,
including a Monte Carlo scheme defined over an appropriate
objective function (20) that bears close similarities with a quan-
tum Monte Carlo (QMC) technique based on the Suzuki–Trotter
transformation (5). Motivated by this analytical mapping and by
the geometrical structure of the dense and degenerate ground
states which is expected to favor zero-temperature kinetic pro-
cesses (25, 26), we have conducted a full analytical and numerical
statistical physics study of the QA problem, reaching the conclu-
sion that in the quantum limit, the QMC process, i.e., simulated
QA (SQA), can equilibrate efficiently, while the classical SA gets
stuck in high-energy metastable states. These results generalize
to multilayered networks.

While it is known that other quasioptimal classical algorithms
for the same problems exist (20, 27, 28), here, we focus on the
physical speed-up that a QA approach could provide in finding
rare regions of ground states. We provide physical arguments
and numerical results supporting the conjecture that the real-
time QA dynamics behaves similarly to SQA.

As far as machine learning is concerned, dense regions of low-
energy configurations (i.e., quasiflat minima over macroscopic
length scales) are of fundamental interest, as they are particularly
well-suited for making predictions given the learned data: On the
one hand, these regions are by definition robust with respect to
fluctuations in a sizable fraction of the weight configurations and,
as such, are less prone to fit the noise. On the other hand, an opti-
mal Bayesian estimate, resulting from a weighted consensus vote
on all configurations, would receive a major contribution from
one of such regions, compared with a narrow minimum; the cen-
troid of the region (computed according to any reasonable met-
ric which correlates the distance between configurations with the
network outcomes) would act as a representative of the region
as a whole (29). In this respect, it is worth mentioning that in
deep learning (30), all of the learning algorithms which lead to
good prediction performance always include effects of a system-
atically injected noise in the learning phase, a fact that makes
the equilibrium Gibbs measure not the stationary measure of the
learning protocols and drives the systems toward wide minima.
We expect that these results can be generalized to many other
classes of nonconvex optimization problems where local entropy
plays a role, ranging from robust optimization to physical disor-
dered systems.

Quantum gate-based algorithms for machine learning exist;
however, the possibility of a physical implementation remains a
critical issue (31).

Energy Functions
As a working example, we first consider the problem of learn-
ing random patterns in single-layer neural network with binary
weights, the so-called binary perceptron problem (23). This net-
work maps vectors of N inputs ξ ∈{−1, +1}N to binary out-
puts τ =±1 through the nonlinear function τ = sgn (σ · ξ), where
σ ∈{−1, +1}N is the vector of synaptic weights. Given αN

input patterns {ξµ}αNµ=1 with µ= 1, ...,αN and their correspond-
ing desired outputs {τµ}αNµ=1, the learning problem consists in
finding σ such that all input patterns are simultaneously classi-
fied correctly, i.e., sgn (σ · ξµ)= τµ for all µ. Both the compo-

nents of the input vectors ξµi and the outputs τµ are indepen-
dent identically distributed unbiased random variables (P (x )=
1
2
δ (x − 1)+ 1

2
δ (x + 1)). In the binary framework, the procedure

for writing a spin Hamiltonian whose ground states are the
sought optimal solutions of the original optimization problem is
well known (32). The energy E of the binary perceptron is pro-
portional to the number of classification errors and can be writ-
ten as

E ({σj})=
αN∑
µ=1

∆n
µΘ (−∆µ), ∆µ

.
=

τµ√
N

N∑
j=1

ξµj σj [1]

where Θ (x ) is the Heaviside step function: Θ (x )= 1 if x > 0,
Θ (x )= 0 otherwise. When the argument of the Θ function is
positive, the perceptron is implementing the wrong input–output
mapping. The exponent n ∈{0, 1}defines two different forms of
the energy functions which have the same zero-energy ground
states and different structures of local minima. The equilibrium
analysis of the binary perceptron problem shows that in the large
size limit, and for α<αc ' 0.83 (23), the energy landscape is
dominated by an exponential number of local minima and of
zero-energy ground states that are typically geometrically iso-
lated (33), i.e., they have extensive mutual Hamming distances.
For both choices of n , the problem is computationally hard for
SA processes (34): In the large N limit, a detailed balanced
stochastic search process gets stuck in metastable states at energy
levels of order O(N ) above the ground states.

Following the standard SQA approach, we identify the binary
variables σ with one of the components of physical quantum
spins, say, σz , and we introduce the Hamiltonian operator of a
model of N quantum spins with the perceptron term of Eq. 1
acting in the longitudinal direction z and a magnetic field Γ act-
ing in the transverse direction x . The interpolating Hamiltonian
reads:

Ĥ =E
({
σ̂z
j

})
−Γ

N∑
j=1

σ̂x
j [2]

where σ̂z
j and σ̂j

x are the spin operators (Pauli matrices) in the
z and x directions. For Γ = 0, one recovers the classical opti-
mization problem. The QA procedure consists of initializing the
system at large β and Γ, and slowly decreasing Γ to 0. To ana-
lyze the low-temperature phase diagram of the model, we need
to study the average of the logarithm of the partition function
Z = Tr

(
e−βĤ

)
. This can be done by using the Suzuki–Trotter

transformation, which leads to the study of a classical effective
Hamiltonian acting on a system of y interacting Trotter replicas
of the original classical system coupled in an extra dimension:

Heff

({
σa
j

}
j ,a

)
=

1

y

y∑
a=1

E
({
σa
j

}
j

)
− γ

β

y∑
a=1

N∑
j=1

σa
j σ

a+1
j − NK

β

[3]

where the σa
j =±1 are Ising spins, a ∈{1, . . ., y} is a replica

index with periodic boundary conditions σy+1
j ≡σ1

j , γ= 1
2

log

coth
(
βΓ
y

)
and K = 1

2
y log

(
1
2

sinh
(

2βΓ
y

))
.

The replicated system needs to be studied in the limit y→
∞ to recover the so-called path integral continuous quantum
limit and to make the connection with the behavior of quan-
tum devices (14). The SQA dynamical process samples configu-
rations from an equilibrium distribution, and it is not necessarily
equivalent to the real-time Schrödinger equation evolution of the
system. A particularly dangerous situation occurs if the ground
states of the system encounter first-order phase transitions which
are associated with exponentially small gaps (10, 35, 36) at finite
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N . As discussed below, this appears not to be the case for the
class of models we are considering.

Connection with the Local Entropy Measure
The effective Hamiltonian Eq. 3 can be interpreted as many
replicas of the original systems coupled through one-dimensional
periodic chains, one for each original spin (Fig. 1B). Note that
the interaction term γ diverges as the transverse field Γ goes
to 0. This geometrical structure is very similar to that of the
robust ensemble (RE) formalism (20), where a probability mea-
sure that gives higher weight to rare dense regions of low-energy
states is introduced. There, the main idea is to maximize Φ (σ?)=

log
∑
{σ}e

−βE(σ)−λ
∑N

j=1 σjσ
?
j , i.e., a “local free entropy” where

λ is a Lagrange parameter that controls the extensive size of the
region around a reference configuration σ?. One can then build
a new Gibbs distribution P(σ?)∝ eyΦ(σ?), where −Φ has the
role of an energy and y of an inverse temperature: In the limit
of large y , this distribution concentrates on the maxima of Φ.

A

B

C

E({σj})
σj

Fig. 1. Topology of the Suzuki–Trotter vs. robust ensemble (RE) representa-
tions. (A) The classical objective function we wish to optimize which depends
on N discrete variables

{
σj
}

(N = 5 in the picture). (B) Suzuki–Trotter inter-
action topology: y replicas of the classical system (y = 7 in the picture) are
coupled by periodic one-dimensional chains, one for each classical spin.
(C) RE interaction topology: y replicas are coupled through a centroid con-
figuration. In the limit of large N and large y (quantum limit) and for strong
interaction couplings, all replicas are forced to be close, and the behavior of
the two effective models is expected to be similar.

Upon restricting the values of y to be integer (and large), P (σ?)
takes a factorized form yielding a replicated probability mea-
sure PRE(σ?,σ1, . . .,σy)∝ e−βH

RE
eff (σ?,{σa

j }) where the effective
energy is given by

HRE
eff

(
σ?,
{
σa
j

}
j ,a

)
=

y∑
a=1

E
({
σa
j

}
j

)
− λ

β

y∑
a=1

N∑
j=1

σa
j σ

?
j [4]

As in the Suzuki–Trotter formalism, HRE
eff

(
σ?,
{
σa
j

}
j ,a

)
corre-

sponds to a system with an overall energy given by the sum of y
individual “real replica energies” plus a geometric coupling term;
in this case, however, the replicas interact with the “reference”
configurations σ? rather than among themselves (Fig. 1C).

The Suzuki–Trotter representation and the RE formalism dif-
fer in the topology of the interactions between replicas and in the
scaling of the interactions, but for both cases, there is a classical
limit, Γ→ 0 and λ→∞, respectively, in which the replicated sys-
tems are forced to correlate and eventually coalesce in identical
configurations. For nonconvex problems, these will not in gen-
eral correspond to configuration dominating the original classi-
cal Gibbs measure.

For the sake of clarity, we should remind that in the classical
limit and for α<αc , our model presents an exponential num-
ber of far-apart isolated ground states which dominate the Gibbs
measure. At the same time, there exist rare clusters of ground
states with a density close to its maximum possible value (high
local entropy) for small but still macroscopic cluster sizes (19).
This fact has several consequences: No further subdivision of
the clusters into states is possible; the ground states are typically
O(1) spin flip connected (19); and a trade-off between tunneling
events and exponential number of destination states within the
cluster is possible.

Phase Diagram: Analytical and Numerical Results
Thanks to the mean field nature of the energetic part of the
system, Eq. 3, we can resort to the replica method for calculat-
ing analytically the phase diagram. As discussed in SI Appendix,
this can be done under the so-called static approximation, which
consists of using a single-parameter q1 to represent the over-
laps along the Trotter dimension, qab

1 =
〈

1
N

∑N
j=1 σ

a
j σ

b
j

〉
≈ q1.

Although this approximation crudely neglects the dependency
of qab

1 from |a − b|, the resulting predictions show a remarkable
agreement with numerical simulations.

In Fig. 2, we report the analytical predictions for the aver-
age classical component of the energy of the quantum model
as a function of the transverse field Γ. We compare the results
with the outcome of extensive simulations performed with the
reduced-rejection-rate (RRR) Monte Carlo method (37), in
which Γ is initialized at 2.5 and gradually brought down to 0 in
regular small steps, at constant temperature, and fixing the total
simulation time to τNy · 104 (as to keep constant the number of
Monte Carlo sweeps when varying N and y). Additional details
are reported in Materials and Methods and SI Appendix. The size
of the systems, the number of samples, and the number of Trot-
ter replicas are scaled up to large values, so that both finite size
effects and the quantum limit are kept under control. A key point
is to observe that the results do not degrade with the number of
Trotter replicas: The average ground-state energy approaches a
limiting value, close to the theoretical prediction, in the large y
quantum limit. The results appear to be rather insensitive to both
N and the simulation time-scaling parameter τ . This indicates
that Monte Carlo appears to be able to equilibrate efficiently,
in a constant (or almost constant) number of sweeps, at each Γ.
The analytical prediction for the classical energy only appears
to display a relatively small systematic offset (due to the static
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Fig. 2. Classical energy density (i.e., longitudinal component of the energy, divided by N) as a function of the transverse field Γ (single layer problems with
α= 0.4 and n = 0, 15 independent samples per curve). The SQA simulations at β= 20 approach the theoretical prediction as y increases (cf black arrow).
The results do not change significantly when varying N (the curves with N = 1001 or N = 2001 are indistinguishable from the ones displayed at this level of
detail) or the overall simulation time. All SA simulations instead got stuck and failed to equilibrate at low enough temperatures (small equivalent Γ). The
results are noticeably worse for larger N, and doubling or quadrupling the simulation time does not help much (cf purple arrows). (Inset) Trotter replicas
overlap qab

1 (same data as for the main figure). The theoretical prediction is in remarkably good agreement with the average value measured from the
simulations (the y = 128 curve is barely visible under the y = 256 one). The gray curves show the overlaps at varying distances along the Trotter dimension:
The topmost one is the overlap between neighboring replicas qa(a+1)

1 , then there is the overlap between second-neighbors qa(a+2)
1 , and so on (cf Fig. 1). The

y = 128 curves are essentially hidden under the y = 256 ones and can only be seen from their darker shade, following an alternating pattern.

approximation) at intermediate values of Γ, while it is very pre-
cise at both large and small Γ; the expectation of the total Hamil-
tonian, on the other hand, is in excellent agreement with the sim-
ulations (SI Appendix).

In the same plot, we display the behavior of classical SA sim-
ulated with a standard Metropolis–Hastings scheme, under an
annealing protocol in β that would follow the same theoreti-
cal curve as SQA if the system were able to equilibrate (Mate-
rials and Methods and SI Appendix): As expected (34), SA gets
trapped at very high energies (increasing with problem size; in
the thermodynamic limit, it is expected that SA would remain
stuck at the initial value 0.5N of the energy for times which
scale exponentially with N ). Alternative annealing protocols
yield analogous results; the exponential scaling with N of SA on
binary perceptron models had also been observed experimentally
in previous results, e.g., in refs. 21 and 38.

In Fig. 2 Inset, we report the analytical prediction for the trans-
verse overlap parameter q1, which quite remarkably reproduces
fairly well the average overlap as measured from simulations.

In Fig. 3, we provide the profiles of the classical energy min-
ima found for different values of Γ in the case of SQA and dif-
ferent temperatures for SA. These results are computed analyt-
ically by the cavity method (see Materials and Methods and SI
Appendix for details) by evaluating which is the most probable
energy found at a normalized Hamming distance d from a given
configuration. As it turns out, throughout the annealing process,
SQA follows a path corresponding to wide valleys, while SA gets
stuck in steep metastable states. The quantum fluctuations repro-
duced by the SQA process drive the system to converge toward
wide flat regions, despite the fact that they are exponentially rare
compared with the narrow minima.

The physical interpretation of these results is that quantum
fluctuations lower the energy of a cluster proportionally to its size
or, in other words, that quantum fluctuations allow the system to
lower its kinetic energy by delocalizing; see refs. 25, 26, and 39 for
related results. Along the process of reduction of the transverse
field, we do not observe any phase transition which could induce
a critical slowing down of the QA process, and we expect SQA
and QA to behave similarly (11, 36).

This is in agreement with the results of a direct compar-
ison between the real-time quantum dynamics and the SQA
on small systems (N = 21): As reported in SI Appendix, we
have performed extensive numerical studies of properly selected
small instances of the binary perceptron problem, comparing the
results of SQA and QA and analyzing the results of the QA pro-
cess and the properties of the Hamiltonian. To reproduce the
conditions that are known to exist at large values of N , we have
selected instances for which a fast annealing schedule SA gets
trapped at some positive fraction of violated constraints, and
yet the problems display a sufficiently high number of solutions.
We found that the agreement between SQA and QA on each
sample is excellent. The measurements on the final configura-
tions reached by QA qualitatively confirm the scenario described
above, that QA is attracted toward dense, low-energy regions
without getting stuck during the annealing process. Finally, the
analysis of the gap between the ground state of the system and
the first excited state as Γ decreases shows no signs of the kind
of phenomena which would typically hamper the performance of
QA in other models: There are no vanishingly small gaps at finite
Γ (compare discussion in the introduction). We benchmarked all
these results with “randomized” versions of the same samples,
in which we randomly permuted the classical energies associated
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A B C

Fig. 3. (A and B) Energetic profiles (in terms of the classical energy E; Eq. 1) around the configurations reached during the annealing process, comparing
SQA (orange lower curves) with SA (gray top curves). The profiles represent the most probable value of the energy density shift ∆E/N with respect to the
reference point when moving away from the reference at a given normalized Hamming distance d. The curves refer to the data shown in Fig. 2, using two
different times in the annealing process, marked with M and ?. For SQA, we show the results for 15 instances with N = 4,001, y = 256, τ = 4, using the mode

of the replicas σ?
j = sgn

(∑y
a=1 σ

a
j

)
as the reference point; for SA, we show 15 samples for N = 4,001 and τ = 16. These results show a marked qualitative

difference in the type of landscape that is typically explored by the two algorithms: The local landscape of SQA is generally much wider, while SA is typically
working inside narrow regions of the landscape which tend to trap the algorithm eventually. (C) Local entropy, i.e., the logarithm of the number of solutions
surrounding the reference point at a given distance d for the same configurations of A. The SQA configurations (orange curves at the top) are located in
regions with exponentially many solutions surrounding them (although these regions are not maximally dense, as can be seen from the comparison with
the dashed curve representing the overall number of surrounding configurations at that distance). The SA configurations (gray curves at the bottom) are
far away from these exponentially dense regions (the local entropy has a gap around d = 0).

with each spin configuration, so as to keep the distribution of the
classical energy levels while destroying the geometric structure
of the states. Indeed, for these randomized samples, we found
that the gaps nearly close at finite Γ' 0.4, and that, correspond-
ingly, the QA process fails to track the ground state of the system,
resulting in a much-reduced probability of finding a solution to
the problem.

As concluding remarks, we report that the models with n = 0
and n = 1 have phase diagrams which are qualitatively very sim-
ilar (for the sake of simplicity, here we reported the n = 0 case
only). The former presents at very small positive values of Γ a
collapse of the density matrix onto the classical one, whereas the
latter ends up in the classical state only at Γ = 0.

For the sake of completeness, we have checked that the per-
formance of SQA in the y→∞ quantum limit extends to more
complex architectures which include hidden layers; the details
are reported in SI Appendix.

Conclusions
We conclude by noticing that, at variance with other studies on
spin-glass models in which the evidence for QA outperforming
classical annealing was limited to finite values of y , thereby just
defining a different type of classical SA algorithms, in our case
the quantum limit coincides with the optimal behavior of the
algorithm itself. We believe that these results could play a role in
many optimization problems in which optimality of the cost func-
tion needs to also meet robustness conditions (i.e., wide minima).
As far as learning problems are concerned, it is worth mention-
ing that for the best-performing artificial neural networks, the
so-called deep networks (30), there is numerical evidence for the
existence of rare flat minima (40) and that all of the effective
algorithms always include effects of systematic injected noise in
the learning phase (41), which implies that the equilibrium Gibbs
measure is not the stationary measure of the learning protocols.

For the sake of clarity, we should remark that our results are
aimed to suggest that QA can equilibrate efficiently, whereas
SA cannot; i.e., our notion of quantum speed-up is relative to
the same algorithmic scheme that runs on classical hardware.
Other classical algorithms for the same class of problems, besides
the above-mentioned ones based on the RE and the SQA itself,
have been discovered (27, 38, 42–44); however, all of these algo-
rithms are qualitatively different from QA, which can provide a
huge speed-up by manipulating single physical bits in parallel.
Thus, the overall solving time in a physical QA implementation
(neglecting any other technological considerations) would have,
at worst, only a mild dependence on N .

Our results provide further evidence that learning can be
achieved through different types of correlated fluctuations,
among which quantum tunneling could be a relevant example for
physical devices.

Materials and Methods
Simulated QA Protocol. All SQA simulations were performed by using the
RRR Monte Carlo method (37). We fixed the total number of spin flip
attempts at τNy · 104 and followed a linear protocol (divided in 30τ steps)
for the annealing of Γ. In Fig. 2, we show the results for N = 4001 and τ = 4;
the results for N = 1001, 2001 and for τ = 1, 2 were essentially indistinguish-
able at that level of detail.

Classical SA Protocol. The results for SA presented in Fig. 2 used an anneal-
ing protocol in β designed to make a direct comparison with QA: We found
analytically a curve βequiv (Γ) such that the classical equilibrium energy
would be equal to the longitudinal component of the quantum system
energy. The classical equilibrium energy was computed from the equations
in ref. 23. The result is shown in SI Appendix, Fig. S1. The SA protocol thus
consisted of setting β= βequiv (Γ) and decreasing linearly Γ from 2.5 to 0,
like for the QA case. We fixed the total number of spin flip attempts at
τN · 104 and used τ = 4, 8, 16; as for the QA case, the annealing process was
divided in 30τ steps. If the system were able to equilibrate, it would follow

Baldassi and Zecchina PNAS | February 13, 2018 | vol. 115 | no. 7 | 1461

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711456115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711456115/-/DCSupplemental


the theoretical curve (dashed black line in Fig. 2), which it does only for high
temperatures.

Other more standard annealing protocols (e.g., linear, exponential, or
logarithmic) yielded very similar qualitative results, as expected from the
analysis of ref. 34.

Estimation of the Local Energy and Entropy Landscapes. To compute the local
landscapes of the energy and the entropy around a reference configuration,
Fig. 3, we used the belief propagation algorithm. We added an external
field in the direction of the configuration of interest to focus on regions sur-
rounding that configuration. The strength of the field allowed us to control
the size of the region (parameter d in Fig. 3). Typical energies are computed
by setting the temperature to infinity, while local entropies are computed

by setting the temperature to 0. The details of the algorithm are presented
in SI Appendix.

Real-Time QA Simulations on Small Instances. The real-time quantum dynam-
ics simulations on small systems were performed by solving the time-
dependent Schrödinger equation for the Hamiltonian of Eq. 2 by using the
short iterative Lanczos method (45), which consists of computing the evo-
lution with the Lanczos algorithm, at fixed Γ for a short time interval ∆t,
then lowering Γ by a small fixed amount ∆Γ, and iterating until Γ = 0.
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