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Abstract: In order to respond to environmental signals, cells often use small molecular circuits to
transmit information about their surroundings. Recently, motivated by specific examples in signaling
and gene regulation, a body of work has focused on the properties of circuits that function out of
equilibrium and dissipate energy. We briefly review the probabilistic measures of information and
dissipation and use simple models to discuss and illustrate trade-offs between information and
dissipation in biological circuits. We find that circuits with non-steady state initial conditions can
transmit more information at small readout delays than steady state circuits. The dissipative cost of
this additional information proves marginal compared to the steady state dissipation. Feedback does
not significantly increase the transmitted information for out of steady state circuits but does decrease
dissipative costs. Lastly, we discuss the case of bursty gene regulatory circuits that, even in the fast
switching limit, function out of equilibrium.
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1. Introduction

Cells rely on molecular signals to inform themselves about their surroundings and their own
internal state [1]. These signals can describe the surrounding sugar type and concentration, which is the
case of many bacterial operons, such as those used for lactose or galactose breakdown [2]. Signaling and
activation of phosphorylated receptors provide a means of informing bacterial cells on faster timescales
about a wide range of conditions including crowding, growth signals, and stress [3]. Triggered by these
signals cells activate regulatory networks and cascades that allow them to respond in an appropriate
way to existing signals.

A response is usually trigerred by a change in the environment, which perturbs the previous state
of the cell and the regulatory system. Specifically, if the regulatory circuit was functioning in steady
state, a change in the concentration of the signaling molecule, or the appearance of a new molecule
will kick it out of steady state. Here we investigate the response to such perturbations.

In this paper we study abstract mathematical models whose goal is to capture the main regulatory
features of biochemical circuits. Our models do not capture many of the details of biochemical
complexity of regulatory units in real cells. By “circuit” or “network” throughout the paper we mean a
set of stochastic processes that transform an input signal through a regulatory function to produce an
output response. This use of the word “circuit” or network is standard in the biophysics literature [1–3].
Abstract models of biochemical circuits have proven useful in understanding molecular regulation in
many biological systems from development to immunology [2–28].
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The energy dissipated in a regulatory network comes on one hand from the fact that certain steps,
for example producing proteins, require ATP. However, energy dissipation also measures how far out of
equilibrium a given circuit functions by identifying irreversible (so ATP consuming) reactions [29–31].

Regulatory circuits that function out of equilibrium do not obey detailed balanced, which means
they dissipate energy, even if they produce the same amount of proteins as circuits that function in
equilibrium. We are interested in exploring the constraints that energy dissipation imposes on the
types of regulatory functions. The motivation is not because of limiting energetic resources in cells;
ATP is typically assumed to be abundant [32,33] or can be generated by burning carbon present in the
cell. Rather we consider energy dissipation as a measure of irreversibility that allows us to compare
the irreversibility of signaling encoded in given regulatory functions.

In order to concentrate on this specific problem of dissipation coming from regulatory functions,
we choose to study a simplified model with two binary elements: a receptor and a protein. Each element
can be in one of two states: active or inactive, and its state regulates the state of the other element.
The first element—the receptor—is our input that responds to changes in the environment, and the
second element—the regulatory protein such as a kinase in a two component signaling cascade—is the
output of our regulatory system. We do not take into account the ATP-ADP balance for these reactions,
but concentrate on the dissipation coming from the regulatory computation. Effectively, we assume
that while ATP is certainly needed, it is part of the hardware of the network. In turn, we are interested
in the question of given a certain set of hardware, what are the best regulatory functions (software)
we can implement. We have reduced a description of a biochemical circuit to stochastic processes
governing the flipping of binary variables and we will study the parameters of these processes.

Dissipation in molecular regulatory networks has received a lot of theoretical
attention [29–31,34–38]. This line of thought goes back to the non-equilibrium scheme of
kinetic proofreading [4,5] in which energy is used for error correction of the signal. A more recent
application [29] has shown that energy dissipation is also needed for regulatory circuits to adapt to
external signals and respond accurately. A similar conclusion that energy dissipation is necessary
was reached for molecular circuits that try to learn about external concentrations [30] and it was
shown that the amount of dissipated energy limits reliable readout [30,36,39–42]. Results linking
information, dissipation and learning [43–45] have been derived in the general framework of stochastic
thermodynamics [34,46]. In the context of biochemical reactions, both continuous biochemical kinetics
models [30,41,42,47] and bipartite two state systems [40,43,48–51] have been used in this context.
Among other topics the link between dissipation and prediction has been explored, again showing
that long term prediction requires energy expenditure [35,47], and the non-predictive part of the
information about past fluctuations is linked to dissipation [35]. Most recently, the links between
information and dissipation have been studied in spatial systems [52].

A regulatory circuit fulfils a function and we assume that the goal of our network is to maximally
transmit information between the input and output [12]. This objective function has been studied before
theoretically, using both binary and more detailed models [53–59]. Others have also optimized the rate
of information transmission [19–21,60]. Information transmission in regulatory circuits has also been
investigated experimentally in fly development [18,61,62], NFκB signaling [28], calcium signaling [63]
and dynamical readouts were compared to static information transmission between the input and
output of ERK, calcium and NFκB signaling networks [64]. While it is an arbitrary choice of
the objective function for a regulatory network, and many networks do not optimize information
transmission, it is rather unlikely that a circuit aimed at sensing and responding to the environment
does not transmit any information about the signal to the output. This choice of the objective function
allows us to perform concrete calculations and investigate the trade-off between information and
dissipation, which are both tied to the logic of the regulatory system.

Here, inspired by receptor-ligand binding, we use a simple two state system to build intuition
about the trade-offs in information transmission, dissipation and functioning out of steady state. In a
pedagogical spirit we remind the reader of the notions of information (Section 3), dissipation (Section 4)
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and review some of our previous results from work that studied information transmission [65] and the
trade-offs between information transmission and dissipation for regulatory circuits in steady state [66]
(Sections 6.1 and 6.2). A signal often perturbs the system out of steady state, to which it then relaxes
back. In this paper we calculate the non-equilibrium dissipation for circuits that function out of steady
state and maximally transmit information between the input and a potentially delayed output given
constraints on dissipation. While the setup of the optimization problem (Equation (13)) is the same as
in our previous work [66], considering average dissipation (Equation (14)) is new (Sections 6.3 and 6.4).

Lastly, we include some comments on dissipation in simple gene regulatory circuits with bursty
transcription (Section 7) [67–73]. We show how even a fast switching gene promoter need not be in
equilibrium. Our goal is not to provide an exhaustive review of the field but to illustrate with simple
examples some trade-offs that appear in these molecular circuits.

2. Model

We consider a system at time t consisting of two discreet random variables zt and xt,
which describe the input state and output state of the systems, respectively. We previously used
these abstract stochastic processes to study regulation in biochemical circuits in Mancini et al. [66] and
such binary models of biochemical circuits have been studied by others [40,43,48–51]. For simplicity
we assume that x and z can take only two values: + (active state) and − (inactive state). The input
state corresponds to the presence or absence of a signaling molecule (or a high or low concentrations of
a signaling molecule), whereas the output state is activation or not of a response pathway or regulator.
The specific regulatory interactions between them will be defined later within the specfic studied
model(s). At every time t, the system is in one of four possible states (zt, xt): (−,−), (−,+), (+,−),
or (+,+). The master equation for the temporal evolution of the conditional probability distribution
p(zt, xt|z0, x0) of the system is:

∂

∂t
p(zt, xt|z0, x0) = −Lp(zt, xt|z0, x0), (1)

where L is a 4× 4 matrix with transition rates between the four states. We will be interested in the
joint probability p(xt, z0), that is we will look at the output variable x at time t and the initial state of
the input variable z:

p(xt, z0) = ∑
x0,zt=±1

p(zt, xt|z0, x0) · p(x0, z0). (2)

This probability is needed in the computation of the central quantity we optimize:
the time-delayed mutual information between the initial state of the input and the state of the
output at t (defined in Section 3). After marginalization over possible states of z0 we will obtain
p(xt) = ∑

z0

p(xt, z0), which in turn is indispensable for calculating the dissipation of the system defined

in Section 4.
We restrict our analysis to symmetric models, in which we do not distinguish between the (−,−)

and (+,+) states, and, analogously, between the (−,+) and (+,−) states. This is a simplification
that is not motivated by a biological observation. The symmetry of the model allows us to write
the probability distribution at any time t as p(xt, z0) =

(
1+µt

4 , 1−µt
4 , 1−µt

4 , 1+µt
4

)
, assuming the initial

probability distribution also assumes the same symmetry: p(x0, z0) = p0 =
(

1+µ0
4 , 1−µ0

4 , 1−µ0
4 , 1+µ0

4

)
.

For the models in which the initial distribution is the steady state one, pinit = p(x0, z0) = pss,
which imposes a condition on µ0.

2.1. Model without Feedback: S and S̃

The first, simplest model we analyze is a symmetric model in which only the input affects the
output and there is no feedback from the output to the input. The output variable either aligns
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or anti-aligns to the input variable with rate r, regardless of the state of the input (see Figure 1A).
The input variable z flips between active and inactive states with rate u and the output variable x
aligns with rate r and anti-aligns with rate s (see Figure 1). The dynamics is given by a transition rate
matrix given in Appendix A.
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Figure 1. A cartoon of the possible states and transitions for both models: without feedback (A),
and with feedback (B). Since there are two binary variables there are four states; transition rates are
marked next to respective arrows. Note the symmetry between the “pure” ((−,−) and (+,+)) states
and the “mixed” states ((−,+) and (+,−)) in both models. Representation of a possible time evolution
of the system. Two variables flip between active (+) and inactive (−) states with respective rates. In the
model without feedback (C) the output variable depends on the input variable (the output aligns to
the input with rate r or anti-aligns, with rate s), the input variable z flips freely between its active and
inactive state, regardless of the state of the output. In the model with feedback (D), there is a difference
in rates of flipping of the input that depends on the state of the output.

We calculate analytically the joint probability distribution p(xt, z0) (a four-dimensional vector)
and marginal probability distributions p(xt) and p(z0) (two-dimensional random vectors), needed to
find the mutual information, that we will define in Equation (3), as a function of the transition rates
u, s, r, and a parameter µ0 that parametrizes the initial state of the system (see Appendix B). We set,
without loss of generality, one rate equal to 1, specifically r = 1. The specific expressions for the
probability distributions for the occupancy of the four states for the model without feedback are
given in Appendix A. In steady state the probability distribution for the occupancy of the four states
simplifies to p∞ =

(
u+1

2s+4u+2 , s+u
2s+4u+2 , s+u

2s+4u+2 , u+1
2s+4u+2

)
.

We will consider this model in steady state, and we will call it model S. We will also allow for the
initial conditions to be out of steady state, and then we will call it model S̃.

2.2. Models with Feedback: F and F̃

In the second analyzed model we allow the input variable to be dependent on the output,
i.e., we allow for a feedback from x to z. We keep as much symmetry as possible, while still not
distinguishing between the states (−,−) and (+,+), and between (−,+) and (+,−). The scheme is
given in Figure 1B. In terms of the rates we allow the original input zt switching parameters, to be
different depending on the state of the output xt introducing the rate α for anti-aligning the two
variables and y for aligning the two variables. The notion of input and output is no longer meaningful
since both variables influence each other. We note that this scheme is not the most general model
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possible since we impose the symmetry between the ‘pure’ states, i.e., (−,−) and (+,+), and the
‘mixed’ states, i.e., (−,+) and (+,−), which reduces the number of parameters from 8 (as was studied
in Mancini et al. [65]) to 4 (as was considered in Mancini et al. [66]). The transition matrix for this
model, and the steady state probabilities are given in Appendix B.

Similarly to the case of the model without feedback, we consider the model with feedback in
steady state and call it model F, or let the initial conditions be out of steady state by considering all
values of µ0 (model S̃). To sumarize, we use the following notation:

• S - no feedback, stationary initial condition;
• S̃ - no feedback, optimal initial condition;
• F - with feedback, stationary initial condition;
• F̃ - with feedback, optimal initial condition.

3. Information

The mutual information measured between the input z at time 0 and output x at time t is defined
as [53,74]:

I[xt, z0] = ∑
xt ,z0

p(xt, z0) log
p(xt, z0)

p(xt)p(z0)
. (3)

In order to analyse the system in its natural timescale, we set t = τ/λ, where λ is the inverse of
the relaxation time (smallest, non-zero eigenvalue of the matrix L) and calculate I[xτ ; z0] = I[xλ·t; z0].
The term under the logarithm, which has been called the thermodynamic coupling function for systems
with many degrees of freedom [75,76], describes the degree of correlation of the two variables, and is
zero if the joined probability distribution factorizes. The thermodynamic coupling function has been
shown to be useful to quantify the contributions of specific energy terms in binary models of allosteric
systems [75,76].

Again exploiting the symmetry of the problem, the mutual information can be written as

I[xt, z0] =
1
2
((1 + µ) log(1 + µ) + (1− µ) log(1− µ)) , (4)

where |µ| ≤ 1. Since we have fixed r = 1, the symmetry of clockwise and counter-clockwise rotations
is broken and µ ∈ [0, 1]. Information is an increasing function of µ and is maximized at I[xt, z0] = 1
bit for µ = 1. The specific values for µ are given in Appendixes A and B for the models with and
without feedback.

4. Non-Equilibrium Dissipation

We consider the limitations on the regulatory functions coming from having a fixed amount
of energy to dissipate during the signaling process that transmits information. Large amounts of
dissipated energy allow systems to function far out of equilibrium, whereas no dissipated energy
corresponds to equlibrium circuits. We quantify the degree to which the system functions out of
equilibrium by comparing the probability of a forward, P→(~x), and backward, P←(~̃x), trajectory along
the same path [34,77]:

σ = ∑
~x

P→(~x) log
P→(~x)
P←(~̃x)

, (5)

where the paths are defined as ~x = (x1, x2, . . . , xN) and ~̃x = (xN, xN−1, . . . , x1) and each state xi is
a four dimensional probability of the input and output at time i. Using the Markov nature of the
transitions P(xt+1|xt) we write the probability of the forward path starting from the initial state x1 as

P→(~x) = P1(x1)
N−1

∏
t=1

Pt→t+1(xt+1|xt), (6)
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and analogously for the backward path. Equation (5) now becomes:

σ = ∑
~x

P→(x1, ..., xN) log
P1(x1)∏N−1

t=1 Pt→t+1(xt+1|xt)

PN(xN)∏N-1
t=1 Pt+1→t(xt|xt+1)

= ∑
~x

P→(x1, ..., xN) log
∏N-1

t=1 Pt→t+1(xt+1|xt)Pt(xt)

∏N-1
t=1 Pt+1→t(xt|xt+1)Pt(xt+1)

,

(7)

where we multiplied both the numerator and the denominator by the same product of probabilities
P(x2) · ... · P(xN). Simplifying further and marginalizing over the elements of ~x not equal to xt or xt+1:

σ = ∑N−1
t=1 ∑~x P→(x1, ..., xN) log

Pt→t+1(xt+1|xt)Pt(xt)

Pt+1→t(xt|xt+1)Pt(xt+1)

= ∑N−1
t=1 P→(xt, xt+1) log

Pt→t+1(xt+1|xt)Pt(xt)

Pt+1→t(xt|xt+1)Pt(xt+1)

= ∑t σ(t),

(8)

which defines the time dependent dissipation production rate, σ(t).
Noting that Pt→t+1(xt+1|xt) = Pt+1→t(xt|xt+1) = P(xt+1 = i|xt = j) and by explicitly defining

the transition rates:
P(xt+1 = i|xt = j) = wijδt + (1− wijδt)δij, (9)

and renaming Pt(xt+1) = pj(t) and Py(xt) = pi(t) we obtain [34,77,78]:

σ(t) = ∑
i,j

wij pj(t) log
wij pj(t)
wji pi(t)

, (10)

that in the limit of t→ ∞ results in the steady state entropy dissipation rate:

σss = ∑
i,j

pss
j wij log

wij

wji
, (11)

where pss
j is the steady state probability distribution. We describe an alternative derivation of

dissipation in Appendix C.
Again, we rescale the time in the above quantities by setting t = τ/λ (λ being is the inverse of the

relaxation time):

σ̂(τ) =
1
λ

σ(τ/λ), σ̂ss =
1
λ

σss. (12)

5. Setup of the Optimization

With these definitions, following Mancini et al. [66], we can ask what are the circuits that optimally
transmit information given a limited constrained amount of steady state dissipation σ̂ss:

max
L|σ̂ss
I(τ), (13)

over the circuit’s reaction rates, L. The energy expense of a circuit that remains in steady state is
well defined by this quantity. However the total expense of circuits that function out of steady state
must be calculated as the integral of the entropy dissipation rate in Equation (10) over the entire
time the circuit is active, τp, such as the duration of the cell cycle or the interval between new inputs
that kick the system into the initial non-equilibrium state. After some time the circuit will relax to
steady state (see the diagram in Figure 2) and its energetic expense is well described by the steady
state dissipation. But the initial non-equilibrium steady state costs the system some energy. We can
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compare the performance of circuits with different regulatory designs by considering the average
energy expenditure until a given time τp:

Σavg(τp) =
1
τp

τp∫

0

σ̂(τ)dτ. (14)

σ̂
(τ
)

τp ·Σavg σ̂ ss

reset time

τp

readout time

τ
Figure 2. Schematic representation of system’s relaxation. The entropy dissipation rate, σ̂(τ) relaxes
with time to its steady state value, σ̂ss. At τp the system is “kicked out” or reset, thus the pink area
represents the total energy dissipated until that time. The information is collected at an earlier readout
time τ.

We can foresee that circuits that spend most of their time in steady state will have their expenditure
dominated by σss, whereas circuits that spend a lot of time relaxing to steady state will be dominated
by the additional out of steady state dissipation cost ∆Σ = Σavg − σ̂ss. When τp → ∞, all circuits
spend most of their time in steady state and the average integral in (14) converges to σ̂(τ)→ σ̂ss as
τ → ∞, so that the cost is dominated by the steady state dissipation.

Using the steady state distribution for model S and Equation (11) we can evaluate the non-rescaled
steady state dissipation calculated for the model without feedback [66]

σss(u, s) =
(s− 1)u log2(s)

1 + s + 2u
. (15)

If we impose a non-equlibrium state by setting s→ 0, the dissipation rescaled by the characteristic
decay time (the lowest non-zero eigenvalue given by the minimum of the two non-zero eigenvalues
1 + s, and 2u) tends to infinity

σ̂ss(u, s) = σss/λ =
(s− 1)u log2(s)

(1 + s + 2u) ·min(1 + s, 2u)
−−→
s→0

∞, (16)

as expected. We also verify numerically that even in a non-steady state system that is kept out of
equilibrium (Equation (10)) the rescaled dissipation (Equation (16)) tends to infinity, σ̂ = ∞ as s→ 0,
for all τ, µ0 and u.

The steady state dissipation rescaled by the smallest eigenvalue for models F and F̃ is [66]:

σ̂ss(α, s, y) =
2(α− sy)
A(A− ρ)

log2

(
α

sy

)
, (17)

where

A = 1 + s + y + α, (18)

ρ =
√
(1 + s + y + α)2 − 8(sy + α). (19)
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6. Results

The task is to find maximal mutual information between the input and the output, with or
without constraints, for all model variants, (regulation with and without feedback; starting at steady
state, or starting out of steady state) and compare their performance—the amount of information
transmitted and the energy dissipated. To build intuition we first summarize the results of the
unconstrained optimization obtained by Mancini et al. [65]. Then, a constraint will be set on the steady
state dissipation rate σ̂ss as in Mancini et al. [66]. We extend the latter results to models S̃ and F̃ by
performing the optimization also with respect to the initial distribution. Finally, to compare not only
the information transmitted in the models, but also its cost, we will calculate the average dissipation of
the models.

In all cases we are looking for the maximum mutual information between the input at time 0 and
the output at time τ, in the space of parameters (u, s and r for the model without feedback and α, y, s
and r for the model with feedback). We can also treat the initial distribution (parametrized by a single
parameter, µ0), as an additional constraint or set µ0 to be equal to µss

0 , i.e., fix the initial distribution to
be the steady state one. Optimizing with a constraint is looking for the maximum of the function not
in the whole parameter space (RN

+), but on the manifold given by σss(parameters) = constraint. Finally,
to compare not only the information transmitted in the models, but also its cost, we will calculate the
average dissipation of the models.

6.1. Unconstrained Optimization

The results of the unconstrained optimization are summarized in Figure 3. As expected the
maximum amount of information that can be transmitted decays with the readout time for all models.
Feedback allows for better information transmission only in the case when the initial distribution is
fixed to its steady state value. Optimizing over the initial distribution renders the models considered
here without (F̃) and with feedback (S̃) equivalent. In this case the system relies on its initial condition
and information loss is due to the system decorrelating and loosing information about its initial
state. For a fixed initial distribution the model with feedback performs better than the model without
feedback. We note that the feedback model considered here is a simplified model compared to the
one studied in Mancini et al. [65], with less parameters. A full asymmetric model with feedback can
transmit more information than a model without feedback if the initial conditions are not in steady
state. However these architerctures correspond to infinite dissipation solutions since all backward
rates are forbidden and the circuit can never regain its initial state since one of the states i becomes
absorbing, p∞(y′) = δy′ ,i, and attracts the whole probability weight. We are therefore restricting our
exploration of models with feedback to the subclass without an absorbing steady state.

S
F
F̃ = S̃

τ

Max I[xτ ,z0]

20

1

0

Figure 3. Results of the unconstrained optimization—mutual information for the models without
feedback (S and S̃) and with feedback (F and F̃) with respect to the readout time τ. Optimization done
both when the initial distribution is fixed to its steady state value (no tilde) and when the parameter is
subjected to optimization as well (with tilde).
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The modes of regulation of the circuits corresponding to the optimal solutions were discussed in
previous work [65,66]. In short, the information-optimal steady state system uses rates that break the
detailed balance and induce an order in visiting the four states i. Feedback increases the transmitted
information for long time delays by implementing these cycling solutions using a mixture of fast and
slow rates. Allowing for out of steady state initial conditions, circuits relax to absorbing final states
that need to be externally reset. In this case the optimal solution with and without feedback both result
in the stochastic processes cycling through the four states and simply relies on the decorrelation of the
initial state.

6.2. Constraining σ̂ss

We next looked for rates that maximize the transmitted information I[xτ , z0] at a fixed time τ

given a fixed steady state dissipation rate σ̂ss. We first plot the maximal mutual information as function
of the readout time, τ, for models without feedback, S (dashed lines) and S̃ (solid lines), (Figure 4).
Not surprisingly, maximum information is a decreasing function of τ for both models, larger values
of steady state dissipation, σ̂ss, allow for more information transmitted, and model S̃ with optimized
initial conditions transmits more information than model S, which remains in steady state.

σ̂ = 0.1
σ̂ = 0.3
σ̂ = 1
σ̂ = 3
σ̂ = ∞

τ

µSS
0µopt

0

Max I[xτ ,z0]

20

1

0

Figure 4. Results of the optimization problem with constrained steady state dissipation for models
without feedback. Optimal mutual information as function of the readout time, τ, for different
constrained steady state dissipation rates, σ̂ss, for the model S (dashed lines) an S̃ (solid lines).

However, comparing all four models, the conclusion about the equivalence of the out of steady
state model with (F̃) and without (S̃) feedback no longer holds when we constrain σ̂ss (Figure 5).
The difference between optimal mutual information transmitted in models S̃ and F̃ is higher for
systems that have smaller dissipation budgets σ̂ss, and, as shown previously (Figure 3), the difference
vanishes as σ̂ss → ∞. The remaining conclusions from Figure 4 hold: models with feedback transmits
more information than models without feedback and models with free initial distributions transmit
more information than the steady state models, as in the unconstrained optimization case (Figure 3).

Phase diagrams describing the optimal modes of regulation for steady state circuits are reported
in Mancini et al. [66]. At large dissipation rates, the optimal out-of-equilibrium cicruits exploit the
increased decorrelation time of the system since cycling solutions are permitted. Close to equilibrium,
circuits with no feedback cannot transmit a lot of information. Circuits with feedback use a combination
of slow and fast rates to transmit information. The optimal close to equilibrium regulatory functions
rapidly align the two variables zt and xt (y > α, s small), and slowly anti-aligns them, increasing
the probability to be in the aligned (+,+) and (−,−) states. This results in a positive feedback loop.
The same strategy of adjusting rates is used far from equilibrium but this time results in a cycling
solution which translated into a negative feedback loop (α > y, s ≈ 0).
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S, σ̂ ss = 0.2
F, σ̂ ss = 0.2
S, σ̂ ss = 2
F, σ̂ ss = 2
S̃, σ̂ ss = 0.2
F̃ , σ̂ ss = 0.2
S̃, σ̂ ss = 2
F̃ , σ̂ ss = 2

τ

Max I[xτ ,z0]

20

1

0

Figure 5. Results of the optimization problem with constrained steady state dissipation for all four
models. Optimal mutual information as function of the readout time, τ, for two different constrained
steady state dissipation rates, σ̂ss, for the models S and F (dashed lines), and the models S̃ and F̃
(solid lines).

Allowing the circuit to function out of steady state optimizes the initial condition µ0 to be as far as
possible from the steady state. The optimal initial condition is µ0 = 1, where only the aligned states are
occupied (the initial distribution is p0 = (0.5, 0, 0, 0.5)). This initial condition combined with u < r and
s < r (Figure A1) decreases the decorrelation time and even a circuit with no feedback can transmit
non-zero information. The rates of the circuits without feedback are simply set by the dissipation
constraint, with s → 0 for large dissipation and taking the value to balance u close to equilibrium
(Figure A1). Optimal circuits far from equilibrium were reported in Mancini et al. [66] and close to
equilibrium are shown in Figure 6. Circuits with feedback also mostly rely on the decorrelation of the
initial state. Since the majority of the initial probability weight is in the aligned states, the y and α are
always roughly equal (Figure A2). Only at intermediate dissipation rates, y slightly smaller than α

and small s stabliize the initial aligned states and further decrease the decorrelation time (Figure 6),
encoding small negative feedback in the circuit.

rs

α
y

sr
y
α

(+,+)(+,−)

(−,+)(−,−)

F̃

rs

u
u

sr
u
u

(+,+)(+,−)

(−,+)(−,−)

S̃

Figure 6. A graphical representation of the optimal circuits without (S̃) and with (F̃) feedback for
delayed information transmission with optimized non-steady state initial conditions with a constraint
on steady state dissipation σ̂ss. The exact rate values depend on the value of σ̂ss and examples are
shown in Figure A1 (model S̃) and Figure A2 (model F̃). The depicted circuits are close to equilibrium.
The gray arrow indicates a smaller rate than the black arrow. Optimal non-steady state initial states
that have highest probability are shown in red.

To summarize, for all σ̂ss < ∞, as well as for circuits that have no constraints on σ̂ss, we found
I(S) < I(S̃), I(F) < I(F̃), and I(S) < I(F). Also, for all σ̂ss < ∞, I(S̃) < I(F̃), with I(S̃) −−−−→

σ̂ss→∞
I(F̃),

where we have defined the optimal mutual information I(M) of a model M ∈ {S, S̃, F, F̃}.
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6.3. Cost of Optimal Information

The maximum information is obtained for maximum allowed steady state dissipation.
Interestingly the steady state dissipation σ̂ss combined with the circuit topology impose a constraint
on the maximum allowed Σavg(τp). This result follows from the fact that the system strongly relies
on the initial condition to increase the information transmitted at small times. Larger µ0 values allow
the system to transmit more information, since the equilibration time is longer. However, fixing the
value of σ̂ss constrains the allowed value of µ0 that determine the initial condition. To gain intuition,
additionally to fixing σ̂ss, we will fix the mean dissipation Σavg(τp) until a reset time τp > τ and
find the transition rates returning the optimal mutual information for a chosen readout time τ ≤ τp.
The results of this optimization presented in Figure 7, show that as Σavg increases, µ0 tends towards 1,
which corresponds to a probability distribution where only the asymmetric states (p0 = (0.5, 0, 0, 0.5))
are occupied and the transmitted information increases. Further increasing dissipation shows that
the σ̂ss constraint can be satisfied in two ways: either by a positive or negative µ0. Not only does
the positive µ0 transmit more information but the negative µ0 is forbidden by our choice of r = 1.
Above a certain value of σ̂ss only the forbidden negative µ0 = −1 branch corresponding to an initial
distribution with all the weight in the anti-aligned states p0 = (0, 0.5, 0.5, 0) remains (if we chose the
counter clockwise solutions by fixing s = 1, this probability vector would have been the maximally
informative initial state). The system cannot fulfill the constraint of such high dissipation. If we do not
constrain σ̂ss we find that the maximum information corresponds to µ0 = 1 [65], which we report in
our analysis below.

We have seen that for both models, if we can choose the initial distribution instead of starting
from the steady state, we can significantly increase the transmitted information. What is the “cost”
of this choice of initial distribution? To estimate this total cost we calculate the average dissipation
during time τp > τ, τpΣavg(τp), for the circuit with the highest mutual information attainable for a
given steady state dissipation rate rate σ̂ss if we allow the initial condition to be out of the steady state
(Figure 2). We also introduce the relaxation cost, τp(Σavg − σ̂ss) (Figure 8A), as the additional energy
dissipated above the steady state value. As argued already, the systems that starts at steady state,
i.e., for which µ0 = µss

0 , will not pay an additional cost (see Figure 2, for µ0 = µss
0 the function of σ̂(τp)

is constant, equal to σ̂ss). In this case the mean total dissipation, Σavg(τp), will be equal to σ̂ss and the
relaxation cost goes to zero.
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0
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τp = 0.5
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τ = 0.5

2.50

0.4

0

A

B

Figure 7. Optimal mutual information (I∗) and optimal parameters µ0, u, and s for the S̃ model without
feedback as function of the average dissipation, Σavg, for two values of the readout time, τ = 0.5
((A) panels), and τ = 2 ((B) panels), and three values of the reset time, τp (different colours of curves).
Steady state dissipation, σ̂ss, was fixed to 0.1.
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As shown in Figure 8B, the total cost (z-axis, in colour) generated was only slightly larger for S̃
than for S and the difference is more pronounced only for relatively small σ̂ss, where the cost in the
steady state circuits goes to zero. This result holds for different combinations of delay readout times τ

and reset times τp, although the value of the total cost naturally increases with τp. As discussed above,
more information can be transmitted at shorter times and by optimizing over the initial condition.

In order to quantify the intuition that S̃ transmits more information than S at a small price, we
plotted in Figure 8C the information gain, I∗ − Iss, and the relaxation cost with respect to τp(σ̂ss).
I∗ − Iss is the difference between the optimal information when the initial distribution is free to be
optimized over (S̃) and the optimal information for the system with a steady state initial distribution
(S). It quantifies the additional cost from optimizing the initial condition of the gain in information
transmission. The relaxation cost is almost the same regardless of the reset time, τp. The relaxation
cost and the information gain decrease with increasing steady state dissipation, σ̂ss, as in this regime
even the steady state system is able to have slow decorrelation by tuning the switching rates.

This analysis shows that higher optimal mutual information obtained by optimizing over the
initial distribution does not generate significantly higher costs. The same result holds when comparing
models with feedback F and F̃ (Figure 8D). The information increase from feedback in the F̃ model with
optimized initial conditions compared to the F steady state model is minimal at large σ̂ss (as expected
from Figure 5). While the F̃ model with feedback always transmits more information than the S̃ model
without feedback, the total average cost for all σ̂ss is smaller for the F̃ model with feedback than for
the S̃ model without feedback. This results means that even when feedback does not increase the
transmitted information compared to models without feedback, it decreases the total cost.

The information gain of circuits with optimized initial conditions compared to steady state
circuits is larger for the S̃ model without feedback than the F̃ model with feedback (Figure 8E) and
the relaxation cost decreases monotonically with increasing σ̂ss. In both the case with and without
feedback there is a non-zero and non-infinite value of steady state dissipation where the information
gain from optimizing the initial condition is largest. In summary, optimizing the initial condition
nearly always incurs a cost, however it absolutely always results in a significant information gain.
Table 1 summarizes the comparison of the optimal transmitted information I(M) and the total cost
C(M) for all four models M ∈ {S, S̃, F, F̃}.

Table 1. Comparison between the four models, S, F, S̃, and F̃ in terms of optimal mutual information,
Iopt, and the cost (value of Σavg calculated with optimal rates), C.

I opt Cost

S, F I(S) < I(F) C(S) = C(F)
S̃, F̃ I(S̃) ≤ I(F̃) C(S̃) > C(F̃)
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Figure 8. (A) Cartoon depicting the relaxation cost (pink area) τp(Σavg − σ̂ss) of the system
equilibrating from a non-steady state initial state, and thus σ̂(τ) 6= σ̂ss. (B) The total cost, τpΣavg,
of the optimal information transmitted as a function of the steady state entropy dissipation rate, τpσ̂ss,
for models without feedback, that start with the steady state distribution, S, and that optimize the
initial distribution, S̃. Results shown for two choices of reset τp and readout τ timescales. For the steady
state models τpΣavg = τpσ̂ss. (C) The information gain, I∗ − Iss, of the optimized initital condition
model (S̃) compared to the steady state initial condition model (S) and the relaxation cost, τp(Σavg−σ̂ss

),
as a function of the steady state entropy dissipation rate for the same choices of τp and τ as in panel (B).
(D) Comparison of the optimal delayed information and total dissipative cost as a function of the steady
state entropy dissipation rate for all four models: without feedback (S, S̃) and with feedback (F, F̃),
with the initial distribution equal to the steady state one (S, F) or optimized over (S̃, F̃). τ = τp = 0.5.
(E) The information gain and relaxation cost of circuits with optimized initial conditions compared to
steady state ones for the models with (F̃) and without feedback (S̃). τ = τp = 0.5.

6.4. Suboptimal Circuits

We found the parameters of the stochastic processes, including the initial conditions, that optimally
transmit delayed information between the two variables given a constraint on σ̂ss. However the real
initial stimulus may deviate from the optimal one, due to random fluctuations of the environment.
To see how an much information an optimal circuit can transmit for different initial conditions, we took
the optimal parameters for different fixed σ̂ss and readout delay τ, varied the initial condition µ0

and evaluated the transmitted information and the mean dissipation Σavg(τp) for both models: S̃
and F̃(Figure 9). We find that while information always decreases (Figure 9A,C,E for model S̃ and
Figure 9G,I,K for model F̃), as expected, the mean dissipation can be smaller for unexpected values of
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the initial condition (Figure 9B,D,F for model S̃ and Figure 9H,J,L for model F̃). The transmitted
information of the suboptimal circuits is larger than that of the optimal steady state circuit for
many values of µ0, especially those close to the optimum of the non-steady state circuit (µ0 = 1).
The same conclusions hold for suboptimal circuits with and without feedback. The range of µ0 values
where suboptimal circuits provide an information gain is smaller for circuits with feedback than
without feedback, due to the already large information transmission capacity of steady state circuits
with feedback.
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Figure 9. Information for model S̃ (panels (A,C,E)) and model F̃ (panels (G,I,K)) and Σavg(τp) for
model S̃(panels (B,D,F)) and model F̃ (panels (H,J,L)) of information-optimal circuits with µ0 = 1
evaluated for different values of the initial condition µ0. The circuits parameters are evaluated by
optimizing information transmission for τ = 0.5 (A,B), τ = 1 (C,D) and τ = 2 (E,F) and fixed σ̂ss = 0.15
(blue lines), σ̂ss = 0.35 (magenta lines), σ̂ss = 0.75 (green lines). τp = τ in all plots. For comparison we
plot the optimal information of the steady state circuit S and F, respectively, optimized for the same
steady state dissipation σ̂ss and readout delay τ (solid lines). The information always decreases for
non-optimal values of µ0 but the mean dissipation can be smaller for unexpected initial conditions.

7. Gene Regulatory Circuits

The coupled two state system model considered above can be thought of as a simplified model
of receptor—ligand binding. It can also be considered as an overly simplified model of gene
regulation where the input variable describes the presence or absence of a transcription factor and the
output—the activation state of the regulated gene. However, the continuous nature of transcription
factor concentrations has proven important when considering information transmission in these
systems [53,54]. We will not repeat the whole optimization problem for continuous variables but we
calculate and discuss the form of dissipation in the simplest gene regulatory module that can function
out of equilibrium.
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7.1. Bursty Gene Regulation

The simplest gene regulatory system that can function out of equilibrium is a model that accounts
for transcriptional bursts [67–73]. The promoter state has two possible states: a basal expression state
where the gene is read out a basal rate R0 and an activated expression state where the gene is read
out at rate R1. The promoter switches between these two states by binding a transcription factor
present at concentration c, with rate k+ and unbinds at a constant rate k− . The probability that there
are g product proteins of this gene in the cell (we integrate out the mRNA state due to a separation of
timescales) is P(g) = P0(g) + P1(g), where P0(g) describes the probability that the promoter is in the
basal state and there are g proteins and P1(g) describes the analogous probability for the promoter to
be in the activated state. The probability distribution evolves both due to binding and unbinding of
the transcription factor and to protein production and degradation (with rate τ−1) according to

dP0(g)
dt

=
g + 1

τ
P0(g + 1) + k−P1(g) + R0P0(g− 1) + (20)

−
(

k+c +
g
τ
+ R0

)
P0(g),

dP1(g)
dt

=
g + 1

τ
P1(g + 1) + k+cP0(g) + R1P1(g− 1) + (21)

−
(

k− +
g
τ
+ R1

)
P1(g).

These equations can be solved analytically in steady state in terms of special functions [79,80].
In the limit of fast promoter switching (k+ and k− go to infinity and their ratio K ≡ k+/k− is constant)
the system is well described by a Poisson distribution

P∗1 (g) =
1

1 + cK
(Re f τ)g

g!
exp(−Re f τ) = cKP∗0 (g) (22)

where Re f f is an effective production rate:

Re f f =
k+cR1 + k−R0

k+c + k−
. (23)

The total steady state dissipation σss = σ0 + σ1 + σ2 calculated from Equation (11) can be split
into three parts, where

σ0 = ∑
g
(P∗0 (g)k+c− P∗1 (g)k−) log

k+c
k−

, (24)

σ1 = ∑
g
(P∗0 (g)R0log(R0τ) + P∗1 (g)R1log(R1τ)) , (25)

σ2 = −∑
g

P∗0 (g)
[

R0log(g + 1) +
g
τ

log
R0τ

g

]
+ (26)

−∑
g

P∗1 (g)
[

R1log(g + 1) +
g
τ

log
R1τ

g

]
.

The first two expressions can be simplified using the normalization relations

∑g
(

P∗0 (g) + P∗1 (g)
)
= 1 and ∑g P∗1 (g) =

k+ c
k−+k+ c obtaining:

σ0 = 0 (27)

σ1 =
1

k− + k+c
(R0log(R0τ)k− + R1log(R1τ)k+c) . (28)
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We now use these results to examine steady state dissipation in the equilibrium limit and the limit of the
fast switching promoter. Similar results but in slightly different limits were obtained in reference [30].

Equilibrium Limit. Equilibrium is surely achieved if there is only one promoter state. In terms
of our model this corresponds to k+ is vanishing and k− 6= 0. In this limit the activated state is never
occupied and the steady state probability goes to P∗1 (g) ≡ 0. Equations (21) and (22) result in a Poisson
distribution with mean R0τ and we can verify that detailed balance is satisfied

P∗0 (g)W(g→g±1) = P∗0 (g± 1)W(g±1→g), (29)

as confirmed by σ2 = −σ1 in Equations (25)–(27).
Fast promoter switching limit. In the fast promoter switching limit the dissipation of the

system is:

σFS =
cK

(1 + cK)2 (R0 − R1)Log
(

R0

R1

)
. (30)

σFS is always positive, but the equilibrium regime is reached only if k− or k+ asymptotically vanish.
For finite binding and unbinding rates the system is not in equilibrium despite being well described
by an equilibrium-like steady state probability distribution. Since this example is mainly presented as
a pedagogical application of dissipation, for completeness we derive similar results in the Langevin
description in Appendix D, discussing the differences in dissipation arising from model coarse
graining [81–83].

8. Discussion

All living organisms, even the most simple ones, in order to adapt to the environment, must read
and process information. In the case of cells, transmitting information means sensing chemical stimuli
via receptors and activating biochemical pathways in response to these signals. Such reading and
transmitting signals comes at a price—it consumes energy. There are plenty of possible designs of
these regulatory circuits, yet not all of them are found in nature [2]. The question arises why some
network regulatory functions are frequent and others non-existing. One way to approach such a
question is to optimize a (specific) function by choosing the circuit’s regulatory function. The choices of
optimzed function that have been considered include noise (minimization) [11], time-delay of response
(minimization) [2] or information transmitted between the input and output (maximization) [56].

Two different circuits can produce and use the same amount of proteins, but the energy dissipated
in them is different. In other words, we assume that while ATP is certainly needed in a molecular
circuit, it is part of the hardware of the network and cannot be modified a lot. Instead, we asked
about the best regulatory functions (software) we can implement, given a certain set of hardware.
For this reason we worked with a simplified binary representation of the circuits to concentrate on
the regulatory computation and turned the problem of finding the optimal regulatory function into
finding the optimal parameters of stochastic processes.

Our main previous findings about steady state circuits can be related to tasks performed by the
circuits [66]. Circuits that function close to equilibrium transmit information optimally using positive
feedback loops that are characteristic of long-term readouts responsible for cell fate commitment [84,85].
Circuits that function far from equilibrium transmit information using negative feedback loops that
are representative of shock responses that are transient but need to be fast [86,87]. Therefore cells
may implement non-equilibrium solutions when fast responses are needed and rely on equilibrium
responses when averaging is possible and there is no rush. This results agrees with the general finding
of Lan et al. [29] for continuous biochemical kinetics that negative feedback circuits always break
detailed balance and such circuits function out of equilibrium.

In general in steady state we find that models with feedback significantly outperform models
without feedback in terms of optimal information transmission between the two variables, but the
respective costs of optimal information transmission are the same. Circuits close and far to equilibrium
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rely on a mixture of slow and fast timescales to delay relaxation and transmit information. The only
other solution available in our simple setting is using the initial condition, which is efficient in terms of
information transmission but costly.

Here we identified two properties linked to feedback: it does not necessarily transmit more
information if we are allowed to pick an optimal initial condition compared to a system without
feedback. Yet in this case implementing a circuit with feedback can reduce the non-equilibrium
costs. In general, introducing an optimized intitial condition incurs a cost, but this cost is often
minimal, especially taking into account the information gained. This cost is interpretable biologically
as the external energetic cost needed to place the system in a specific initial condition. This cost
must be provided by the work of another regulatory element or circuit or an external agent or force.
This specific initial condition requires poising the system in a specific point. Yet it does not seem
biologically implausible, let alone impossible, to “prepare” the intitial state after cell division or mitosis,
or upon entering a new phase of the cell cycle [88]. For example, a specific gene expression state or
receptor state (e.g., (+,+) or (−,−)) seems easily attainable. Modifying the initial conditions from the
optimal µ0 in circuits that function out of steady state decreases the transmitted information but can
also decrease the mean dissipation. Therefore optimizing preparing the system out of steady state may
still be a useful strategy for transmitting information.

One could look at these results from two perspectives: on the one hand argue that circuits
with feedback transmit more information in the steady state setting; on the other hand feedback
exhibits frugality in expenses in the case of optimized initial distributions. One could also defend
the models without feedback stating that they can be only slightly worse in terms of information
transmission (optimized initial distribution case) and can be found to dissipate the same amount of
energy (steady state initial distribution). All circuits will reach steady state, however especially during
fast processes such as development [89] or stress response [87], the information transmitted during
short times may be what matters for downstream processes. In general regardless of the timescale,
circuits with feedback perform better (or equally well) than regulatory system with no feedback,
both in terms of information transmission and the cost of transmitting this optimal information.

The learning rate is another quantity that has been useful in studying bipartite systems in
stochastic thermodynamics [43–45]. The learning rate, defined as lx = ∂τ I[zτ , xt+τ ]|τ=0, gives the
instantaneous increase in information that the output variable has by continuing to learn about the
input variable. We calculate the learning rate for our informationally-optimal models when they are in
steady state (Figure A3). For models without feedback the learning rate is bounded by σx (as defined
in Appendix E), such that η = `x/σx ≤ 1. It this case the interpretation of the learning rate allows
us to estimate how closely the output variable is following the input variable and positive learning
rates are indicative of adaptation and learning. Not surprisingly we find that the model with steady
state initial conditions has a larger learning rate than the model with optimized initial conditions
since model Ã relies less on the parameters of the network than model A to transmit information and
more on the initial conditions (that are forgotten in the steady state calculation). Calculating a time
delay dependent learning rate would be more informative. The learning rate also increases with σ̂,
in agreement with previous statements that learning is easier far from equilibrium [29,30,43]. We also
performed the same calculation for models with feedback but as was pointed out previously [44,90,91],
the interpretation of the learning rate becomes less clear in these systems since input and output are
no longer clearly defined. Instead the above one-sided definition should be replaced by a time integral
over the trajectory to distinguish if the learning is of the other variable (z) or a previous instance of
the same variable (xt−τ). The calculated quantity instead tells us about the ability of x to respond to z,
assuming z was fluctuating freely. In that sense a positive value of lx tells us that the dynamics of the
two variables of the circuit are not completely decoupled in steady state, except in the case of model
F close to equilibrium. Our results tell us that equilibrium imposes a symmetry between input and
output, which is broken either by initial conditions (F̃ at small σ̂) or large dissipation.
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Lastly, for pedagogical purposes we attempted to discuss the link between dissipation calculations
that are often performed on binary regulatory systems and continuous variables, showing that the
simplest model of bursty transcription can result in non-zero dissipation, even in the fast switching limit
where the steady state equilibrium Poisson distribution is recovered. Bursty gene expression is wide
spread from bacteria [71,72], yeast [92] to invertebrates [73,89] and mammals [68]. Bursty self-activating
genes in intermediate fast switching regimes have also been shown to have different stability properties
than pure equilibrium systems, due to non-equilibrium cycling through the coupled promoter and
protein states [93]. While cells are not energy limited, the discussion recounted in this paper may
suggest that different modes of regulation (including burstiness) may be better suited to slow and
fast responses.
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Appendix A. Model without Feedback

The transition matrix for the model without feedback reads:

L =




u + s −u −r 0
−u u + r 0 −s
−s 0 u + r −u
0 −r −u u + s


 , (A1)

where the rates are defined in Figure 1A. By matrix diagonalization we find the eigenvalues and
eigenvectors and calculate the probability distribution p(xτ , z0) at time τ for the four states,

p+,+(τ) = p−,−(τ) =

e−
τ(s+2u+1)

λ

4(s−2u+1)

(
(µ0(s− 2u + 1) + s− 1)e

2τu
λ +

(s− 1)
(
−e

(s+1)τ
λ

)
+ (s− 2u + 1)e

τ(s+2u+1)
λ

)
,

(A2)

and
p+,−(τ) = p−,+(τ) =

e−
τ(s+2u+1)

λ

4(s−2u+1)

(
− (µ0(s− 2u + 1) + s− 1)e

2τu
λ +

(s− 1)e
(s+1)τ

λ + (s− 2u + 1)e
τ(s+2u+1)

λ

)
.

(A3)

The steady state distribution is given by the eigenvector corresponding to the zeroth eigenvalue,

p∞ =

(
u + 1

2s + 4u + 2
,

s + u
2s + 4u + 2

,
s + u

2s + 4u + 2
,

u + 1
2s + 4u + 2

)
. (A4)
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These results allow us to calculate

µ = −e−2ut(1−s)
1+s−2u + −e−(1+s)t(µ0(1+s−2u)−(1−s))

1+s−2u (A5)

= µ0e−(1+s)t + 1−s
1+s−2u

(
e−(1+s)t − e−(1+s)t

)
. (A6)

Appendix B. Model with Feedback

The transition matrix for the model with feedback reads defined in Figure 1B:

L =




α + s −y −r 0
−α y + r 0 −s
−s 0 y + r −α

0 −r −y s + α


 . (A7)

σ̂ = 0.1
σ̂ = 0.3
σ̂ = 1
σ̂ = 3
σ̂ = ∞

τ 20

1

0

σ̂ = 0.1
σ̂ = 0.3
σ̂ = 1
σ̂ = 3
σ̂ = ∞

τ

s∗

20

1

0

τ

S̃

20

1

0
τ

u∗

S

20

1

0

Figure A1. The optimal parameters as a function of the readout delay, τ, for the models without
feedback, S and S̃, at different constrained steady state dissipation rates σ̂ss.

The detailed derivation of the steady state quantities and eigenvalues is given in Mancini et al. [66].
Here we just summarize the main results. The steady state probability distribution is:

p∞ =
1

2A
{1 + y, s + α, s + α, 1 + y}, (A8)

where we have defined A and ρ in Equations (18) and (19).
The eigenvalues of the matrix in Equation (A7) are {λi} = {0, A, (A − ρ)/2, (A + ρ)/2} and

λ = (A− ρ)/2 is always the smallest eigenvalue. For a model with steady state initial conditions
µ reads

µ = exp
(
− A

2λ τ
) {

q cosh
( ρ

2λ
τ
)
−

[
s2 − (1 + y)2 − 4α + α2 + 2s(2y + α)

]

Aρ
sinh

( ρ

2λ
τ
) }

,
(A9)

with q = (1 + y− s− α)/A and the rescaled time τ = tλ.
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σ̂ = 0.02
σ̂ = 0.2
σ̂ = 2
σ̂ = ∞

τ 20

1

0

σ̂ = 0.02
σ̂ = 0.2
σ̂ = 2
σ̂ = ∞

τ

y∗

20

1

0

τ 20

1

0
τ

s∗
20

1

0

τ

F̃

20

1

0
τ

α
∗

F

20

1

0

Figure A2. The optimal parameters as a function of the readout delay τ for models with feedback, F
and F̃, at different constrained steady state dissipation rates σ̂ss.

Appendix C. Entropy Production Rate

In this Appendix we present an alternative derivation of dissipation. We denote probability of
state i by pi and the entropy of the distribution is defined as:

S(t) = −∑
i

pi(t) log pi(t). (A10)

The entropy production rate formula is derived by differentiating the entropy with respect to time:

Ṡ(t) = −∑
i

ṗi(t) log pi(t)−∑
i

pi(t)
1

pi(t)
ṗi(t)

= −∑
i

ṗi(t) log pi(t)−
(

∑
i

pi(t)

)′
.

Denoting by wij the transition rate from state i to state j, we obtain ṗi(t) = ∑
j 6=i

wji pj(t)− wij pi(t).

We define wii as − ∑
j,j 6=i

wij, so that we can write compactly ṗi(t) = ∑
j

pj(t)wji and the expression for

Ṡ(t) becomes:

Ṡ(t) = −∑
i

(
∑

j
wji pj(t)

)
log pi(t)− 0

= −∑
i,j

wji pj(t) log pi(t).
(A11)
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With the definition of wii, the terms wij satisfy ∑j wij = 0. The following expression

−∑
i

pi(t) log pi(t)∑
j

wij = −∑
i,j

wij log pi(t) is then equal to zero and we subtract it form (A11) to

obtain a compact form:

Ṡ(t) =

(
∑
i,j

pi(t)wij log pi(t)−∑
i,j

pi(t)wij log pj(t)

)

= ∑
i,j

pi(t)wij log pi(t)
pj(t)

.
(A12)

Further formula manipulation gives:

Ṡ(t) =
1
2 ∑

i,j
pi(t)wij log

pi(t)
pj(t)

+
1
2 ∑

j,i
pj(t)wji log

pj(t)
pi(t)

=
1
2 ∑

i,j
pi(t)wij log

pi(t)
pj(t)

− 1
2 ∑

j,i
pj(t)wji log

pi(t)
pj(t)

=
1
2 ∑

i,j

(
pi(t)wij − pj(t)wji

)
log

pi(t)
pj(t)

=
1
2 ∑

i,j

(
pi(t)wij − pj(t)wji

)
log

wji

wij
︸ ︷︷ ︸

entropy flow

+ (A13)

1
2 ∑

i,j

(
pi(t)wij − pj(t)wji

)
log

pi(t)wij

pj(t)wji
︸ ︷︷ ︸

entropy production rate

.

The difference between the entropy production rate and the entropy flow, is the rate at which the
whole entropy of a system changes. The entropy flow quantifies the flux of entropy from the system to
the outside. In the steady state, as the entropy does not change, the two terms are equal, which means
that the whole entropy produced by the system is dissipated.

The second underbracket of (Equation (A13)) can be rewritten in the familiar form:

σ(t) = ∑
i,j

pi(t)wij log
pi(t)wij

pj(t)wji
. (A14)

Appendix D. Langevin Description of Bursty Gene Regulation

A bursty model of transcription such as the one presented in Section 7.1 can be written in a
Langevin description introducing the frequency for the promoter to be in the activated state n [53]:

dn
dt

= −ck+n− k−n + ξn, (A15)

dg
dt

= Rn− 1
τ

g + ξg, (A16)

where the fluctuations are given by

〈ξn(t)ξn(t′)〉 = 2(k+c(1− n̄) + k−n̄)δ(t− t′), (A17)

〈ξg(t)ξg(t′)〉 = 2(Rn̄ + ḡ/τ)δ(t− t′). (A18)

These equations describe the fluctuations of the promoter state and the protein concentration g

around the equilibrium solution (n, g) =
(

k+ c
k−+k+ c ,

k+ cRτ

k−+k+ c

)
. In order to lighten notations, we have
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used (n, g) instead of the standard form (δn, δg) to describe fluctuations. Equations (A15) and (A16)
can be recast into the matrix form form Ẋ = −AX + ξ with

A =

(
ck+ + k− 0
−R 1

τ

)
, (A19)

and the noise correlation matrix 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′) is

D =

(
k+c(1− n̄) + k−n̄ 0

0 (Rn̄ + ḡ/τ)

)
. (A20)

The correlation matrix Σ can be computed with standard methods [56], by inverting the relation
D = AΣ + ΣAt:

Σ =

(
〈nn〉 〈ng〉
〈gn〉 〈gg〉

)
= 1

(ck++k− )
2 ·




2ck−k+

2ck− k+ Rτ

((ck+τ+k−τ+1)
2ck− k+ Rτ

(ck+τ+k−τ+1)
2ck+ Rτ(τ((ck++k− )

2+k−R)+ck++k−)
(ck+τ+k−τ+1)


 .

(A21)

Entropy Production

The probability of a trajectory of a multivariate Langevin process can be calculated via the
Onsager-Machlup formalism. Using this probability as starting point, the dissipation can be exactly
derived (see Ref. [94], where the computation is done in detail and in a self-contained fashion). For the
case of symmetric variables under time reversal the entropy production can be written in a compact
form, where we have the index k runs over all the variables:

W(t) = ∑
k

D−1
kk

∫ t

0
ds (AX)k Ẋk. (A22)

In our case, using Equations (A19) and (A20), one has

W(t) = D−1
nn
∫ t

0 dt′ (ck+n(t′)− k−n(t′))ṅ(t′)+

D−1
gg
∫ t

0 dt′ (Rn(t′)− 1
τ g(t′))ġ(t′).

(A23)

F̃

F

S̃

S

σ̂ ss

lx

20

1

0

Figure A3. The learning rate for the output variable x as a function of the rescaled steady state
dissipation, σ̂ss, calculated at steady state for models with (F and F̃) and without feedback (S and S̃).
Models S̃ and F̃ have optimized initial conditions (that do not enter this calculations except for the
optimal parameters) and models S and F are constrained to have initial conditions in steady state.
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Equation (A23) can be simplified by considering that all terms which are exact derivatives are
not extensive in time (terms like

∫ t
0 dt′n(t′)ṅ(t′) = 1

2
(
n2(t)− n2(0)

)
or its equivalent in g can be

neglected in the large t limit). All the steady state correlations are also time translational invariant,
i.e.,

〈∫ t
0 dt′n(t′)ġ(t′)

〉
≡ t 〈nġ〉. As a result, the dissipation is:

σLE = lim
t→∞

〈Wt〉
t

=
R

Rn + g
τ

〈nġ〉 . (A24)

The correlation 〈nġ〉 in Equation (A24) can be computed by replacing ġ with Equation (A16),
yielding 〈nġ〉 = R 〈nn〉 − 1

τ 〈ng〉. Substituting this expression into Equation (A21) we obtain:

σLE(c) =
Rτ(1− ck+τs)

τ + τs
, (A25)

where τs = (ck+ + k−)
−1. Note that in the limit τs → 0 the dissipation is not dependent on c and equal

to σLE
0 = R/(1 + cK), where K is equal to k+/k− . Additionally, for K → ∞ (which corresponds to no

flux to the inactive state, k− → 0) the dissipation vanishes like in the master equation formulation
(Equation (30)).

As final remark, we note that a Langevin formulation is a coarse grained description of the
Master equation approach described in Section 7.1. This kind of coarse graining procedure integrates
away degrees of freedom which can carry non-equilibrium currents and can lead to lower values of
dissipation [81–83]. For instance, consider the limit R0 ≈ ε small but finite, Equation (30) becomes
σME = cK(1 + R1)/(1 + cK)2 log R1

ε and one finds σME > σLE.

Appendix E. Learning Rate

Lastly, following Barato et al. [43] we consider the learning rate in steady state (we limit ourselves
to the steady state discussion since it allows us to get analytical intuition)

lx = −∑
i

p∞
i ∑

i 6=j
wij log

p∞
i

p∞
j

, (A26)

which was defined to describe the rate at which the output x learns about the dynamics of the stochastic
input z. For our system, the learning rate is explicitly given by

−lx = p∞
1 w13 log p∞

1
p∞

3
+ p∞

3 w31 log p∞
3

p∞
1

p∞
2 w24 log p∞

2
p∞

4
+ p∞

4 w42 log p∞
4

p∞
2

,
(A27)

and is bounded by σx defined as:

σx = (p∞
1 w13 − p∞

3 w31)w13 log w13
w31

(p∞
2 w24 − p∞

4 w42) log w24
w42

.
(A28)

For the models without feedback (S and S̃) the learning rate is:

lx =
u(s− 1)

s + 2u + 1
log

u + s
u + 1

. (A29)

In models without feedback w12 = w21 and w34 = w43 and the steady state dissipation rate comes
only from the output, x (σz = 0 and σx = σss) and is given by Equation (15), such that

η =
lx

σx
= log

u + s
u + 1

/log s ≤ 1. (A30)
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For models with feedback (F and F̃) the learning rate is harder to interpret since the input no longer
changes independently of the output. Formally we can still calculate the quantity in Equation (A27) as

lx =
y(s− α)

α + s + y + 1
log

y + 1
α + 1

, (A31)

and

σx =
y(s− α)

α + s + y + 1
log s. (A32)

The informational efficiency is:

η =
y + 1
α + 1

/ log s, (A33)

which is bounded by 1 only if sy ≤ α (see Figure A3).
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59. Sokolowski, T.R.; Tkačik, G. Optimizing information flow in small genetic networks. IV. Spatial coupling.
Phys. Rev. E 2015, 91, 062710. [CrossRef] [PubMed]

60. de Ronde, W.H.; Tostevin, F.; ten Wolde, P.R. Feed-forward loops and diamond motifs lead to tunable
transmission of information in the frequency domain. Phys. Rev. E 2012, 86, 021913. [CrossRef] [PubMed]

61. Gregor, T.; Wieschaus, E.F.; McGregor, A.P.; Bialek, W.; Tank, D.W. Stability and nuclear dynamics of the
Bicoid morphogen gradient. Cell 2007, 130, 141–152. [CrossRef]

62. Gregor, T.; Tank, D.W.; Wieschaus, E.F.; Bialek, W. Probing the limits to positional information. Cell 2007,
130, 153–164. [CrossRef]

63. Pahle, J.; Green, A.K.; Dixon, C.J.; Kummer, U. Information transfer in signaling pathways: A study using
coupled simulated and experimental data. BMC Bioinform. 2008, 9, 139. [CrossRef]

64. Selimkhanov, J.; Taylor, B.; Yao, J.; Pilko, A.; Albeck, J.; Hoffmann, A.; Tsimring, L.; Wollman, R. Accurate
information transmission through dynamic biochemical signaling networks. Science 2014, 346, 1370–1373.
[CrossRef]

65. Mancini, F.; Wiggins, C.H.; Marsili, M.; Walczak, A.M. Time-dependent information transmission in a model
regulatory circuit. Phys. Rev. E 2013, 88, 022708. [CrossRef] [PubMed]

66. Mancini, F.; Marsili, M.; Walczak, A.M. Trade-offs in delayed information transmission in biochemical
networks. J. Stat. Phys. 2015, 1504, 03637. [CrossRef]

67. Kepler, T.B.; Elston, T.C. Stochasticity in Transcriptional Regulation: Origins, Consequences,
and Mathematical Representations. Biophys. J. 2001, 81, 3116–3136. [CrossRef]

68. Raj, A.; Peskin, C.S.; Tranchina, D.; Vargas, D.Y.; Tyagi, S. Stochastic mRNA Synthesis in Mammalian Cells.
PLoS Biol. 2006, 4, e309. [CrossRef] [PubMed]

69. Friedman, N.; Cai, L.; Xie, X. Linking Stochastic Dynamics to Population Distribution: An Analytical
Framework of Gene Expression. Phys. Rev. Lett. 2006, 97, 168302. [CrossRef] [PubMed]

70. Walczak, A.M.; Sasai, M.; Wolynes, P.G. Self-consistent proteomic field theory of stochastic gene switches.
Biophys. J. 2005, 88, 828–850. [CrossRef] [PubMed]

71. Cai, L.; Friedman, N.; Xie, X.S. Stochastic protein expression in individual cells at the single molecule level.
Nature 2006, 440, 358–362. [CrossRef]

72. So, L.h.; Ghosh, A.; Zong, C.; Sepúlveda, L.A.; Segev, R.; Golding, I. General properties of the transcriptional
time-series in E. Coli. Nat. Genet. 2011, 43, 554–560. [CrossRef]

http://dx.doi.org/10.1103/PhysRevX.4.031015
http://dx.doi.org/10.1088/1742-5468/2009/09/P09011
http://dx.doi.org/10.1371/journal.pcbi.1003974
http://dx.doi.org/10.1103/PhysRevE.93.022116
http://dx.doi.org/10.1103/PhysRevLett.121.108301
http://dx.doi.org/10.1088/0953-8984/23/15/153102
http://dx.doi.org/10.1103/PhysRevE.80.031920
http://dx.doi.org/10.1103/PhysRevE.81.041905
http://www.ncbi.nlm.nih.gov/pubmed/20481751
http://dx.doi.org/10.1103/PhysRevE.85.041903
http://www.ncbi.nlm.nih.gov/pubmed/22680494
http://dx.doi.org/10.1103/PhysRevE.80.041921
http://www.ncbi.nlm.nih.gov/pubmed/19905356
http://dx.doi.org/10.1016/j.bpj.2014.01.014
http://www.ncbi.nlm.nih.gov/pubmed/24606943
http://dx.doi.org/10.1103/PhysRevE.91.062710
http://www.ncbi.nlm.nih.gov/pubmed/26172739
http://dx.doi.org/10.1103/PhysRevE.86.021913
http://www.ncbi.nlm.nih.gov/pubmed/23005791
http://dx.doi.org/10.1016/j.cell.2007.05.026
http://dx.doi.org/10.1016/j.cell.2007.05.025
http://dx.doi.org/10.1186/1471-2105-9-139
http://dx.doi.org/10.1126/science.1254933
http://dx.doi.org/10.1103/PhysRevE.88.022708
http://www.ncbi.nlm.nih.gov/pubmed/24032865
http://dx.doi.org/10.1007/s10955-015-1332-8
http://dx.doi.org/10.1016/S0006-3495(01)75949-8
http://dx.doi.org/10.1371/journal.pbio.0040309
http://www.ncbi.nlm.nih.gov/pubmed/17048983
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://www.ncbi.nlm.nih.gov/pubmed/17155441
http://dx.doi.org/10.1529/biophysj.104.050666
http://www.ncbi.nlm.nih.gov/pubmed/15542546
http://dx.doi.org/10.1038/nature04599
http://dx.doi.org/10.1038/ng.821


Entropy 2019, 21, 1212 27 of 27

73. Desponds, J.; Tran, H.; Ferraro, T.; Lucas, T.; Dostatni, N.; Walczak, A.M. Precision of Readout at the
hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos. PLoS Comput. Biol.
2016, 12, e1005256. [CrossRef]

74. Cover, T.; Thomas, J. Elements of Information Theory; John Wiley: New York, NY, USA, 1991.
75. Levine, M.V.; Weinstein, H. AIM for Allostery: Using the Ising Model to Understand Information Processing

and Transmission in Allosteric Biomolecular Systems. Entropy 2015, 17, 2895–2918. [CrossRef]
76. Cuendet, M.A.; Weinstein, H.; Levine, M.V. The Allostery Landscape: Quantifying Thermodynamic

Couplings in Biomolecular Systems. J. Chem. Theory Comput. 2016. [CrossRef] [PubMed]
77. Crooks, G.E. Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible

Markovian Systems. J. Stat. Phys. 1998, 90, 1481–1487. [CrossRef]
78. Tome, T.; de Oliveira, M.J. Entropy Production in Nonequilibrium Systems at Stationary States.

Phys. Rev. Lett. 2012, 108, 020601. [CrossRef]
79. Hornos, J.E.M.; Schultz, D.; Innocentini, G.C.P.; Wang, J.; Walczak, A.M.W.; Onuchic, J.N.; Wolynes, P.G.

Self-regulating gene: An exact solution. Phys. Rev. E 2005, 1–5. [CrossRef]
80. Miekisz, J.; Szymanska, P. Gene Expression in Self-repressing System with Multiple Gene Copies.

Bull. Math. Biol. 2013, 317–330. [CrossRef]
81. Crisanti, A.; Puglisi, A.; Villamaina, D. Nonequilibrium and information: The role of cross correlations.

Phys. Rev. E 2012, 061127. [CrossRef]
82. Puglisi, A.; Pigolotti, S.; Rondoni, L.; Vulpiani, A. Entropy production and coarse graining in Markov

processes. J. Stat. Mech. Theory Exp. 2010, 05015. [CrossRef]
83. Busiello, D.M.; Hidalgo, J.; Maritan, A. Entropy production for coarse-grained dynamics. arXiv 2019,

arXiv:1810.01833v2.
84. Xiong, W.; Ferrell, J.E., Jr. A positive feedback based bistable memory module that governs a cell fate

decision. Nature 2003, 426, 460–465. [CrossRef]
85. Tanaka, K.; Augustine, G.J. A Positive Feedback Signal Transduction Loop Determines Timing of Cerebellar

Long-Term Depression. Neuron 2008, 59, 608–620. [CrossRef]
86. Guisbert, E.; Herman, C.; Lu, C.Z.; Gross, C.A. A chaperone network controls the heat shock response in

E. coli. Genes Dev. 2004, 2812–2821. [CrossRef] [PubMed]
87. Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-zatorsky, N.; Levine, A.J.; Elowitz, M.B.; Alon, U. Dynamics of the

p53-Mdm2 feedback loop in individual cells. Nat. Genet. 2004, 36, 147–150. [CrossRef] [PubMed]
88. Tyson, J.J.; Novák, B. Models in biology: Lessons from modeling regulation of the eukaryotic cell cycle.

BMC Biol. 2015, 1–10. [CrossRef] [PubMed]
89. Lucas, T.; Tran, H.; Perez Romero, C.A.; Guillou, A.; Fradin, C.; Coppey, M.; Walczak, A.M.; Dostatni, N.

3 minutes to precisely measure morphogen concentration. PLoS Genet. 2018, 14, e1007676. [CrossRef]
90. Sagawa, T.; Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic

thermodynamics. Phys. Rev. Lett. 2012, 109, 1–5. [CrossRef]
91. Sagawa, T.; Ueda, M. Nonequilibrium thermodynamics of feedback control. Phys. Rev. E Stat. Nonlinear Soft

Matter Phys. 2012, 85, 1–16. [CrossRef]
92. Raser, J.; O’Shea, E. Control of stochasticity in eukaryotic gene expression. Science 2004, 304, 1811–1814.

[CrossRef]
93. Walczak, A.M.; Onuchic, J.N.; Wolynes, P.G. Absolute rate theories of epigenetic stability. Proc. Natl. Acad.

Sci. USA 2005, 102, 18926–18931. [CrossRef]
94. Puglisi, A.; Villamaina, D. Irreversible effects of memory. EPL (Europhys. Lett.) 2009, 88, 30004. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pcbi.1005256
http://dx.doi.org/10.3390/e17052895
http://dx.doi.org/10.1021/acs.jctc.6b00841
http://www.ncbi.nlm.nih.gov/pubmed/27766843
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevLett.108.020601
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1007/s11538-013-9808-7
http://dx.doi.org/10.1103/PhysRevE.85.061127
http://dx.doi.org/10.1088/1742-5468/2010/05/P05015
http://dx.doi.org/10.1038/nature02089
http://dx.doi.org/10.1016/j.neuron.2008.06.026
http://dx.doi.org/10.1101/gad.1219204
http://www.ncbi.nlm.nih.gov/pubmed/15545634
http://dx.doi.org/10.1038/ng1293
http://www.ncbi.nlm.nih.gov/pubmed/14730303
http://dx.doi.org/10.1186/s12915-015-0158-9
http://www.ncbi.nlm.nih.gov/pubmed/26129844
http://dx.doi.org/10.1371/journal.pgen.1007676
http://dx.doi.org/10.1103/PhysRevLett.109.180602
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1126/science.1098641
http://dx.doi.org/10.1073/pnas.0509547102
http://dx.doi.org/10.1209/0295-5075/88/30004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Model without Feedback: blackS and 
	Models with Feedback: blackF and  

	Information
	Non-Equilibrium Dissipation
	Setup of the Optimization
	Results
	Unconstrained Optimization
	Constraining ss
	Cost of Optimal Information
	Suboptimal Circuits

	Gene Regulatory Circuits
	Bursty Gene Regulation

	Discussion
	Model without Feedback
	Model with Feedback
	Entropy Production Rate
	Langevin Description of Bursty Gene Regulation
	Learning Rate
	References

