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Abstract

Bone mineral density (BMD) is a highly heritable complex trait and is a key indicator for diagnosis and treatment for
osteoporosis. In the last decade, numerous susceptibility loci for BMD and fracture have been identified by genome-wide
association studies (GWAS); however, fine mapping of these loci is challengeable. Here, we proposed a new long-range
fine-mapping approach that combined superenhancers (SEs) and microRNAs (miRNAs) data, which were two important
factors in control of cell identity and specific differentiation, with the GWAS summary datasets in cell-type-restricted way.
Genome-wide SE-based analysis found that the BMD-related variants were significantly enriched in the osteoblast SE
regions, indicative of potential long-range effects of such SNPs. With the SNP-mapped SEs (mSEs), 13 accessible long-range
mSE-interacted miRNAs (mSE-miRNAs) were identified by integrating osteoblast Hi-C and ATAC-seq data, including three
known bone-related miRNAs (miR-132-3p, miR-212-3p and miR-125b-5p). The putative targets of the two newly identified
mSE-miRNAs (miR-548aj-3p and miR-190a-3p) were found largely enriched in osteogenic-related pathway and processes,
suggesting that these mSE-miRNAs could be functional in the regulation of osteoblast differentiation. Furthermore, we
identified 54 genes with the long-range ‘mSE-miRNA’ approach, and 24 of them were previously reported to be related to
skeletal development. Besides, enrichment analysis found that these genes were specifically enriched in the
post-transcriptional regulation and bone formation processes. This study provided a new insight into the approach of
fine-mapping of GWAS loci. A tool was provided for the genome-wide SE-based analysis and the detection of long-range
osteoblast-restricted mSE-miRNAs (https://github.com/Zheng-Lab-Westlake/Osteo-Fine-Mapp-SNP2SE2miRNA).

Introduction
Osteoporosis is a common skeletal disease characterized by
reduced bone mass and deterioration in bone microarchitecture,
leading to an increased propensity to fragility fracture (1). Bone
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mineral density (BMD), which is generally evaluated by dual
energy X-ray absorptiometry scan (DXA), is a key indicator for
diagnosis and treatment for osteoporosis (2). Bone mass could
also be estimated by ultrasound approach by considering both
the speed of sound and bone ultrasound attenuation. In the last
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decade, genome-wide association studies (GWAS) have identi-
fied many susceptible loci for BMD at several anatomical sites
such as lumbar spine (LS), femoral neck (FN), forearm (FA) and
total body (3–6). In 2018, a GWAS with 426 824 individuals from
UK biobank dataset identified 518 genome-wide significant loci
associated with heel estimated BMD (eBMD), including 301 novel
loci (7). However, it is challengeable to pinpoint susceptible genes
from an associated locus, some studies have successfully identi-
fied the determinant genes of BMD and fracture, such as EN1 and
DAAM2 (5,7). The commonly used approach for susceptible gene
selection is to identify the lead SNP-overlapped protein coding
gene directly or the nearest gene (8). However, the vast majority
of associated variants are non-coding, residing at intronic and
intergenic regions in genome. Besides that, some variants appear
to be in one gene but influencing the expression of others
due to the spatial state of chromatin (9). One example is that
obesity-associated variants within FTO gene form long-range
functional connections with IRX3 (10). Variants reside in some
functionally important region, such as enhancers, may affect
distant genes by long-range interactions, cell-type-specific Hi-
C and ATAC-seq, which could show spatial interactions and the
accessibility of chromatin (11,12), might detect these long-range
interactions.

Superenhancers (SEs) are large clusters of regulatory regions
that consist of multiple enhancers occupied by high density
of mediator complexes that drive expression of cell-identity
genes (13–15), previous studies found that enhancers within SEs
possess stronger activating features than normal enhancers (16–
18). SEs are generally enriched for disease-associated variants,
especially for the SEs defined in the disease-relevant cell type or
tissue (15,19). For example, SEs identified in human pancreatic
islet cells are enriched for SNPs associated with type 2 dia-
betes (20), and Alzheimer’s disease-associated SNPs are found
to reside in brain tissue SEs (15).

MicroRNAs (miRNAs) are a class of short non-coding RNAs
that block protein translation or modulate mRNA stability by
specifically binding the complementary sequences in the 3′

untranslated region (UTR) of mRNAs (21). Many miRNAs are
found involved in multiple developmental osteogenic signaling
pathways and osteoblast growth and differentiation pathways
(22–25), such as miR-125b could downregulate cell proliferation
and inhibit osteoblastic differentiation (26), and miR-212 and
miR-384 could promote osteogenic differentiation via targeting
RUNX2 (27). MiRNAs are transcribed by RNA polymerase (Pol)
II/III into primary miRNA (pri-miRNA), which are processed by
Drosha/Dgcr8 into precursor miRNA (pre-miRNA) (28).

Interestingly, the tissue-specific miRNA expression atlas
was found largely shaped by SEs and H3K4me3 domains, SEs
could facilitate transcription, Drosha/Dgcr8 recruitment and pri-
miRNA processing to boost cell-type-specific miRNA production
(14). In addition, previous studies have found that SEs and
miRNAs both play a key role in the control of cell-type-specific
transcriptomes (14,29), in view of this, SE-interacted miRNAs (SE-
miRNAs) may have some specific properties in the maintenance
of cell identity and differentiation. We therefore applied a cell-
type-restricted approach that combined SEs and miRNAs for
the fine-mapping of GWAS SNPs. In this study, we mapped SEs
with BMD-associated SNPs from 10 large-scale human GWAS
datasets and identified long-range osteoblast SNP-mapped SE-
miRNAs and genes for human BMD and fracture by integrating
multiple genomic and epigenomic datasets. Our approach could
also be generalized to the other cell-type-specific traits or
diseases.

Results
BMD-associated SNP landscape in human osteoblast
SEs and genome-wide SE-based analysis

The overall study design was shown in Figure 1. We employed
histone modification marker of H3K27ac to shape the enhancer
regions in genome in human osteoblast. A total of 72 936 and
116 190 peaks were initially called from two replicates H3K27ac
ChIP-seq data, and a total of 1224 and 1149 SEs were detected
from the peaks (Supplementary Material, Fig. S1, Supplementary
Material, Tables S1 and S2). We next compared them with the
human osteoblast SEs from SEA and dbSUPER database, the
results showed a high degree of consistency between these
SEs (Supplementary Material, Fig. S2). Besides, we also com-
pared our SEs with the human fetal osteoblasts (undifferentiated
and differentiated) SEs from SEdb, there were few differences
were found, this could be caused by the different osteoblastic
cell type used (Supplementary Material, Fig. S2). We extracted
SNPs that resided in SEs from 10 large-scale BMD-related GWAS
datasets, the landscapes of such SNPs in the genome were
shown in Figure 2 and Supplementary Material, Figure S3. We
found that many genome-wide significant BMD-associated SNPs
were enriched in osteoblast SEs, particularly for heel eBMD and
total body DXA BMD (Fig. 2). This result suggested a potential
long-range effect of these SNPs via SEs. We then pruned out
all non-independent SNPs in the 10 GWAS datasets. The SE-
based mapping analysis for two replicates then respectively
yielded 202 and 291 SNP-mapped SEs (mSEs) that passed Bon-
ferroni multiple-test, these osteoblast mSEs could be functional
important for BMD (Supplementary Material, Tables S3 and S4).

Identification of Long-range mSE-miRNA
in human osteoblast

We first defined the promoter bait regions of 1914 pri-miRNAs
(Supplementary Material, Table S5). After applying the promoter-
focused Hi-C data and overlapping analysis, we found there were
74 pri-miRNAs that had DNA-looping interaction with mSEs
(Supplementary Material, Table S6), most of them had at least
two Hi-C interactions and a half of mSEs were mapped by 50–
90 independent SNPs (Supplementary Material, Figure S4). The
SNP signals in these mSEs were mainly from heel ultrasound
eBMD GWAS, a few of signals were from total body and other
anatomical sites DXA BMD GWAS. Among 74 mSE-miRNAs, 12 of
them were previously found to be associated with osteogenic dif-
ferentiation, and two pri-miRNAs were associated with muscle
proliferation (Supplementary Material, Table S7).

We further investigated the chromatin accessibility of
the 74 mSE-miRNAs by ATAC-seq data in primary human
mesenchymal stem cells (MSCs)-derived osteoblasts (9). Thirteen
pri-miRNAs were finally identified that had the open chro-
matin conservative region in the corresponding promoter or
transcriptional start sites (TSS) region, Figure 3 demonstrated
the detailed mapping and long-range interactions results. The
distributions of H3K27ac peaks on the genome in two biological
replicates showed the similar pattern, and the number of long-
range interactions and distance between mSE and miRNAs were
varied (Fig. 3). Among all mSE-miRNAs, mir-125b-1 (Fig. 3A), mir-
548aj-1 (Fig. 3D), mir-614 (Fig. 3F) and mir-5702 (Fig. 3J) were
found to have the most DNA-looping interactions with mSE,
which respectively reached 0.11, 1.01, 0.56 and 0.3 per kb in mSE,
reflecting the high spatial contact density in genome (Table 1);
the mir-614 (Fig. 3F) and mir-3650 (Fig. 3H) showed the furthest
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Figure 1. Study design.

distance (>250 kb) with the corresponding mSE, whereas
mir-6870 (Fig. 3 L) was found overlapped within mSE; the
mir-132 (Fig. 3B), mir-212 (Fig. 3B) and mir-614 (Fig. 3F) were
found interacted by two remote mSEs simultaneously. Besides,
there were two pri-miRNAs, mir-125b-1 (Fig. 3A, mSE P-
value: 1.9e−11, best SNP P-value: 3.6e−8) and mir-583 (Fig. 3E,
mSE P-value: 1.7e−17, best SNP P-value: 8.6e−14), that were
found interacted with the mSEs mapped by intergenic SNPs,
indicative of the functional importance of GWAS signals in such

regions (Table 1). These accessible mSE-miRNAs could be the
vehicles for SNP loci to regulate the expression of genes in
osteoblast.

Putative targets of 13 accessible mSE-miRNAs
and biological process enrichment

We predicted the target genes of the 13 osteoblast-restricted
mSE-miRNAs by a two-step approach. TargetScan (30) and
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Figure 2. Genome-wide landscape of GWAS SNP loci reside in human osteoblast SEs. Each dot represented a SNP, only SE-resided SNPs were plotted, chromosomes were

shown in different colors. Y-axis within each circle showed the P-value in corresponding GWAS dataset. A total of three traits, including fracture, total body DXA BMD

and ultrasound estimated heel BMD (eBMD) were plotted from inside to outside. SEs loci were shown as bars within chromosomes; the color of each bar represented

the number of contained SNPs. Other seven datasets included in this study were shown in Supplementary Material, Figure S3.

miRDB (31) database with their respective prediction confidence
score were jointly used to form the initial pool of putative targets,
and the osteoblast Ago2 CLIP-seq data was then used to filter out
the false positive targets. The results showed that the number
of putative targets for each miRNA was varied, miR-614 had
only 21 putative targets whereas miR-548aj-3p and miR-190a-
3p had 503 and 527, respectively, most of the rest of miRNAs
had 100–200 putative targets (Fig. 4A). Besides, we found that
the targets of miRNAs were largely shared with each other,
indicating the functional similarity between them in human
osteoblast (Fig. 4A). Furthermore, our results showed that miR-
132-3p and miR-212-3p, which belongs to the same cluster, had
almost the same putative targets. The whole lists of putative
target genes of mature miRNAs were detailed in Supplementary
Material, Table S8.

We performed the functional pathway and process enrich-
ment analysis for the putative targets of each mSE-miRNA.
The results of top 20 enriched Gene Ontology (GO) biological
processes showed that the putative targets of miR-548aj-3p, miR-
190a-3p, miR-132-3p, miR-212-3p, miR-125b-5p and miR-3650

were significantly enriched in the muscle structure development
(GO Term ID: 0061061), Wnt signaling pathway (GO Term ID:
0016055), skeletal system development (GO Term ID: 0001501)
and mesenchyme development (GO Term ID: 0060485), imply-
ing that these miRNAs were likely to be involved in biological
processes of bone formation in human osteoblast (Fig. 4B and
Supplementary Material, Table S9). Besides, we found putative
targets of these miRNAs were also significantly enriched in some
growth and cell differentiation pathways, such as response to
growth factor (GO Term ID: 0070848) and tissue morphogenesis
(GO Term ID: 0048729) (Fig. 4B), indicative of the potential effects
of these miRNAs in growth and differentiation of osteoblast.

To further reveal the functional enrichment of 13 osteoblast-
restricted accessible mSE-miRNAs in bone-related biological
process, we extracted enrichment results of 18 GO terms (Fig. 4C)
based on several key words, including ‘osteoblast’, ‘osteoclast’,
‘skeletal system’, ‘skeletal muscle’, ‘bone’, ‘ossification’, ‘BMP’
and ‘wnt signaling pathway’ from all enriched GO biological
process results (Supplementary Material, Table S10). Our results
showed that the skeletal system development (GO Term ID:

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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Figure 3. The regional association plots for 13 accessible mSE-miRNAs. mSE: GWAS SNP-mapped superenhancer. mSE-miRNA: mSE-interacted miRNA. The peak tracks

in blue showed H3K27ac modifications in two biological replicates in osteoblast and green track showed the open chromatin regions that detected by ATAC-seq. The

miRNA was considered to be accessible when the open chromatin regions found in its promoter or transcriptional start sites. The yellow bar represented SEs that

were detected by ROSE and pooled in two H3K27ac datasets, and red curves represented DNA-looping interactions. Note that the genome scale for each panel was

different and only most significant mapping results were plotted across all GWAS datasets. The regional associations were drawn by LocusZoom, the peak tracks and

Hi-C interactions were drawn by WashU Epigenome Browser.

0001501) was enriched by the majority of the miRNAs with a high
target gene ratio (Fig. 4C). Besides, the putative targets of miR-
548aj-3p and miR-190a-3p were found respectively enriched in
16 and 14 out of a total of 18 bone-related processes (Fig. 4C).
Two previously reported osteogenic differentiation regulator
miRNAs, miR-212-3p (27) and miR-132-3p (32), were also found
largely enriched in such processes (Fig. 4C). These results
suggested that the osteoblast-restricted mSE-miRNAs could
potentially maintain the cell identify and regulate osteogenic
differentiation. However, no osteogenic process was found
enriched for miR-614. Moreover, we found that the putative
target genes of miR-125b-5p were largely enriched in multiple
miRNA production and metabolic pathways, such as the
production of miRNAs involved in gene silencing by miRNA (GO
Term ID: 0035196) and the positive regulation of gene silencing

by miRNA (GO Term ID: 2000637) (Fig. 4D), indicating that miR-
125b-5p may act as a master miRNA to dominate the miRNA
pool via SEs in osteoblast (14).

Protein–protein interaction network
and hub-gene group

We next performed protein–protein interaction (PPI) network
analysis for the 1279 unique putative targets of 13 osteoblast-
restricted mSE-miRNAs (Supplementary Material, Table S8).
A total of 54 hub-genes were finally identified as densely
connected network components and constituted seven hub-
gene groups [Molecular Complex Detection (MCODE1–7)]
(Fig. 5A), and each hub-gene could be targeted by multiple mSE-
miRNAs, indicative of a complementary regulation patterns in

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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Figure 4. The top enriched biological pathways and processes for the putative targets of 13 mSE-miRNAs. (A) The numbers of putative target genes of each mSE-miRNAs,

purple curves represented the targets overlapping between miRNAs. (B) The top 20 GO biological processes enrichment clusters for the putative targets of miRNAs.

(C) The enrichment results in 18 osteogenic-related biological processes. Note that no such process was enriched for miR-614. (D) Top 10 enrichment results for the

putative targets of miR-125b-1. All enriched GO biological process clusters for the 13 accessible mSE-miRNAs were shown in Supplementary Material, Table S10.

osteoblast (Fig. 5B). We found that there was no overlap between
the genes directly resided in or near GWAS loci and the hub-
genes identified in the long-range fine-mapping way by the
corresponding GWAS loci (Table 1). Besides, the genes fine-
mapped in this way were more than twice the corresponding
GWAS loci genes (Table 1). Moreover, we investigated all 54 hub-
genes identified in the long-range ‘mSE-miRNA’ fine-mapping
approach with previous functional experiments studies, and a
total of 24 of them have been found to be directly related to the
bone mass and skeletal development (Supplementary Material,
Table S11), whereas rest 30 have not been reported before.

We further conducted the biological pathway and process
enrichment analysis for the hub-genes. Our results showed
that MCODE1 group, which contained 12 hub-genes was
mainly functional in mRNA cleavage involved in gene silencing
processes (Table 2), suggesting an important function in the
post-transcriptional regulation network; MCODE2 group genes
were significantly enriched in some kinase signaling pathways,
including phosphatidylinositol 3-kinase signaling (PI3K) which

was implicated in osteoblast proliferation and differentiation;
MCODE3 group genes were involved in cell proliferation and
tissue growth of cardiac and striated muscle; besides, MCODE4
group genes we identified, including SMAD2, RUNX2, SMAD6,
SMURF1, ACVR2B, SMAD5, BMPR2 and YAP1, were significantly
enriched in bone morphogenetic proteins (BMP) signaling
pathway (Table 2). These results suggested that these hub-genes,
which were predicted to be targeted by osteoblast-restricted
mSE-miRNAs, could play a critical role in the regulation
network in bone formation. The complete pathway and process
enrichment results were detailed in Supplementary Material,
Table S12.

Discussion
In this study, we aimed to uncover the miRNA regulatory network
that was long-rang mediated by SEs which were mapped by
BMD-associated SNPs in human osteoblast. We presented the
landscape of BMD-related SNPs in human osteoblast SEs, and

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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Figure 5. The protein–protein interactions network for the putative targets and 54 hub-genes in seven groups. (A) Each dot represented a putative target gene. The

hub-gene groups identified by the Molecular Complex Detection algorithm were labeled by MCODE 1–7 which were zoomed in with different colors. BioGrid, InWebIM

and OmniPath database were employed here for PPI network analysis. (B) All hub-genes that were predicted to be targeted by mSE-miRNAs. Each hub-gene could be

targeted by multiple miRNAs.

identified 13 mSE-miRNAs and 54 genes that may maintain
the osteoblast differentiation. We provided a new insight into
the fine-mapping approach of GWAS loci and a tool for the
genome-wide SE-based analysis and the detection of long-range
osteoblast-restricted mSE-miRNAs. This approach could also be
generalized to the other cell-type-specific traits or diseases.

We collected BMD-associated SNPs from large-scale human
heel eBMD, DXA BMD and fracture GWAS datasets. Rather than
the gene-overlapped/nearest SNPs, we focused on the long-
range effective SNPs which are usually neglected in disease-
associated gene selection, we assumed that a plenty of SNPs

in genome are effective via affecting the SE they reside in. We
plotted the SNP landscapes for 10 traits of GWAS datasets in
osteoblast SEs. The genome-wide significant BMD SNP signals
(P-value < 5e−8) residing in SEs were mostly from heel eBMD,
followed by total body DXA BMD, while only few were from
other DXA BMD, such as FN and LS (Fig. 2 and Supplementary
Material, Fig. S3). Despite the BMD measurements, this disequi-
librium could be mainly caused by two reasons: (i) sample size
of GWAS. Heel eBMD and total body BMD GWAS was conducted
in 426 824 samples and 66 628 samples, respectively. However,
the samples in other datasets were <30 000, low sample size

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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Table 2. Seven hub-gene groups in protein–protein interaction network and the Top 3 enriched GO biological processes. For each hub-gene
group, three best-enriched GO biological process terms by P-value were shown in the table. The enrichment was performed by MetaScape, the
Banjamini–Hochberg procedure was used here for multiple testing. The complete pathway and process enrichment results for hub-gene groups
were detailed in Supplementary Material, Table S12

Hub-gene group GO terms ID Description P-value (log10) MCODE Genes

MCODE1 GO:0090625 mRNA cleavage involved in gene
silencing by siRNA

−9.4 DCAF7, DYRK2, YWHAG, ZFP36,
GSK3B, MYCN, MEF2A, FOXO3,
ERBIN, AGO1, AGO2, AGO3

GO:0098795 mRNA cleavage involved in gene
silencing

−9

GO:0035279 mRNA cleavage involved in gene
silencing by miRNA

−9

MCODE2 GO:0007169 Transmembrane receptor protein
tyrosine kinase signaling pathway

−15.2 SOS1, CBL, GAB1, PIK3R1, PIK3R2,
LYN, PIK3CA, PIK3CB, FGFR2, FRS2

GO:0014065 Phosphatidylinositol 3-kinase
(PI3K) signaling

−13.4

GO:0051897 Positive regulation of protein
kinase B signaling

−13

MCODE3 GO:0060038 Cardiac muscle cell proliferation −5.8 EIF4A2, PRKAR1A, CCNC, CNOT7,
DDX6, SMAD1, TGFBR1, ZFYVE16,
UHMK1

GO:0014855 Striated muscle cell proliferation −5.5
GO:0055017 Cardiac muscle tissue growth −5.2

MCODE4 GO:0030509 BMP signaling pathway −14.5 SMAD2, RUNX2, SMAD6, SMURF1,
ACVR2B, SMAD5, BMPR2, YAP1

GO:0071773 Cellular response to BMP stimulus −14.2
GO:0071772 Response to BMP −14.2

MCODE5
GO:0051168 Nuclear export −4.5 RBFOX2, DAZAP2, ATXN1, ATXN1L,

YWHAE, DCUN1D1, MOB1B,
PTPN14

GO:0007420 Brain development −4.3
GO:0060322 Head development −4.2

MCODE6
GO:0018105 Peptidyl-serine phosphorylation −7.6 PAK2, NCK2, PRKAA2, SPRY2
GO:0018209 Peptidyl-serine modification −7.5
GO:0031400 Negative regulation of protein

modification process
−6.4

MCODE7 − − − WNT5A, WASL, NECAP1

could lead to a low statistical power (33). (ii) Weight-bearing
condition of different anatomical sites. The eBMD was measured
at heel, which is the usually weight-bearing site of human body.
Mechanical loadings and some mechanically sensitive protein,
such as Piezo1, could significantly influent BMD (34); hence
some SNPs for heel may be more sensitive than for other less
weight-bearing anatomical sites (35).

SEs is closely related to cell-identity and fate-determined
processes (15). To avoid potential biases from cell type, all data
we used in this study were specific to human osteoblast, includ-
ing H3K27ac ChIP-seq for SE detection, Hi-C interactions, ATAC-
seq peaks for chromatin accessibility checking and CLIP-seq data
for false positive target genes filtering. A total of 74 miRNAs
were identified to be interacted by SNP-mapped SEs (Supple-
mentary Material, Table S6), 12 of them have been previously
found to be associated with osteogenic-related pathway, such
as miR-100–5p and miR-143–3p could increase osteogenic dif-
ferentiation potential by modulation of mTOR signaling (36),
miR-181a could promotes osteoblastic differentiation through
repression of TGF-β signaling molecules (37), and miR-217 in
MSCs could promote cell proliferation and osteogenic differen-
tiation by targeting DKK1 (38) (Supplementary Material, Table
S7). For the 13 accessible mSE-miRNAs, previous studies found

that miR-125b (lead SNP in SE: rs725670 [G > A], BETA = 0.01 per
G allele, P-value = 5.90E−08) could inhibit osteogenic differen-
tiation whereas the interference of miR-212 (lead SNP in SE:
rs11657636 [C > T], BETA = −0.05 per C allele, P-value = 4.60E-116)
could promote it (26,27). In our study, the putative targets of
miR-212 was largely enrich in osteogenic-related pathway and
processes (Fig. 4C). In addition, we noticed that no accessible
mSE-miRNA except miR-4434 was enriched in osteoclast dif-
ferentiation process (Fig. 4D). This could be caused by the cell
type specificity since our data were all specific to osteoblast. So
far, no study reported the function of miR-4434 in bone-related
tissue. Although we identified 13 mSE-miRNAs that could be
potentially affected by the BMD-associated SNPs, there was a
limitation in our study, we did not verify the association between
such SNPs and the expression level of mSE-miRNAs. Actually,
the expression quantitative trait loci (eQTL) analysis could be
an approach to provide some clues. We retrieved the public
eQTL databases, such as GTEx (https://www.gtexportal.org/ho
me/), however, no bone-related tissues or osteoblastic cell-types
were found.

Among the 54 hub-genes we identified, some of them were
classic and well-studied osteogenic-related gene, such as RUNX2
(Runx family transcription factor 2), SMAD1/5 (Smad family

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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member 1 and 5), BMPR2 (bone morphogenetic protein receptor
type 2), TGFBR1 (transforming growth factor beta receptor 1)
and WNT5A (Wnt family member 5A) (39–44). In addition, the
expression of some hub-genes, such as YAP1, ZFP36 and UHMK1,
were found to be up-regulated in high BMD samples (45–47). Out
of a total of 54 hub-genes, 24 have been studied and found to be
involved in bone formation (Supplementary Material, Table S11).

In summary, we mapped genome-wide osteoblast SEs with
BMD-associated SNPs from large-scale human GWAS summary
datasets. Based on that, we revealed the mSE-miRNAs regulatory
network and identified 54 key genes by integrating the Hi-C,
ATAC-seq and Ago2 CLIP-seq data. Our study presented the BMD-
related SNP loci landscape in SEs, and provided a new approach
and insight for the fine-mapping of GWAS loci. We also provided
a tool for the genome-wide SE-based analysis and the detection
of long-range osteoblast-restricted mSE-miRNAs (https://github.
com/Zheng-Lab-Westlake/Osteo-Fine-Mapp-SNP2SE2miRNA).

Materials and Methods
GWAS summary-statistic data

The overall study design was shown in Figure 1. We included
10 GWAS summary-statistic datasets of different BMD-related
traits from Genetic Factors for Osteoporosis (GEFOS) Consor-
tium, which is a large international collaborative effort we were
involved in. The fracture summary statistics data were obtained
from a study with ∼2.5 million SNPs in 20 439 fracture cases
and 78 843 controls (1), and from UK biobank with ∼14 million
SNPs in 53 184 fracture cases and 373 611 controls (7). The eBMD
GWAS dataset was from UK biobank which contained ∼13.8
million SNPs in 426 824 samples (7). The DXA BMD at distal
radius/FA, FN and LS were from UK10K project which included
∼10 million SNPs in 8143 samples, 29 188 samples and 25 225
samples, respectively (5). In addition, we included FN and LS
DXA BMD GWAS data from another study which included ∼2.5
million SNPs in 32 961 and 31 800 samples, respectively (3). We
also included GWAS summary-statistic data of total body DXA
BMD (∼18.3 million SNPs in 66 628 samples) (6) and total body
less head DXA BMD (∼2.3 million SNPs in 10 414 samples) (48).
All datasets which were not based on hg19 were lifted over to
hg19 by liftover tool in UCSC (http://genome.ucsc.edu/). And all
GWAS summary-statistic datasets used in this study were listed
in Supplementary Material, Table S13.

Detection of SE in human osteoblast

SEs are usually modified by H3K27ac marks (18), hence we used
the H3K27ac ChIP-seq data to detect SEs. The BAM data of
H3K27ac ChIP-seq (ENCODE accession: ENCSR000APH) with two
biological replications in human primary osteoblast and the con-
trol data (ENCODE accession: ENCSR000APU) were downloaded
from the ENCODE Project (49). We performed quality control for
the alignment datasets by SAMtools (50), PCR duplicate reads
and any reads with Q-value < 20 were removed. The MACS2 was
employed for peak calling with default settings (51), resulting
72 936 and 116 190 narrow peaks for two replications, respec-
tively. Next, we employed the ROSE algorithm to identify the
SE regions (17), in brief, H3K27ac peaks within 2.5 kb of TSS on
genome were subtracted and the enhancers within a distance
of 12.5 kb were stitched according to H3K27ac peaks occupancy
rates (52). Finally, we plotted the ranked stitched enhancers and
individual enhancers by H3K27ac enrichment, and using a line
with a slope of one tangent to the curve as a cutoff to distinguish

SEs above the point and typical enhancers below the point of
tangency.

We downloaded the human osteoblast SEs from SEA and
dbSUPER database (53,54), and the human fetal osteoblasts
(hFOB, undifferentiated and differentiated) SEs from SEdb (55).
The Wash U Epigenome Browser (http://epigenomegateway.wu
stl.edu/browser/) was employed (56) to compare the SEs from
the databases with the SEs identified in our study by visualizing
the results.

Genome-wide SE-based analysis in human osteoblast

For the SEs we detected in human osteoblast, we first mapped
them with SNPs (P < 0.05) in 10 BMD-related GWAS datasets to
investigate the landscape of SNP resided in SEs. And then we
performed the SE-based mapping analysis by the independent
SNPs. We extracted the EUR group genotypes (European ances-
try) in 1000 Genome Project Phase 3 (1000GP, v5a) (57) as the
SNPs reference and calculated the r2 by PLINK v1.9 with setting
window size at 50 SNP counts, step size at five counts (58). The
non-independent SNPs with r2 > 0.1 were then pruned out. We
next mapped SE by the GLOSSI methods (59), the statistic for
each SE was defined as below:

Sk = −2
J∑

j=1

gjk ln
(
pj

)
(1)

Where gjk is an indicator variable for each SEk and each SNPj,
gjk = 1 if SNPj is in SEk, gjk = 0 otherwise; pj is the P-value of SNPj in
GWAS summary data. Based on Fisher’s transformation, we cal-
culated the P-value for SEk using corresponding χ2 distribution.
The Bonferroni correction was then employed for the multitest,
SNP-mapped SE (mSE) with P-value <4.08e−5 (0.05/1224 for bio-
logical replicate 1) or 4.35e−5 (0.05/1149 for biological replicate
2) were regarded to be significant.

Identification of long-range interactions between
pri-miRNA and SEs in human osteoblast

The human miRNA data were downloaded from miRBase v22
(60), a total of 1914 pri-miRNAs transcripts and 2880 mature miR-
NAs were included. Note that the genome positions of miRNAs
were lifted over from GRCh38 to hg19 since the miRBase v22
only provided miRNA in GRCh38 version. For each pri-miRNA,
we designed its promoter baits region. Since only a part of TSS
of pri-miRNAs were available, we employed two strategies for
that here: (i) using the miRNA gene promoter baits which were
designed by SureSelect library (Agilent) targeted TSSs in Alessan-
dra Chesi et al. study (9); (ii) we obtained the TSS of pri-miRNAs
from miRGen v3 database (61), and defined the promoter region
of a particular pri-miRNA as the 2.5 kb upstream region before
the TSS or itself. Finally, there were 1549 promoter baits region
were obtained from Agilent SureSelect library, and 365 putative
promoter baits regions were designed using miRGen v3 TSS or
the pri-miRNAs-self (Supplementary Material, Table S5).

We obtained the high-resolution genome-scale, promoter-
focused Capture C data and ATAC-seq data in primary MSCs-
derived osteoblasts from ArrayExpress (E-MTAB-6862, E-MTAB-
6834) (9), including 295 422 DNA-looping interactions (1-
fragment and 4-fragment resolutions) and 156 406 ATAC-seq
peaks. Note that these data we downloaded were not raw but
had been processed using CHiCAGO and ENCODE ATAC-seq
pipeline (https://github.com/kundajelab/atac_dnase_pipelines),

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab181#supplementary-data
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the processing steps, including quality control, were detailed
in the original study (9). Then, we overlapped the genome-
wide long-range interactions regions with the promoter of pri-
miRNAs and significant mSEs we detected, respectively. For the
long-range mSEs-interacted miRNAs (mSE-miRNAs), we further
investigated the chromatin accessibility by overlapping them
with ATAC-seq peaks. The mSE-miRNAs with open chromatin
region in the promoter or TSS was considered to be accessible.
The LocusZoom and WashU Epigenome Browser were employed
for results plotting (62,63). Here, we developed a tool for the
genome-wide SE-based analysis and the detection of long-range
osteoblast-restricted mSE-miRNAs (https://github.com/Zheng-
Lab-Westlake/Osteo-Fine-Mapp-SNP2SE2miRNA).

Target gene prediction of accessible mSE-miRNAs

We used a two-steps approach to predicted target genes of
accessible mSE-miRNAs. First step, we accessed TargetScan v7.2
and miRDB v6.0 (30,31), the two most commonly used miRNA tar-
gets database, to initially conduct the prediction. For TargetScan
results, any targets predicted with the absolute value of cumu-
lative weighted context++ scores (CWCS) <0.2 will be filtered
out, CWCS was a specific value that provided by TargetScan
algorithm for the measurement of prediction confidence (30). For
miRDB results, a prediction score ranged from 50 to 100 was used
to measure the confidence (31). And as the database developer
recommended, any target with the score <60 will be excluded.
The union of results of both databases was then formed as
the initial target genes pool. Second step, we downloaded the
osteoblasts-specific Ago2 CLIP-seq data from GEO (GSE111432)
(64), and downloaded the 3′ UTR RefSeq (hg19) of human genes
from UCSC (http://genome.ucsc.edu/). We called the peaks from
the bedGraph data of Ago2 CLIP-seq by using MACS2 bdgpeakcall
utility (51). The 3′ UTR of predicted target genes were then
overlapped with the Ago2 CLIP-seq peaks. Any targets failed
the overlapping will be considered as false positive target and
filtered out from prediction pool. Beside, for the pairwise mature
miRNAs (i.e. -5p/−3p) that were derived from the same pri-
miRNA, we found that the quantity of final targets was greatly
different from each other, including miR-125b-5p/−1-3p (169
versus 37), miR-190a-5p/−3p (69 versus 527), miR-132-5p/−3p
(45 versus 139), miR-212-5p/−3p (66 versus 136) and miR-6870-
5p/−3p (143 versus 44) (Supplementary Material, Table S8). Here,
only the one with more targets in each mature miRNA pair was
kept for next analysis because of the quantity difference and
overlapping of targets.

Biological pathway and process enrichment analysis

For the putative target genes of 13 accessible mSE-miRNAs, we
performed biological pathway and process enrichment analysis
using the web-based tool metaScape (65) and R package cluster-
Profiler (66). Enriched terms with a P-value < 0.01, a minimum
miRNA target genes count of 3, and a ratio between the observed
counts and the counts expected by chance >1.5 (enrichment
factor) were collected and grouped into clusters based on their
membership similarities (65). The Banjamini–Hochberg proce-
dure was used here for multiple testing (67). For enriched path-
way and process clusters across the 13 miRNAs, hierarchical
clustering was then performed by metaScape pipeline.

Hub-gene detection and enrichment analysis

We next performed PPI network analysis with the following
database BioGrid (68), InWebIM and OmniPath (69) on the

metaScape platform. The PPI network contains the subset of
proteins that form physical interactions with at least one other
member in the putative target genes of 13 mSE-miRNAs. MCODE
algorithm (70) was then applied to identify hub-gene groups
from the PPI network with default settings. Next, for each hub-
gene group identified, the GO biological process enrichment
analysis was applied independently using metaScape pipeline
(65), and the three best-enriched terms by P-value were used as
the functional description of the corresponding components.

Supplementary Material
Supplementary Material is available at HMG online.
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