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Abstract

Background: Patients with Parkinson’s disease (PD) suffer from a high fall risk. Previous approaches for evaluating fall risk
are based on self-report or testing at a given time point and may, therefore, be insufficient to optimally capture fall risk. We
tested, for the first time, whether metrics derived from 3 day continuous recordings are associated with fall risk in PD.

Methods and Materials: 107 patients (Hoehn & Yahr Stage: 2.660.7) wore a small, body-fixed sensor (3D accelerometer) on
lower back for 3 days. Walking quantity (e.g., steps per 3-days) and quality (e.g., frequency-derived measures of gait
variability) were determined. Subjects were classified as fallers or non-fallers based on fall history. Subjects were also
followed for one year to evaluate predictors of the transition from non-faller to faller.

Results: The 3 day acceleration derived measures were significantly different in fallers and non-fallers and were significantly
correlated with previously validated measures of fall risk. Walking quantity was similar in the two groups. In contrast, the
fallers walked with higher step-to-step variability, e.g., anterior-posterior width of the dominant frequency was larger
(p = 0.012) in the fallers (0.7860.17 Hz) compared to the non-fallers (0.7160.07 Hz). Among subjects who reported no falls
in the year prior to testing, sensor-derived measures predicted the time to first fall (p = 0.0034), whereas many traditional
measures did not. Cox regression analysis showed that anterior-posterior width was significantly (p = 0.0039) associated
with time to fall during the follow-up period, even after adjusting for traditional measures.

Conclusions/Significance: These findings indicate that a body-fixed sensor worn continuously can evaluate fall risk in PD.
This sensor-based approach was able to identify transition from non-faller to faller, whereas many traditional metrics were
not successful. This approach may facilitate earlier detection of fall risk and may in the future, help reduce high costs
associated with falls.
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Introduction

Falls are a debilitating problem among patients with Parkinson’s

disease (PD), leading to diminished mobility, poor quality of life,

morbidity, and mortality [1,2]. About 50–70% of patients with PD

fall at least once every year [1–3], however, tools for identifying

this sub-group are not yet optimal [1,4]. Assessment of fall risk in

PD generally relies on self-report and performance-based tests

[1,4–7]. While informative, these approaches suffer, to varying

degrees, from recall bias and poor sensitivity, reflect the

performance at a single point in time, and may be influenced by

the reverse ‘‘white coat syndrome’’, where patients walk relatively

well when they are examined by a physician.

Falls in PD are associated with stress, executive function,

dopaminergic and cholingeric function, dyskinesia, motor response

fluctuations and freezing of gait [1,4,5,8–12]. These phenomena

fluctuate during the day and likely change fall risk. Metrics based

on the evaluation of the risk of falls of patients with PD over a

relatively extended time period, as subjects carry out their routine

activities of daily living in their home and community environment

may be one of the keys to improving the reliability and sensitivity

of the assessment of fall risk. These metrics could potentially allow

for earlier intervention and, ultimately, lower the high costs that

result from falls. This possibility is also responsive to the more

general eHealth and mobile Health (mHealth) initiatives for

remote, at-home assessment of health and function [13,14].

The objective of the present study was to determine whether

metrics derived from a small, body-fixed sensor (i.e., an

accelerometer) worn continuously for 3 days, are able to capture

fall risk among patients with PD. In a pilot study [15] among

community living older adults (i.e., people without PD), acceler-

ation measures differed between fallers and non-fallers. However,
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it is not clear if this approach can be applied to identify fall risk

among patients with PD. Therefore, here, we aimed to: 1) test if

sensor-derived metrics differ in PD fallers and PD non-fallers,

based on self-report of fall history; 2) assess whether these metrics

are associated with performance-based tests of fall risk; and 3)

evaluate whether sensor-derived measures are able to assist in the

estimation of the time to first fall among subjects who reported no

falls in the past.

Materials and Methods

Subjects
110 patients with PD participated in a cross sectional study

focusing on PD motor subtypes [16]. They were recruited from the

outpatient Movement Disorders Unit at the Tel-Aviv Medical

Center and from other affiliated clinics around the country. Data

from 107 patients were analyzed in the present study. Subjects

were included if they were diagnosed by a movement disorders

specialist with idiopathic PD (as defined by the UK Brain Bank

criteria), were between 40 and 85 years of age, had a Hoehn &

Yahr score between I and IV, if they were ambulatory, and if they

had a Mini Mental State Examination (MMSE) score above 24

points. Subjects were excluded if they have had brain surgery or

had significant co-morbidities likely to affect gait, e.g., acute illness,

orthopedic disease, or history of stroke. Subjects who could not

walk in the OFF medication cycle and subjects who could not

comply with the protocol were excluded.

Ethics
Ethics approval from the human studies committee of the Tel

Aviv Sourasky Medical Center was obtained and all participants

provided informed written consent, according to the Declaration

of Helsinki.

Clinical assessment
Parkinsonian symptoms, disease duration, and disease severity

were assessed based on interview and the Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) [17]. Fall history in the year

prior to testing was assessed based on self-report. Assessment of

falls in the one year following baseline testing was evaluated via fall

calendars completed by the subjects and returned once a month,

following recommended procedures [18]. As previously suggested,

a fall was defined as ‘‘Unintentionally coming to rest on the

ground, floor, or other lower level’’ [18,19]. The MMSE was used

as a general measure of cognitive function. The new freezing of

gait questionnaire (NFOG-Q) evaluated if the subject experienced

freezing episodes and the severity of this symptom [20]. Gait speed

was determined by measuring the average time the subject walked

the middle 10 meters of the lab corridor at their comfortable pace.

In addition to fall history, a known predictor of future falls, other

‘‘traditional’’ measures of fall risk included performance-based

measures of balance and mobility: the pull test [17], Dynamic Gait

Index [21], the Berg Balance Test [22], and the Timed Up and Go

[23]. The Geriatric Depression Scale [24] and the Activity-specific

Balance Confidence Scale [25] assessed depressive symptoms and

balance confidence, respectively.

3 day assessment of gait and mobility
After undergoing the clinical assessment, patients wore the

sensor on their lower back for 3 consecutive days (except during

activities such as showering). Subjects received a diary to track

when and why they took off and put on the device [15]. The data

acquisition device and signal processing were previously described

in a pilot study [15]. In that study, an approach for quantifying

mobility under non-stationary conditions [26] was applied to

assess fall risk among community dwelling, (non-PD) older adults

[15]. Briefly, participants wore a small, light-weight sensor

(McRoberts, DynaPort Hybrid system, The Netherlands) on a

belt on the lower back. This location, although centered, has

previously shown to reflect lower extremity movement during

walking [27]. The units’ dimensions are 87645614 mm (74

grams). The Hybrid includes a triaxial accelerometer (sensor range

and resolution are: 62g and 61mg, respectively) and a triaxial

gyroscope (data not analyzed in the present study). The 3

acceleration axes studied were: vertical, medio-lateral, and

anterior posterior. Data was saved on an SD card at 100 Hz,

and later transferred to a personal computer for further analysis

(using Matlab, the Mathworks software).

The data analysis of the 3 day recordings included two stages

[15,26]: 1) Detection of all walking segments, from which only the

bouts with duration of above one minute were selected; and 2)

Application of acceleration derived measures to the walking

segments that were identified in the previous stage. We note that

this approach was used to ensure that the analyses were based on

relatively long walking episodes which is important for assessing

walking quality. We recognize, however, that in terms of

quantifying the total number of steps and time spent walking,

this approach underestimates the total time spent walking

throughout the day since short walking episodes are not included

in the analyses. In the first stage, a filter was applied to extract the

walking segments of the 3-day recordings (adapted from previous

work [26]). The algorithms are able to detect even walking

performed at relatively low speeds, as they are based on the

combination of two detection methods [15,26]. Metrics that reflect

the quantity and quality of the walking activity were determined in

the second stage. Quantity measures included the total number of

walking bouts, the percent of time spent walking which reflects the

total walking in relation to the overall walking and non-walking

activity, the total number of steps, median walking bout duration,

median number of steps, and median cadence per bout. Quality

related sensor-derived measures included: frequency-derived

measures that reflect variability of the gait pattern [26], regularity

measures that reflect gait rhythmicity and consistency [28] and the

harmonic ratio which is an index of gait smoothness [29].

Construct and concurrent validity has been established previously

for many of these measures [15,26,28–31]. In addition, we applied

step-to-step analyses to evaluate the Phase Coordination Index

(PCI) [32], which is a measure of the consistency and accuracy of

the left-right bilateral coordination during walking, i.e., timing of

one foot with respect to the other. A fatigue index was calculated

for these measures as the percentage of difference between the gait

measures of the first and last 30 second intervals of each activity

bout.

Statistical analysis
Statistical analyses were performed using SPSS version 21.

Subjects were classified as fallers if they reported at least 1 fall in

year prior to baseline testing. Normality was assessed using the

Kolmogorov-Smirnov test. Based on this check, either Student’s t-

tests or the Mann-Whitney test was used to evaluate our first aim

and compare the fallers and non-fallers. To test our second aim,

Spearman’s correlations were performed to assess the associations

between the different clinical tests of fall risk and measures derived

from the 3 day recordings; Spearman’s correlations were used as a

more conservative estimate compared to Pearson’s; although in

general the results were similar. To test our third aim, survival

analyses using Kaplan-Meier tests assessed if acceleration

measures were associated with time to first and time to second
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fall (i.e., transition to multiple faller) among the subjects who

reported no falls in the past. In addition, Cox regression analyses

were applied to evaluate if the accelerometer derived measures

were associated with falls during the follow-up period when

adjusting for more traditional clinical measures. Group values

were reported as mean6standard deviation. Corrections for

multiple comparisons were made using the Hochberg-Benjamini

method [33]. This was done for each axis separately since the

anterior-posterior, vertical and medial-lateral directions likely

represent different locomotor constructs [15,15,34–38].

Results

Subject characteristics are shown in Table 1. Three subjects

were excluded due to technical problems (device failure or loss).

Thus, 107 patients were included in the analysis. Two patients had

less than one day recording (,16 h), and four patients had

approximately two days of data (43–52 h) due to SD card

initialization error or early device removal. Most of the quantity

measures were not affected by the recording duration since they

were normalized as percentage from the overall activity or from

the activity bouts. The remaining patients had in average

73.562.9 hours of recording.

The cohort was stratified into fallers (n = 40) and non-fallers

(n = 67). They did not differ with respect to age, gender, years of

education, MMSE scores, levodopa equivalent dose, or weight. As

expected, the fallers scored significantly worse on traditional

measures of fall risk e.g., the Dynamic Gait Index and the Berg

Balance Test. The fallers also walked more slowly and had greater

levels of fear of falling as assessed by the Activities-specific Balance

Confidence scale.

3 day measures and fall history
An example of a raw accelerometer signal obtained over the 3

days in a faller and non-faller is shown in Figure 1A. Figures 1B

and 1C show a 30 second portion of this signal. The signal is

smoother and more consistent in the non-faller. This can be seen

in the time domain (Figure 1B) and in the frequency domain

(Figure 1C), where the peak amplitude is larger and narrower in

the non-faller. A similar picture is seen when we examine the

changes in the power spectrum over the 3 day recording in a faller

and non-faller (Figure 1D). The peaks are shorter and broader in

the faller, reflecting a more variable and less consistent walking

pattern. The results shown in Figure 1 were also seen on the group

level, as detailed further below.

Quantity of walking over the 3 days was similar in the fallers

and non-fallers (see Table 2). Figure 2 graphically illustrates the

idea that the quantity of walking was similar in the two groups. In

contrast, measures related to the quality of gait differed in the two

groups (see Table 3 and recall Figure 1C and 1D). For example,

fallers had higher gait variability in the vertical and anterior

posterior directions, as exhibited by a larger width of the power

spectral density (p#0.028). The fallers also had less consistency in

the vertical direction, as depicted by the lower stride regularity

(p = 0.018). A less smooth gait pattern was observed in the

anterior-posterior and vertical directions, as exhibited by the lower

vertical and anterior posterior harmonic ratio (p#0.043) which is

related to less gait smoothness [39]. The Phase Coordination

Index was also significantly higher (i.e., worse) in the fallers

compared to the non-fallers (fallers 8.3068.62, non-fallers

6.6868.29; p = 0.045).

Interestingly, when looking at the fatigue index, it was evident

that while the non-fallers tended to increase their vertical stride

regularity during a walking bout. The fallers tended to decrease

their stride regularity (i.e. gait consistency worsened). The fatigue

index of stride regularity was 24.85615.91% in the fallers and

1.21611.47 in the non-fallers (p = 0.009).

Correlations between the 3 day measures and clinical
measures of fall risk

Table 4 shows examples of the associations between the 3 day

sensor-derived measures and performance-based measures of fall

risk. Mild to moderate correlations were observed. The level of

fear of falling was also significantly correlated with many of the

gait quality measures (e.g., with vertical amplitude r = 0.31;

p = 0.001). No significant correlations were found between the

UPDRS motor score and the acceleration derived gait measures

(r,0.138, p.0.068).

Survival Analysis
Among all subjects, several acceleration measures were associ-

ated with future fall status. For example, survival analysis for the

entire cohort showed that time to first fall in the year following the

study occurred significantly sooner in subjects with a more

variable, less consistent gait pattern, based on the 3 day measures

(e.g., anterior-posterior width: Log rank test: p = 0.0018, Wilcoxon

test: p = 0.0014). History of falls is a known, strong predictor of

future falls [4]; we confirmed this in our study as well (survival

analysis for the entire cohort showed that time to first fall in the

year following the study occurred significantly sooner in subjects

with fall history: Log rank test: p,0.0001, Wilcoxon test: p,

0.0001). Therefore, to evaluate the possibility of identifying ‘‘new’’

fallers, we conducted an analysis that focused on subjects who

reported no falls in the year prior to baseline. The anterior-

posterior width was successfully able to identify time to first fall.

Survival analysis among the subjects who reported no falls in the

year prior to baseline (N = 67) demonstrated that the change in

status from non-faller to faller (which occurred in 14 patients)

occurred significantly sooner in subjects whose 3 day gait pattern

was more variable on a stride-to-stride basis (i.e., an anterior-

posterior width above the median), compared to those with a less

variable pattern (i.e., below the median). This was true for time to

first fall (Log rank test: p = 0.0034, Wilcoxon test: p = 0.0029) (see

Figure 3). A trend was also seen with respect to the time to second

fall (Log rank test: p = 0.120, Wilcoxon test: p = 0.106) (data not

shown). When repeating the survival analysis for traditional

measures of fall risk, only the Berg Balance Scale was significantly

associated with time to first fall (Log rank test: p = 0.022, Wilcoxon

test: p = 0.025). Other traditional measures were not significantly

associated with time to first fall among subjects who reported no

falls in the year prior to testing, e.g., Timed Up and Go while OFF

(Log rank test: p = 0.196, Wilcoxon test: p = 0.185), the Dynamic

Gait Index (Log rank test: p = 0.895, Wilcoxon test: p = 0.885),

NFOG-Q (Log rank test: p = 0.118, Wilcoxon test: p = 0.143), gait

speed while OFF (Log rank test: p = 0.688, Wilcoxon test:

p = 0.697) (see figure 4), UPDRS motor score while OFF (Log

rank test: p = 0.438, Wilcoxon test: p = 0.447), and disease

duration (Log rank test: p = 0.069, Wilcoxon test: p = 0.077).

We also performed a Cox multiple regression analysis for the

anterior-posterior width, adjusting for age, gender, disease

duration, freezing of gait (i.e., NFOG-Q), Berg Balance Scale,

gait speed and Timed Up and Go while OFF, Dynamic Gait

Index and UPDRS motor score while OFF. The anterior-posterior

width was still significantly associated with time to 1st fall during

the 12 months of follow-up, even after adjusting for all the

covariates (p = 0.0039). The only covariate that remained signif-

icant in the model was the disease duration (p = 0.0009). The risk

ratio for experiencing a fall in any month during the follow-up
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period was 7.03 with a 95% confidence interval (1.82–37.13). In

other words, patients with a larger anterior-posterior width had a

seven fold higher risk of experiencing a fall compared to those with

a lower anterior-posterior width.

Correlations among the derived measures
Table S1 shows the correlation among the sensor derived

measures. The descriptive properties including distributions are

shown in Table S2.

Discussion

The present findings confirm that traditional measures of fall

risk, i.e., fall history, gait, freezing of gait, and reduced

performance on functional-performance tests of mobility, are

associated with fall risk in patients with PD [1,4–7]. The results

also indicate that new measures based on the 3 day sensor-derived

recordings reflect fall risk in patients with PD and that these

metrics have the potential to enhance the evaluation of fall risk.

Three lines of evidence support this idea: 1) When subjects were

classified as fallers and non-fallers based on their fall history,

several 3 day derived measures differed in the two groups. 2)

Scores on traditional performance-based tests of fall risk were

associated with the measures that were extracted from the 3 day

recordings. 3) A 3 day measure predicted time to first fall among

the subjects who reported no falls in the year prior to the baseline

testing, whereas many traditional measures did not. These results

all support the validity of using the 3 day measures in patients with

PD and demonstrate the potential utility and value of this

approach.

Quantity versus Quality
The distinction between quality of gait versus quantity has been

previously discussed [15,26,40,41]. Interestingly, the amount of

activity (i.e., quantity) during the 3 days of daily-living was similar

in the PD fallers and non-fallers (recall Table 2), while the gait

quality was different (recall Table 3). PD fallers walked with

increased gait variability, a less consistent gait pattern, and less

Table 1. Demographics, functional performance, and fall risk measures in fallers and non-fallers.

PD Fallers PD Non-Fallers P-value

Demographics and disease related measures

# of subjects 40 67 -

Age (yrs) 66.5068.21 64.0069.76 0.178

Gender (% women) 35.00% 19.40% 0.072

Height (m) 1.6760.08 1.7060.08 0.042

Education (yrs) 16.1563.66 15.1963.76 0.294 {

Weight (kg) 79.17614.75 76.29610.41 0.283

Body-mass-index (kg/m2) 28.1964.05 25.6964.31 0.004 *

Levodopa equivalent dosage (mg/d) 400.106353.61 454.636341.81 0.432

Geriatric Depression Scale 3.7563.21 4.2163.48 0.721 {

Mini Mental Status Exam 28.9961.17 28.3862.18 0.367 {

Disease duration (years) 6.0864.02 5.1563.08 0.323 {

Hoehn & Yahr Stage 1 1.5 (0) 1.5 (2) 0.007 { *

2 (12) 2 (32)

2.5 (9) 2.5 (22)

3 (4) 3 (8)

3.5 (5) 3.5 (0)

4 (10) 4 (3)

UPDRS motor score ‘‘ON’’ 33.44611.41 33.93612.60 0.842

UPDRS motor score ‘‘OFF’’ 40.78613.07 40.15613.35 0.814

New freezing of gait questionnaire 7.63610.01 1.9765.16 0.0003 { *

Gait and fall risk measures

# of falls in the past year 5.85616.01 0.060.0 ,0.0001 { *

Dynamic Gait Index 20.7063.36 22.5461.44 0.0002 { *

Berg Balance Scale 49.8367.81 53.4363.16 0.001 { *

Timed Up and Go ‘‘OFF’’ (sec) 13.18612.77 9.6862.37 0.004 { *

Pull Test 1.4361.29 0.9361.17 0.047 {

Activities-specific Balance Confidence (%) 77.69617.41 90.19613.46 ,0.0001 { *

Gait speed ‘‘OFF’’ (meter/sec) 1.0160.23 1.1860.16 ,0.0001 *

{Measures which were not distributed normally according to the Kolmogorov-Smirnov test and therefore were analyzed with the Mann-Whitney test.
* Measures of functional performance that were significantly different in the two groups. According to the Hochberg-Benjamini method for multiple comparison
analysis, a p-value less than or equal to 0.004 is considered statistically significant in the present analysis.
1Each row represents a Hoehn & Yahr Stage and in brackets the number of patients in that stage
doi:10.1371/journal.pone.0096675.t001
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smooth gait. These group differences are consistent with previous

studies conducted in laboratory settings (i.e., straight line,

standardized walking) [8,12,39,42]. Here, we extend those findings

and demonstrate that the PD fallers and non-fallers differ in their

gait quality when evaluated in everyday settings which likely

involve more complex activities than in the clinic or lab. PD fallers

apparently have a reduced ability to properly regulate gait in their

natural environment, perhaps due to increased postural instability,

Figure 1. Examples of vertical acceleration signals of a PD faller (left) and a non-faller (right). Figure 1A shows a 3-day raw acceleration
signal. Figure 1B and 1C show the time and frequency domains of a 30 second signal (derived from the raw signal), respectively. The acceleration
pattern of the PD faller (male, 61 yrs old) is less smooth compared to the PD non-faller (male, 74 yrs old) (Figure 1B). The peak amplitude of the
dominant frequency is lower and wider in the faller compared to the non-faller, indicating of a less consistent, more variable gait pattern (figure 1C).
Figure 1D shows an example of 3-day vertical acceleration signal in the frequency domains. The PD faller has a less consistent gait pattern, as
reflected by the lower amplitude and wider spectrum. Similar findings are observed on a group level (recall Table 3).
doi:10.1371/journal.pone.0096675.g001
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loss of inter segmental flexibility, and/or deficits in rhythmicity

[12]. While fall history is a well-known simple marker of future

falls (in older adults and PD) [1,2,4], we show here, for the first

time, that a sensor-derived metric that reflects gait quality can

predict the time to a first fall and future fall status, even among

subjects who reported no falls in the year prior to testing (recall

Figure 3). This provides further support for the potential

contribution of the 3 day derived measures; they can identify fall

risk even before the first fall occurs.

The relationship between activity and fall risk is rather complex

[43]. On the one hand, people who are more active may be more

prone to fall due to their exposure to more hazardous situations.

On the other hand, they may have a lower fall risk since they are

healthier and more fit compared to less active people. Among

community living older adults, there is support for both of these

Figure 2. Time spent in different activities in a PD faller and non-faller (right). Figure 2A shows a general, descriptive example of the time
spent walking, standing, lying and sitting in two subjects as a function of time over the 72 hour recordings. Figure 2B shows the percent time spent
in each of these activities. Note that on a group level, walking amounts were similar in the fallers and non-fallers (see also Table 2). Please note that
although this figure is based on previously validated measures [57], we do not extract any quantitative measures from it. The figure is included here
to illustrate how the present approach can be extended further in future work. In the current study, the analyses focused on walking bouts that were
one minute or longer in order to robustly identify walking and, ultimately, the quality of these walking bouts (recall the methods and Table 2).
doi:10.1371/journal.pone.0096675.g002

Table 2. Acceleration derived 3-day measures of the quantity of walking in the fallers and non-fallers.

Measure PD Fallers PD Non-Fallers P-Value *

Quantity measures (Activity count)

Total Number of activity Bouts [#] a 29.73622.78 31.88622.53 0.635

Total percent of activity duration [%] 2.1862.04 2.2561.94 0.597 {

Total Number of steps for 3-days [#] a 9392.2269290.97 10658.8269770.78 0.249 {

Median activity Bout duration [sec] 114.44634.23 113.15634.62 0.852

Median Number of steps for Bout [#] 190.30661.77 198.94664.29 0.496

Cadence [steps/minute] 103.70616.21 108.37610.37 0.109

These measures were calculated only from activity bouts $1 min, from the AP axis
*The measures in this table were not statistically different in the fallers and non-fallers.
{Measures which were not distributed normally according to the Kolmogorov-Smirnov test and were, therefore, analyzed using the Mann-Whitney test.
a Measures which were not normalized to the entire recording duration or activity duration.
Note: None of these measures were significantly different in the fallers and non-fallers.
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associations and the full explanation may be dependent on the

nature of the activity and the fall [44]. In the present study, activity

in the PD fallers and non-fallers were not statistically different,

perhaps due to the wide range observed in both groups (recall

Table 2). Although activity amounts have previously been related

to the progression of PD [45,46], the amount of walking activity

does not seem to be a key to fall risk in patients with PD, at least

among those with mild to moderate disease severity. Further

studies should examine this question. Regardless of the relation-

ship to fall risk, metrics derived from the body-worn sensor enable

the accurate assessment of activity, as reported recently [45,46],

and can be used clinically to monitor and promote physical

activity, providing details about the amount and distribution of

common activities (recall Figure 2).

Parkinson’s disease fallers versus Older Adult Fallers
In a recent pilot, we assessed fall risk in healthy older adults [15]

using the approach based on body fixed sensors taken in the

present study. Here we extend that approach to the PD

population, representing a neurodegenerative disease. It may be

informative to consider the present results in relation to those

reported in the previous study. Note that the cohort form the pilot

study was about 12 years older than the PD patients in this study,

so the results are not directly comparable. Still, both the older

adult fallers and the PD fallers walked with increased variability in

the anterior-posterior and vertical directions, compared to their

non-faller controls. This provides further support for the utility of

these measures and their ability to assess fall risk, even among a

group of patients who all suffer from PD. Older adult fallers

walked with reduced medio-lateral variability compared to healthy

older adults [15]. This is consistent with the idea that higher

medio-lateral variability is healthier and that a reduced ability to

adapt to changing environmental conditions is reflected in lower

medio-lateral variability [37]. In contrast, in PD, there was a

tendency for the fallers to walk with increased medio-lateral

variability compared to non-fallers (although not statistically

significant), perhaps a reflection of poor axial control. Further

investigation should be under taken to understand the apparently

Table 3. Acceleration derived 3-day measures of the quality of walking in the fallers and non-fallers.

Measure Axis PD Fallers PD Non-Fallers P-Value

Amplitude of dominant frequency [prs] V 0.5760.19 0.6760.18 0.012 *

AP 0.5760.17 0.5960.13 0.605

ML 0.1960.15 0.1760.15 0.285 {

Width of dominant frequency [Hz] V 0.7760.15 0.7260.13 0.028 { *

AP 0.7860.17 0.7160.07 0.012 { *

ML 0.9760.17 0. 9160.12 0.033

Stride Regularity [g‘2] V 0.4860.12 0.5560.14 0.018 *

AP 0.5060.10 0.5460.10 0.063

ML 0.3560.11 0.3960.13 0.128

Harmonic Ratio V 2.0160.48 2.2360.54 0.043 *

AP 1.8460.48 2.0960.48 0.011 *

ML 0.6560.15 0.5960.13 0.035

* Measures which were significantly different in the fallers and non-fallers. We performed the Hochberg-Benjamini method for multiple comparison analysis for each of
the 3 locomotor constructs separately: vertical (V), anterior posterior (AP), and medio-lateral (ML). P-values less than or equal to 0.043 (V), 0.012 (AP) and 0.00 (ML) were
considered statistically significant in the 3 different constructs in the present analyses.
{Measures which were not distributed normally according to the Kolmogorov-Smirnov test and were, therefore, analyzed using the Mann-Whitney test.
doi:10.1371/journal.pone.0096675.t003

Table 4. Associations between the 3 day sensor-derived measures and performance-based measures of fall risk.

Measure Axis Gait Speed Berg Balance Test Dynamic Gait Index Timed Up & Go

Amplitude of dominant
frequency [psd]

V 0.40 (0.00001) 0.23 (0.016) 0.24 (0.011) 20.35 (0.0001)

AP 20.01 (0.881) 0.07 (0.433) 0.07 (0.465) 0.03 (0.737)

ML 20.33 (0.0004) 20.29 (0.002) 20.13 (0.182) 0.28 (0.003)

Width of dominant
frequency [Hz]

V 20.23 (0.016) 20.23 (0.015) 20.101 (0.305) 0.23 (0.017)

AP 20.36 (0.0001) 20.30 (0.002) 20.25 (0.009) 0.32 (0.001)

ML 20.06 (0.529) 0.06 (0.511) 20.003 (0.972) 20.006 (0.954)

Harmonic Ratio AP 0.39 (0.0002) 0.34 (0.0003) 0.34 (0.0003) 20.31 (0.001)

The p-values were corrected for multiple comparisons according to the Hochberg-Benjamini method. We performed the correction for each of the 3 locomotor
constructs separately: vertical (V), anterior posterior (AP), and medio-lateral (ML). P-values less than or equal to 0.017 (V), 0.015 (AP) and 0.003 (ML) were considered
statistically significant in the 3 different constructs respectively in the present analyses.
doi:10.1371/journal.pone.0096675.t004
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unique underlying construct of medio-lateral variability in patients

with PD and the degree to which it differs from that of PD-free

older adults.

Potential Clinical Utility and Impact
Previously reported methods for assessing fall risk in patients

with PD have merit [1,4–7]. They do better than chance, can be

applied in the clinical setting, and some have even been applied in

the home. However, falls place a tremendous burden on patients

and their families, severely restricting quality of life and functional

independence. In most Western countries, 1–2% of all healthcare

expenditures are spent on costs related to falls. Even a small

reduction in fall frequency can lead to significant economic savings

[46] and improvement in function. Improvement in the evaluation

of fall risk should, therefore, lead to an alleviation of some of the

burden of falls in PD.

Several recent studies have used body-worn sensors and

continuous monitoring to study activity amounts in PD, the effects

of deep brain stimulation in PD, and dynamics of physical activity

in other cohorts [45–49]. As far as we know, our study is the first to

use this type of approach to quantitatively evaluate fall risk in PD

based on actual performance in the home and community setting.

The results support the validity and potential of this low cost, easy-

to-use technology. The sensors apparently can be used for early

detection of fall risk (recall Figure 3). The results suggest that, in

the future, perhaps this type of an approach can lead to economic

savings and improved healthcare. In a sense, then, the study

directly addresses an unmet clinical need.

A typical neurologist and geriatrician only has a few, rushed

minutes to conduct a motor examination and to assess the risk of

falls, one of the most important consequences of impaired motor

function. This situation is the norm for the clinical assessment of

patients with PD, for many patients with neurological disease who

have a high risk of falls (e.g., patients post-stroke, individuals with

multiple sclerosis, or Alzheimer’s disease), and for older adults

more generally. Body-worn sensors have the potential to improve

the clinical assessment. Imagine that a few weeks before a clinical

exam is scheduled, the patient receives in the mail a small, light-

weight, body-worn sensor, the size and weight of a small sticker.

This comes with simple instructions that explain how to wear the

ready-to-use device that is worn like a small patch, and how to

return the device (or the data) after it is worn for an extended

period of time (e.g., 3, 7 or even 30 days). The data can be easily

delivered to the clinician via post or the internet. The clinician

then receives a detailed report of the patient’s motor function (e.g.,

how many steps they walk per day, how much time they spend

being active, lying down, or sitting; as in Figure 2) and fall risk

(with a summary fall risk index and additional details for

therapeutic targeting and tracking). All of this information can

be made available to the clinician before the patient even enters

the clinic. Equipped with this information and a summary report

of fall risk and activity, the clinician can conduct the clinical

examination informed with details about the patient’s motor

abilities, performance, and risk of falls. Perhaps, it is time to start

to think about a clinical exam that is enhanced by objective,

reliable and sensitive measures based on long-term recordings.

Limitations and future work
Clinometric properties like the minimally clinical significant

difference have not been fully established yet and further

investigations are needed to pave the way for this type of clinical

use of body-worn sensors. One might argue that many of the gait

measures are inter-related and may be influenced by speed.

However, several gait parameters clearly reflect independent

constructs that are largely independent of each other [42,50–56].

One might also argue that a more conservative approach to the

multiple comparisons than the one we used, such as Bonferroni

correction, would not have yielded statistically significant results.

However, the Hochberg Benjamin method has been widely used

and cited thousands of times since 1995 [33]. It was developed to

address the relatively conservative Bonferroni correction, which

Figure 3. Survival curve showing the time to first fall among all
subjects who reported no falls in the year prior to the study.
Based on fall history, all of these subjects had a relatively low risk of
future falls. However, the anterior-posterior width of the peak in the
frequency domain, a measure of gait variability derived from the 3-day
recording, was associated with time to first fall. When subjects were
classified as those having a relatively high (above the median) or low
(below the median) width, those with a high width experienced a fall
sooner (Log rank test: p = 0.0034, Wilcoxon test: p = 0.0029), compared
to those with a relatively low width.
doi:10.1371/journal.pone.0096675.g003

Figure 4. Survival curve showing that gait speed while off was
not significantly associated with the time to first fall (Log rank
test: p = 0.688, Wilcoxon test: p = 0.697) among subjects who
reported no falls in the year prior to testing. Please compare to
Figure 3.
doi:10.1371/journal.pone.0096675.g004

Assessing PD Fall Risk Using a Body-Fixed Sensor

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e96675



may alter the interpretation of the results by considering the worst

case only. The present analyses were based on 3 day recordings. In

the future, it may be useful to compare between activities of day 1,

2 or 3 and to evaluate the trade-offs of using longer or shorter

recording periods. It may also be helpful to derive other metrics

from these signals to tease out the role of the dopaminergic and

cholinergic systems in fall risk in PD, for example, and to provide

insight into additional clinical aspects of PD symptoms and disease

progression. Follow-up studies in larger cohorts will also be helpful

to confirm the present results and more fully evaluate clinical

utility and other clinometric properties.

In summary, these initial findings suggest that a body-fixed

sensor worn for 3 days can be used to evaluate fall risk in patients

with PD as they carry out activities in their natural home and

community settings. The study cohort is fairly representative of the

general PD population as there was a relatively broad range of

motor function and disease duration (recall Table 1 and Herman

et al. [16]) and as noted above, generalizability is supported by the

consistency of the present results with the previous pilot study.

This approach may improve our knowledge of the patient’s

condition outside the clinic, where wearing off and intrinsic and

extrinsic environments impact performance, thus helping to assess

functional status and fall risk. The underlying biological mecha-

nism of gait disturbances and falls is rather complex and still to be

fully defined. However, high variability and step-to-step fluctua-

tions as extracted from body worn sensors may represent central

neuronal rhythm deficits. Impaired internal rhythmicity (‘‘biolog-

ical clock’’) is associated with inconsistency of the gait, leading to

postural control impairment and consequentially disequilibrium

and falls.

The present results also illustrate that activity monitors and step

counters that only estimate the amount of activity apparently do

not adequately capture fall risk in PD. The quantity of activity may

be important for other health benefits like cardiovascular fitness,

but quality may be more important than quantity when it comes to

fall risk in PD. Further, the current findings set the stage for the

provision of objective measures that are not dependent exclusively

on self-report or a test at a single time point. In theory, sensor-

derived metrics can capture wearing off, the effects of motor

response fluctuations and changes in fall risk in response to the

many motor and cognitive challenges during daily living. They

should, therefore, assist in the evaluation of disease progression,

the benefits of therapeutic interventions and fall risk. In the future,

it may also be helpful to apply mediation and other types of

analyses to further evaluate the relationship between the different

measures. In the spirit of mHealth [13,14], the routine clinical

exam can be markedly augmented using continuously worn, body-

fixed sensors that provide objective details about the patient’s

activity and fall risk.

Note

The long-term recordings and the clinical data on which the

present analyses were made will be available at www.physionet.

org, the National Institutes of Health-sponsored Research Resource for

Complex Physiologic Signals.
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