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Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI) brain injury remains a common cause of
developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of
cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury
predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis.
Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of
neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap
of programmed death pathways. Receptor interacting protein (RIP)-1 is at the crossroads between types of cellular death and
survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3) leading to programmed necrosis.
Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the
HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed
necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell
and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives
provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for
neonatal HI.

1. Introduction

Neonatal hypoxic-ischemic encephalopathy (HIE) is a sig-
nificant cause of mortality and morbidity in the pediatric
population [1]. The therapeutic options for neonatal HIE are
limited in part because the mechanisms of cellular degener-
ation in the immature brain are not fully understood. These
mechanisms resulting from ischemia-reperfusion, oxidative
stress, excitotoxicity and inflammation among others, acti-
vate or coactivate multiple pathways of cell death. Although,
necrosis was initially described as the most prominent

form of cellular degeneration following neonatal hypoxia-
ischemia (HI) [2, 3], research emphasis switched to the study
of apoptosis (programmed cell death type I) and autophagy
largely due to advances in cell biology and to experimental
animal studies on the molecular dissection of pathways for
apoptotic and autophagocytic initiation and execution. The
significance of necrosis in neonatal HI has been difficult
to assess because of the presumed lack of a measurable
regulatory pathway; however, the pathological evidence for
necrosis has been well documented following HI [4, 5]. We
now know that necrosis can be regulated and programmed
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and that many components of the regulatory pathways are
shared between different types of cell death opening a new
window of opportunity for examination/reexamination of
the cell death mechanisms in the neonatal brain with the goal
of finding novel targets for therapy.

Based on morphological and biochemical data, we
conceptualized that neurodegeneration in the neonatal brain
is best classified according to an apoptosis-necrosis cell
death “continuum” [6] and proposed that programmed cell
necrosis (also called necroptosis in cell cultures) has a
prominent contribution to neurodegeneration following HI
[7]. It is certain that neonatal HI injury evolves through
many cell death chreodes influenced by the dynamic injury
landscape of the developing brain [8] and the mechanisms
of injury in human neonatal HI are more complex than
previously anticipated from experimental animal models.
The accurate identification of the various cell death chre-
odes including programmed necrosis and their mechanisms
unfolding within the immature brain will, in all likelihood,
provide fresh rationale for the development of molecular-
based therapies for neonatal brain injury following HI.

2. Programmed Cell Necrosis in Neonatal HI

Programmed necrosis as such has only recently been recog-
nized as an important mechanism of injury in the immature
brain following HI [7], however many aspects of pro-
grammed necrosis signaling have been comprehensively
analyzed by the neonatal brain injury research community
over the past decade (Table 1). This work piggybacks on a
tremendous body of cell culture data on the mechanisms
and contributions of programmed necrosis to cell death since
the publication of 3 seminal papers in 1998, 2000, and 2003
[9–11]. This literature has been extensively reviewed recently
[12–17].

We proposed that this novel regulated programmed
necrosis, lies along the apoptosis-necrosis “continuum” and
contributes meaningfully to several forms of acute neonatal
brain injury [7, 18]. The death domain containing serine/
threonine kinase, receptor interacting protein (RIP)-1, is
central to the most well-described forms of programmed
necrosis. Its kinase activity is selectively blocked by necro-
statins and this affords protection against RIP-1-dependent
forms of cell death [19, 20]. Blockade of RIP-1 kinase
using necrostatin provides protection in adult animal models
of myocardial ischemia and ischemic and traumatic brain
injury [18, 21, 22]. Similarly in neonatal HI, blockade of RIP-
1 kinase attenuates brain injury at delayed stages in forebrain,
hippocampus, and thalamus [7]. The necrostatins have been
a major tool for investigation of RIP-1-dependent cell death
pathways, however there are other tools that are now being
used to explore RIP-1-dependent pathways and these will be
discussed below.

The specific allosteric blockade of the kinase activity of
RIP-1 has been studied extensively in cell cultures to demon-
strate distinct signaling pathways leading to morphologic
necrosis; however, many forms of necrosis in cultured cells,
appear to proceed with different kinetics and not all are RIP-
1 kinase dependent [23]. Some of the known and suspected

RIP-1-independent programmed necrosis pathways include
(i) caspase recruitment domain (ASC)-mediated necrosis,
that is dependent of the non-catalytic activity of caspase-
1 [24]; (ii) p53-cathepsin Q-mediated necrosis, that is
activated by reactive oxygen species (ROS) and deoxyri-
bonucleic acid (DNA) damage [25]; (iii) apoptosis inducing
factor (AIF) and poly(ADP-ribose)polymerase-1-(PARP-1-)
dependent pathways (controversy exists over the role of RIP-
1 in these forms of programmed necrosis) [26–30]. These
pathways to necrosis will not be emphasized since RIP-1-
dependent pathways are the focus of this paper and have been
most extensively studied.

2.1. The Many Faces of RIP-1: Making the Decision between
Living or Dying. Maximal execution of RIP-1-mediated
activation of programmed necrosis occurs in the setting of
caspase inhibition [20, 31] which can occur as a consequence
of pharmacologic inhibition or significant mitochondrial
dysfunction and adenosine-5′-triphosphate (ATP) depletion
[32–35]. Others and we have hypothesized that energy failure
interrupts the neonatal brain’s proclivity to apoptosis [6, 32,
33, 36] resulting in the hybrid, “continuum” cell death, or
programmed necrosis morphology, possibly via activation
of RIP-1 kinase [7]. Following activation of tumor necrosis
factor (TNF) receptor (TNFR), RIP-1 signaling leads to a
variety of cell fates and has been, for the most part, studied
in cell culture [16]. In the setting of energy sufficiency,
activation of members of TNFR superfamily (i.e; TNFR1,
Fas death receptor (Fas-DR)) by their cognate ligands (TNF-
α and FasL, resp.), produce a conformational change in the
receptor and recruitment of RIP-1, TNFR- associated death
domain (TRADD), and TNFR-associated factor (TRAF) 2
and 5 to the cell membrane. Together these components con-
stitute complex I [32]. TRAF2 recruits the cellular inhibitor
of apoptosis (cIAP) that allows polyubiquitylation of RIP-
1 leading to activation of p38-mitogen-activated protein
(MAP) kinase, nuclear factor- kappa B (NFκB) and cell
survival [37–40] (Figure 1). In a rodent model of neonatal
HI, preservation of cIAP, via blockade of Smac/DIABLO,
decreases injury size and improve outcomes [41], suggesting
a possible role of RIP-1 ubiquitylation in cellular survival in
this model. Likewise, preservation of RIP-1 ubiquitylation by
genetic deletion of cylindromatosis (CYLD, deubiquitinating
enzyme) in cultured cells results in resistance to TNF-
induced programmed necrosis [42, 43] which persists despite
zVAD-fmk treatment (pan-caspase inhibitor) [44]. The roles
of caspase 8 (known to cleave CYLD [44]), CYLD, and ubiq-
uitylation of RIP-1 in determining activation of signaling
pathways for programmed necrosis or survival are entirely
unexplored territory in the investigation of neonatal brain
injury following HI. Furthermore, RIP-1 ubiquitylation and
complex I have been recently linked to cell death via Nox1
activation suggesting that many other modulators may play
an important role in the elaborate intracellular signaling
leading to cell survival or death [45] (Figure 1).

In the setting of energy insufficiency, activation of TNFR
signals for cellular death via a variety of mechanisms is
triggered by the degree of energy deficit. If cellular energy
is only partially limited, RIP-1 polyubiquitylation declines
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Table 1: Components of continuum-programmed necrosis pathway in neonatal HI models.

Component Finding (Year) Researchers

AIF

Translocation from mitochondria to nucleus produces DNA condensation. ↑ is correlated
with ↑ infarct size (Rat model) (2003) Zhu et al. [46]

AIF effect on DNA is nitric oxide independent (Rat Model) (2004) Zhu et al. [47]

Hsp-70 ↓ translocation of AIF to the nucleus (Mouse model) (2005) Matsumori et al. [48]

TAT-Bcl-xL ↓ AIF translocation to nucleus and caspase activation providing
neuroprotection post HI (Rat model) (2006) Yin et al. [49]

↑ nuclear translocation in males associated with ↑ injury Female mice show greater
caspase 3 activity. (Mouse model) (2006) Zhu et al. [50]

Hypothermia ↓ AIF translocation. (Rat model) (2011) Askalan et al. [51]

Calpains

m-calpain but not μ-calpain cleaves caspase-3 (Rat model) (2001) Blomgren et al. [52]

Calpain inhibition (using MDL28170) provides neuroprotection and ↓ necrosis (Rat
model) (2005) Kawamura et al. [53]

Prolonged hypothermia ↓ calpain activation (Rat Model) (2005) Ohmura et al. [54]

Polyphenols (pomegranate) provide neuroprotection and decrease calpain activation
(Mouse model) (2007) West et al. [55]

Inhibition produced by inhibition of JNK (using D-JNKI1) (Rat model) (2009) Ginet et al. [56]

TAT-mGluR1 blocks the calpain cleavage site of mGluR1α and provide neuroprotection
(Rat model) (2009) Zhou et al. [57]

Inhibition of JNK (using TAT-JBD) prevents calpain-mediated brain injury after HI (Rat
model) (2010) Nijboer et al. [41]

Calpain modulates the ↓ in Bcl-2 following HI (Rat model) (2010) Zhu et al. [58]
Ethyl pyruvate is neuroprotective via inhibition of calpain activation and Ca2+

dysregulation. (Rat model)
(2010) Shen et al. [59]

Cathepsins

Propidium ioidide + cells in cortex and hippocampus were + for cathepsin B after HI
suggesting necrosis (Rat model) (2007) Carloni et al. [60]

Cathepsin D ↑ at 6 h and 24 h post-HI (Rat model) (2009) Ginet et al. [56]

FADD

Expression is independent of gluthatione levels and hydrogen peroxide accumulation
(Mouse model) (2007) Payton et al. [61]

Inhibition of RIP-1 kinase activity restores the RIP-3/FADD interaction (Mouse model) (2011) Northington et al. [7]

Fas-DR
↑ in the thalamus following HI along with ↑ cleavage of caspase 8. (Rat model) (2001) Northington et al. [62]
↑ after HI and genetic deletion provides neuroprotection to cortex (Mouse model) (2004) Graham et al. [63]

Hsp-90 — No in vivo HI studies

Hsp-70
Hsp-70 overexpression provide protection against apoptosis (Mouse model) (2005) Matsumori et al. [48]
↑ FLIP levels, ↓ caspase-8 and 9 cleavage, and cytochrome C translocation to cytosol
(Mouse model)

(2006) Matsumori et al. [64]

JNK

Activated after HI. Genetic deletion ↓ brain tissue loss. Activates c-JUN, ATF-2,
Bim/PUMA (Mouse model) (2007) Pirianov et al. [65]

Inhibition (using D-JNKI1), ↓ caspase-3 activation. (Rat model) (2009) Ginet et al. [56]
Inhibition (using TAT-JBD) ↓ injury, improves outcomes, and preserves IAP (via
inhibition of Smac/DIABLO). (Rat model)

(2010) Nijboer et al. [41]

p53
↑ in mitochondria→↑ cytochrome C and Smac/DIABLO translocation. ↓ p53 →↓ infarct
(better outcomes). (Rat model)

(2011) Nijboer et al. [66]

PARP-1

Activation after HI but ↓ NAD+ only in male mice and genetic deletion affords
neuroprotection in males. (Mouse model) (2004) Hagberg et al. [26]

Simvastatin ↓ PARP-1 activation and IL-1β expression and provides neuroprotection (Rat
model) (2006) Carloni et al. [67]

Immunoreactivity (IHC) peaks at 30 min and then again at 12 h post HI (Rat model) (2005) Martin et al. [68]

RIP1/RIP3
↓ complex (necrosome) formation by necrostatin after HI affords neuroprotection, ↓
oxidation and FLIP (Mouse model)

(2011) Northington, et al. [7]

TNFR
NF-κB inhibition ↓ brain damage and switches the HI-induced TNF-R profile from ↑
TNF-R1 to ↑ TNF-R2. (Rat model)

(2009) Nijboer et al. [69]

TRADD — No in vivo HI studies

AIF: apoptosis inducing factor; FADD: Fas-associated protein; Fas-DR: Fas death receptor; FLIP: (Fas-associated death-domain-like IL-1β converting enzyme)-
inhibitory protein; HI: Hypoxia-ischemia, Hsp: heat shock protein; IAP: inhibitor of apoptosis JNK, Jun N-terminal kinase; NFκB: nuclear factor-kappa B;
PARP-1: Poly [ADP-ribose] polymerase-1; RIP: receptor interacting protein; TNFR: tumor necrosis factor receptor; TRADD: TNFR-associated death domain.
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Figure 1: The role of RIP-1 in programmed necrosis. Following neonatal HI, members of the TNFR superfamily (also called death receptors,
DR) are activated by their ligands (DR-L) (i.e., FasL, TNF-α). In the setting of energy sufficiency and upon TNFR activation, TNFR
undergoes a conformational modification of its cytoplasmic portion allowing the interaction with receptor interacting protein (RIP)-1
with the death domain (DD), TNFR-associated death domain (TRADD), and TNFR-associated factor (TRAF)-2 and -5. They in turn
recruit the cellular inhibitor of apoptosis (cIAP) forming the complex I. cIAP inhibits caspase-3 activation and allows ubiquitylation of
RIP-1. Next, transforming growth factor-β-activated kinase (TAK)-1/TAK-1 binding protein (TAB)-2/TAB-3 form a complex that binds
to ubiquitin residues on RIP-1 and activates nuclear factor-κB (NFκB). This may occur via a p38 mitogen-activated-protein-kinase-(p38-
MAPK-) dependent pathway. Complex I may interact with NADPH oxidase (NOX 1) producing ROS, also possibly triggering programmed
necrosis. Deubiquitylation of RIP-1 by the enzyme cylindromatosis (CYLD) favors the transformation of complex I to complex II binding to
the internalized death-inducing-signaling-complex (DISC, formed by FAS-associated protein with death domain (FADD) and procaspase-8
(Pro-C8)) and RIP-3 (Complex II). If energy is only partially insufficient, RIP-1 activates caspase-8 (C8) signaling for classical apoptosis via
intrinsic (where truncated BID binds to the outer mitochondrial membrane allowing the release of cytochrome C (Cyt C) and triggering
apoptosome formation) or extrinsic pathway resulting in caspase-3 activation. In this setting, caspase-8 cleaves RIP-1 and RIP-3 preserving
signal for apoptosis; however, if energy failure evolves, caspase activity declines favoring (i) preservation of the RIP-1 kinase activity,
(ii) decrease in RIP-3/FADD constitutive interaction, and (iii) autophosphorylation between RIP-1 with RIP-3 at the RIP homotypic
interaction motif (RHIM) forming the necrosome. Necrosome induces reactive oxygen species (ROS) production via activation of NOX
1 at the cellular membrane or direct effects in the mitochondria. ROS cause DNA alkylation increasing activation of calpain-dependent
poly(ADP-ribose)polymerase-1 (PARP-1) which is normally required for DNA repair. Hyperactivation of PARP-1 induces ATP depletion
and apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus which in turn produces further DNA damage and
PARP-1 activation. Necrosome formation is a a potential intermediate step that follows PARP-1 activation potential intermediate steps that
follow PARP-1 activation. There is some evidence that it produces ATP depletion via inhibition of adenine nucleotide translocase (ANT) in
the inner mitochondrial membrane. Mitochondrial dysfunction is likely at the core of the events resulting in programmed necrosis.

favoring the transition of complex I to cytosolic complex
II via internalization of activated TNFR and formation of
the death-inducing signaling complex (DISC) containing
TRADD, Fas-associated protein (FADD) and procaspase 8
[32, 70, 71]. When RIP-1 kinase is active, caspase-8 is cleaved

and activated, initiating the intrinsic and extrinsic apoptotic
cascades [72]. Activated caspase 8 can then cleave RIP-
1 and RIP-3 and consequently limit programmed necrosis
[73, 74] (Figure 1). However, in the setting of more severe
ATP depletion, caspase activity is inhibited allowing the
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formation of the RIP-1/RIP-3 complex, the necrosome, and
cell death proceeds via programmed necrosis [10, 11, 75].
Interaction between RIP-1 and RIP-3 occurs at the RIP
homotypic interaction motif (RHIM) which is the site
of mutual phosphorylation [76]. Other RIP-1-dependent
pathways do not require kinase activity as suggested by the
lack of modulation of NFκB following RIP-1 kinase blockade
with necrostatin in cell culture [19]. Once again, no studies
have addressed the formation of complex II in vivo following
neonatal HI.

The interaction between FADD, RIP-1, and RIP-3
appears to be critical following TNFR activation [77]. RIP-
1 is recruited to FADD in a TNF-dependent manner, while
RIP-3 is more constitutively associated with FADD [78]. Fol-
lowing TNF exposure of cell cultures, FADD-deficient cells
undergo RIP-3- and CYLD-dependent programmed necrosis
with prominent inflammation, suggesting that FADD may
prevent formation of the necrosome [79]. In addition to
FADD, caspase 8 also seems to be necessary for survival of
cultured cells due to its role in modulating CYLD activity and
perhaps other functions [80]. In the developing mouse brain,
there is abundant expression of caspase 8, TNFR, FAS death
receptor, FADD, RIP-1, and RIP-3 [6, 7, 63]. In the normal
developing brain, RIP-3 and FADD coimmunoprecipitate;
following HI, RIP-1 is recruited to complex with RIP-3 dis-
rupting RIP3’s association with FADD [7]. These events are
RIP-1 kinase dependent as proven by the partial restoration
of RIP-3 and FADD association following treatment with
necrostatin [7].

In the neonatal HI model, necrostatin not only provides
neuroprotection but also partially shifts the death phenotype
from necrosis to apoptosis validating the reality of the cell
death continuum and providing insights into mechanisms
that may drive the cell death continuum [6, 7]. A similar
finding has been reported in cell culture; knockdown of
RIP-1 prior to TNFα exposure switches cell death from
necroptosis to apoptosis [42]. Some factors that may permit a
switch from necrosis to apoptosis in mice treated with necro-
statin early after HI are (i) preservation of the mitochondrial
function and consequently ATP production, (ii) inhibition
of FLIP ((Fas-associated death-domain-like IL-1β converting
enzyme)-inhibitory protein) gene and protein expression
[7, 81]; (iii) the fact that RIP-1 pathways leading to survival
and apoptotic cell death are not kinase dependent [10, 19,
82]. We suspect that necrostatin-1, by blocking programmed
necrosis, may allow a “cleaner” and less inflammatory form
of cell death, similar to what is described for therapeutic
hypothermia [83]. This possibility has not yet been explored.

2.2. Energy: The Driving Force. Mitochondrial dysfunction
and energy failure is a hallmark in necrotic cell death
following neonatal HI [6, 84–88]. RIP-1-dependent necrop-
tosis evolves with increased reactive oxygen species (ROS)
production, decreased ATP production, and decreased mito-
chondrial membrane potential [89]. In cultured cells, nitric
oxide inhibits NADH dehydrogenase (mitochondrial com-
plex I) causing depletion of intracellular ATP and promoting

a switch from apoptosis to necrosis [33, 90, 91]. Nitric-
oxide-(NO-) induced inhibition of mitochondrial complex
I is reversible at low concentrations [91–93] but irreversible
at high concentrations resulting in additional free radical
production [94, 95]. After neonatal HI, inducible nitric
oxide synthase (iNOS) expression and NO accumulation
increase, events that are followed by a progressive decline
in complex I activity in forebrain during the first 24 h
(unpublished data, Pediatric Academic Society Meeting 2011
abstract 2170.2; Neuroscience 2012, submitted). This decline
in complex I activity results in a significant impairment in
ATP production at early stages following HI that is also
prevented by blockade of RIP-1 kinase [96]. Blockade of RIP-
1/RIP-3 complex formation in cell culture using necrostatin
or RIP-1 siRNA prevents 3-nitrotyrosine accumulation and
nitrosylation of complex I and attenuates NO-dependent
necrosis [95] similar to findings in the neonatal in vivo HI
model. These data are consistent with the hypothesis that
an intact mitochondrion is initially required to produce
physiological superoxide (O2

−) that will react with NO to
generate peroxynitrite (ONOO−) resulting in mitochondrial
membrane potential loss [97, 98].

The link between programmed necrosis and opening
of the mitochondrial permeability transition pore (MPTP)
complex is controversial [22, 99]. However, RIP-1 appears
to have direct effects in cellular energy production by
translocating to the mitochondria and suppressing ADP/ATP
exchange [20, 100] in cell culture. In concert with these find-
ings, necrostatin also prevents the reduction in mitochon-
drial membrane potential caused by excitotoxic stimuli
[101].

2.3. Free Radicals Targeting the Mitochondria. RIP-1 kinase
activity is essential for cell death to proceed via the most
well-recognized form of programmed necrosis. RIP-1 kinase
activity mediates the formation of the necrosome (RIP-
1/RIP-3 complex) which induces ROS production via effects
on (i) Nox 1 nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and (ii) the mitochondria [23, 45, 102].
Nevertheless, necrostatin is not a direct antioxidant and does
not prevent cell death caused by hydrogen peroxide in culture
[12, 103]. However, much like hypothermia, inhibition of
RIP-1 kinase activity attenuates oxidative injury to proteins
following neonatal HI in the mouse and piglet [7, 83]. Simi-
larly, genetic deletion of RIP-3 gene or treatment with RIP-3
silencing RNA (siRNA) in cultured cells prevents increase in
ROS and programmed cell necrosis [78]. Potential oxidative
injury mechanisms targeted by the blockade of programmed
necrosis include (i) blockade of nitric-oxide-mediated mito-
chondrial dysfunction caused by lipopolysaccharides (LPS)
stimulation of macrophages [95], (ii) inhibition of glutamate
excitotoxicity [103], (iii) increased glutathione levels [103],
and (iv) decreased ROS production [103].

Glutathione (GSH) levels decrease following both exci-
totoxic and HI insults but blockade of RIP-1 kinase with
necrostatin increases GSH production in HT-22 cells follow-
ing glutamate exposure [45, 103]. In the neonatal HI mouse



6 Neurology Research International

model, treatment with necrostatin appears to prevent glu-
tathione oxidation rather than increasing GSH production
per se [96]. This finding may reflect an indirect effect of the
prevention of early protein carbonyl formation afforded by
necrostatin-1 after neonatal HI [7] or it may simply be an
indirect consequence of neural cell protection.

Recently, a role for Bcl-2/adenovirus E1B 19 kDa-in-
teracting protein 3 (BNip3) has been described in a pro-
grammed necrotic-like cell death [104]. This BH3-only
protein subfamily includes two members: BNip3 (also
called NIP3) and BNip3L (also called NIX or BNip3-like)
each with different recognized functions [105, 106]. BNip3
(30 kDa monomer) binds loosely to the outer mitochondria
membrane (OMM) [107]. Free radical accumulation induces
BNip3 dimerization and insertion into the OMM triggering
necrotic-like cell death [104, 108]. In models of neonatal
HI, necrostatin prevents early iNOS expression and NO
accumulation and blocks hypoxia-inducible factor (HIF)-
1α expression (unpublished data), a transcription factor
that binds to the hypoxia response element (HRE) at
the BNip3 promoter [109, 110]. Because NO modulates
HIF-1α expression via Ras modification and phosphory-
lated extracellular-signal-regulated kinase (ERK) nuclear
accumulation [109], it is possible that by preventing NO
accumulation, necrostatin could indirectly decrease HIF-1α
and consequently BNip3 expression following neonatal HI,
protecting the mitochondria and preventing the progress of
programmed necrosis. The second member of the BNip3
subfamily, BNip3L, has dual, but distinct, actions depending
on the targeted organelle, mitochondria, or endoplasmic
reticulum [106]. Although BNip3L has not been studied
in models of neonatal HI, there is data from cellular
cultures. At the mitochondria, BNip3L induces Bax/Bak-
dependent OMM permeabilization, cytochrome c release,
caspase activation and apoptosis, while, at the endoplas-
mic reticulum, BNip3L induces acute release of luminal
Ca2+ that triggers cyclophilin-D-dependent MPTP complex
opening, mitochondria swelling, mitochondrial membrane
potential loss, ATP depletion, release of free radicals, and
cellular necrosis [106]. Conversely, Bax/Bak has been also
associated with programmed necrosis via release of AIF
and mitochondrial depolarization [89, 111]. Therefore, both
members of the BNip3 subfamily can be classified as sensors
of mitochondrial stress as suggested previously [112] and
because its expression is modulated by stimuli that are very
well-recognized in association with HI, it is possible that
both, BNip3 and BNip3L, are linked with the mitochondrial
dysfunction seen following HI.

The pathways linking RIP-1 activity and RNS production
are mostly unknown. Increased NO accumulation and
iNOS expression potentiates glutamate release, N-methyl
D-aspartate receptor (NMDAR) activity, necrotic neuronal
death, and progression of excitotoxic injury in cell cultures
[33, 113, 114]. Allosteric inhibition of RIP-1 kinase prevents
the RNS formation as evidence by the decreased nitration
of the NDUFB8 subunit preventing mitochondrial com-
plex I dysfunction and depolarization [95]. Unpublished
experiments from our laboratory are in agreement with
these finding suggesting that blockade of RIP-1 kinase

activity following neonatal HI decreases NO accumulation
by 70% coincidently with a decrease in iNOS expression
(unpublished data, Pediatric Academic Society Meeting 2011
abstract 2170.2). It remains unknown which mechanisms are
operative and if they are directly linked to the inhibition of
programmed necrosis. Anti-iNOS/NO effects of necrostatin
may involve modulation of inflammatory mediators since
cytokines are primary activators of iNOS production by
astrocytes and necrostatin decreases cytokine expression [7,
115].

Ultimately, overproduced ROS and RNS attack the
mitochondria, depleting ATP production and allowing pro-
grammed necrosis to proceed. ROS induces DNA alkylation,
an event that increases the levels of calpain-dependent
PARP-1 required for DNA repair [27, 28] in the setting
of caspase 8 inhibition. Hyperactivity of PARP-1 following
glutamate excitotoxicity produces poly-ADP-ribose (PAR)
accumulation and ATP depletion inducing translocation of
AIF from the mitochondria to the nucleus via a c-Jun-N-
terminal-kinase-(JNK)-1-mediated mechanism resulting in
chromatin condensation and DNA fragmentation [29, 30].
The importance of PARP-1 activation and AIF translocation
in the neonatal brain after HI appears to be gender specific
[26, 50]. PARP-1 level peaks at 30 min and again at 12 h
following neonatal HI [68] along with an early decrease in
nicotinamide adenine dinucleotide (NAD+) in male mice
[26]. Furthermore, PARP-1 genetic deletion [26] or inhibi-
tion [67] provides neuroprotection following neonatal HI in
male but not female mice. Blockade of calpains, required for
PARP-1 activation, using MDL28170 [53] or hypothermia
[54] or blocking JNK pathway [41] also decreases necrotic
injury after HI. The degree of AIF translocation to the
nucleus, also greater in male mice [50], correlates with the
infarct size following neonatal HI [46] and its inhibition
by heat shock protein (Hsp)-70 [48] TAT-Bcl-xL [49] or
hypothermia [51] provides neuroprotection. Although still
unclear, steps following PARP-1 activation may include RIP-
1 activation as evidenced by the protection against DNA
alkylation in RIP-1 knockdown mouse embryonic fibroblast
[29]. Altogether, these data suggest an important role of a
PARP-1-AIF feedback cycle in the events leading to brain
injury following neonatal HI, direct evidence of interaction
of AIF with RIP-1 (or the necrosome) has yet to be reported
in the immature brain.

2.4. Inflammation and Programmed Necrosis. The impor-
tance of inflammation following HI has been extensively
studied in the immature brain [116–118]. In normal phys-
iology, a primary function of RIP-1 is to transduce the NFκB
signal leading to survival, hence RIP-deficient mice fail to
thrive and die within three days after birth with extensive
lymphoid apoptosis associated with failure to activate NFκB
due to unfavorable conditions to form complex I [32, 119].
Cell culture studies failed to show that RIP-1 kinase modu-
lates NFκB activation [19]. However, in vivo, we have shown
that blockade of RIP-1 kinase activity using necrostatin
following neonatal HI is associated with prevention of early
increase in nuclear translocation of NFκB [7]. This effect is
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likely indirect but may be of significance given the toxicity
associated with early increases in NFκB levels after neonatal
HI [69, 120]. Additional confirmation of a possible indirect
modulatory effect on NFκB is that transcription of FLIP is
downregulated following RIP-1 kinase blockade [7]. Because
FLIP is under transcriptional control by NFκB, the decline
in early FLIP [121] expression following blockade of RIP-
1 kinase with necrostatin may be a reporter for changes in
NFκB activity.

NFκB is a transcription factor that also mediates impor-
tant apoptotic and inflammatory pathways which are cen-
tral to HI-mediated brain injury in the immature brain
[69, 120, 122]. Innate immune responses are dependent
on activation of toll-like receptors (TLRs), recruitment of
myeloid differentiation primary response gene (MyD)88 and
interleukin-1 receptor-associated kinase (IRAK), association
of TRAF6 and MAP3K, phosphorylation of I kappa B
kinase (IKK) and release and nuclear translocation of the
transcriptional factor NFκB (p65/RelA/p50), resulting in
change in cytokine expression [122]. Other proinflammatory
receptors linked to NFκB include the nucleotide-binding
oligomerization domain (NOD) which with the interleukin
(IL)-1 converting enzyme protease-activation factor (IPAF)
activates caspase 1 (IL-1β converting enzyme) and forms
the inflammasome [123–125]. Further details about the
inflammatory pathways triggered by NFκB activation may
be reviewed elsewhere [122]. Current understanding of the
“crosstalk” between programmed necrosis and inflammatory
pathways is very limited; however certain interactions can be
suspected based on current data. Blockade of programmed
cell necrosis and cytokine expression in the neonatal HI
model following treatment with necrostatin suggest that
inhibition of RIP-1 kinase decreases the activation of the
inflammasome, as shown by decreased caspase 1 activity
and decreased transcription of IL-1β [7]. Furthermore, TNF-
α and IL-6 are also downregulated in mice treated by
necrostatin following neonatal HI, suggesting that RIP-1
kinase modulates neuroinflammation. However, it remains
unclear if these anti-inflammatory changes are a direct effect
of blockade of programmed necrosis pathway or whether
they are secondary to the overall neuroprotection.

Although astrocytes provide support to neurons, they
also release cytokines that instigate and perpetuate neu-
roinflammation [126]. TLR are constitutively expressed in
astrocytes and modulation of these receptors following HI
has been characterized [127]. Following induction of pro-
grammed necrosis, reactive astrocytes release cytokines and
express iNOS [128], suggesting that changes in the cytokine
profile associated with RIP-1 kinase blockade in HI may be
related to an effect on astrocytes. Our preliminary results
show that following neonatal HI, necrostatin decreases
iNOS and cytokine expression while preserving astrocyte
mitochondrial ultrastructure and attenuating glial fibrillary
acidic protein (GFAP) expression at later stages. One pos-
sible hypothesis explaining the neuroprotective and anti-
inflammatory effect associated with RIP-1 kinase inhibition
is that in vivo astrocytes are a primary therapeutic target
of necrostatin and by protecting and preserving astrocyte

structure and function, it protects neurons and prevents
neuroinflammation.

2.5. Gender Differences in Programmed Necrosis. Gender dif-
ferences have been reported in neonatal rodent models of HI
brain injury [7, 26, 50]. These differences may result from
intrinsic differences in primary injury pathways. We found
a more robust neuroprotection in males than females in
response to programmed necrosis blockade [7]. Mechanisms
explaining these gender differences are unresolved, but may
involve an effect of necrostatin on the more significant
decline in NAD+ following PARP-1 activation [26] and
the preferential nuclear translocation of AIF [50] found in
male rodents following neonatal HI. Therefore, necrostatin’s
blockade of RIP-1/RIP-3 interaction, oxidative damage, and
inflammation may reflect mechanisms of action upstream
and downstream of AIF translocation in male rodents.

3. Conclusions

Neonatal HI brain injury remains a common cause of devel-
opmental disability despite ongoing advances in obstetrical
and neonatal care. With the advent of hypothermia for
treatment of some infants with HI, morbidity has begun
to decrease [129]. However, hypothermia is only partially
neuroprotective after neonatal HI and 45% of all treated
infants still suffer severe neurodevelopmental disability or
death despite treatment [130]. Development of adjuvant
therapies for hypothermia treatment has been limited to
date. Novel approaches to understanding neurodegeneration
after neonatal HI are needed. The conceptualization of the
apoptosis-necrosis “continuum” in neonatal brain injury in
1997 predicted important mechanistic interactions between
apoptosis and necrosis pathways [131]. Evidence of pro-
grammed necrosis in neonatal HI is in complete agreement
with this sentinel observation and provides an important
new direction for future research [7]. Programmed necrosis
has been well studied in cellular cultures with new findings
published routinely but the recognition of its importance
in neonatal HI is just beginning. Many components of the
signaling pathway now known to also regulate programmed
necrosis have been studied over the last decade in models of
neonatal HI as part of the apoptotic pathways showing the
clear overlap of these pathways (Table 1). As we now begin
to understand the contribution of programmed necrosis
to neural cell fate following HI injury, we should take a
fresh look at previous findings from these earlier studies.
However, many questions remain unanswered with respect
to programmed necrosis and neonatal HI including (i)
direct effect, if any, of RIP-1 (or the necrosome) in dis-
ruption of mitochondrial bioenergetics; (ii) role of calpain-
mediated lysosomal destabilization in the progression of
injury; (iii) link between RIP-1 and PARP-1-AIF feedback
cycle; (iv) identification of neural cell types most vulnerable
programmed necrosis and the role of individual neural
cell types in propagation or resistance to programmed
necrosis; (v) the cellular mechanisms activated following
necrosome formation in the immature brain; (vi) whether
specific inhibitors of programmed necrosis will be clinically
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useful; (vii) what effect, if any, current therapies have on
programmed necrosis following HI. Studies such as these will
provide new perspectives on the mechanisms of neuronal cell
death in vivo and may lay the foundation for new effective
therapies for neonatal HI.
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or not to be: NF-κB is the answer—role of Rel/NF-κB in the
regulation of apoptosis,” Oncogene, vol. 22, no. 56, pp. 8961–
8982, 2003.

[123] F. Martinon, K. Burns, and J. Tschopp, “The Inflammasome:
a molecular platform triggering activation of inflammatory
caspases and processing of proIL-β,” Molecular Cell, vol. 10,
no. 2, pp. 417–426, 2002.

[124] J. L. Poyet, S. M. Srinivasula, M. Tnani, M. Razmara, T.
Fernandes-Alnemri, and E. S. Alnemri, “Identification of
Ipaf, a human caspase-1-activating protein related to Apaf-
1,” Journal of Biological Chemistry, vol. 276, no. 30, pp.
28309–28313, 2001.

[125] N. J. Yoo, W. S. Park, S. Y. Kim et al., “Nod1, a CARD
protein, enhances pro-interleukin-1β processing through the
interaction with pro-caspase-1,” Biochemical and Biophysical
Research Communications, vol. 299, no. 4, pp. 652–658, 2002.

[126] M. R. Freeman, “Specification and morphogenesis of astro-
cytes,” Science, vol. 330, no. 6005, pp. 774–778, 2010.

[127] L. Stridh, P. L.P. Smith, A. S. Naylor, X. Wang, and C. Mallard,
“Regulation of Toll-like receptor 1 and -2 in neonatal mice
brains after hypoxia-ischemia,” Journal of Neuroinflamma-
tion, vol. 8, article 45, 2011.

[128] M. D. Laird, C. Wakade, C. H. Alleyne, and K. M. Dhan-
dapani, “Hemin-induced necroptosis involves glutathione
depletion in mouse astrocytes,” Free Radical Biology and
Medicine, vol. 45, no. 8, pp. 1103–1114, 2008.

[129] P. S. Shah, A. Ohlsson, and M. Perlman, “Hypothermia to
treat neonatal hypoxic ischemic encephalopathy: systematic
review,” Archives of Pediatrics and Adolescent Medicine, vol.
161, no. 10, pp. 951–958, 2007.

[130] S. Shankaran, A. R. Laptook, R. A. Ehrenkranz et al., “Whole-
body hypothermia for neonates with hypoxic-ischemic
encephalopathy,” New England Journal of Medicine, vol. 353,
no. 15, pp. 1574–1584, 2005.

[131] C. Portera-Cailliau, D. L. Price, and L. J. Martin, “Excitotoxic
neuronal death in the immature brain is an apoptosis-
necrosis morphological continuum,” Journal of Comparative
Neurology, vol. 378, no. 1, pp. 70–87, 1997.


	Introduction
	Programmed Cell Necrosis in Neonatal HI
	The Many Faces of RIP-1: Making the Decision between Living or Dying
	Energy: The Driving Force
	Free Radicals Targeting the Mitochondria
	Inflammation and Programmed Necrosis
	Gender Differences in Programmed Necrosis

	Conclusions
	Abbreviations
	
	References

