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Background: As a class of membrane protein receptors, G protein-coupled receptors

(GPCRs) are very important for cells to complete normal life function and have been

proven to be a major drug target for widespread clinical application. Hence, it is of

great significance to find GPCR targets that interact with drugs in the process of

drug development. However, identifying the interaction of the GPCR–drug pairs by

experimental methods is very expensive and time-consuming on a large scale. As

more and more database about GPCR–drug pairs are opened, it is viable to develop

machine learning models to accurately predict whether there is an interaction existing in

a GPCR–drug pair.

Methods: In this paper, the proposed model aims to improve the accuracy of predicting

the interactions of GPCR–drug pairs. For GPCRs, the work extracts protein sequence

features based on a novel bag-of-words (BOW)model improved with weighted Silhouette

Coefficient and has been confirmed that it can extract more pattern information and

limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT)

is used to extract features from the original molecular fingerprints. Subsequently, the

above-mentioned two types of features are contacted, and SMOTE algorithm is selected

to balance the training dataset. Then, artificial neural network is used to extract features

further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected

features. In this paper, the proposed model is named as BOW-GBDT.

Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for

a cross-validation dataset which contains 635 interactive GPCR–drug pairs and 1,225

non-interactive pairs. Check390 is used for an independent test dataset which consists

of 130 interactive GPCR–drug pairs and 260 non-interactive GPCR–drug pairs, and each

element in Check390 cannot be found in D92M. According to the results, the proposed

model has a better performance in generation ability compared with the existing machine

learning models.
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Conclusion: The proposed predictor improves the accuracy of the interactions of

GPCR–drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the

predictor has been settled into a brand-new server, which is available at http://www.jci-

bioinfo.cn/bowgbdt.

Keywords: GPCR-drug interaction, bag-of-words, weighted silhouette coefficient, discrete wavelet transform,

artificial neural network

BACKGROUND

As a special membrane protein, G protein-coupled receptors

(GPCRs) play a significant role in the normal life function of

cells (Jacoby et al., 2006) and can be used as important drug
targets because of its structural characteristics and important role

in signal transduction (Agrawal et al., 2016). Among the most
popular drugs in the market, nearly half of them work through

GPCRs directly or indirectly (Alexander et al., 2011). Therefore, it
is of much significance to find GPCRs that interact with drugs in

the process of drug development (Alberts et al., 2003; Alexander
et al., 2011).

High-throughput experimental methods such as scintillation

proximity assay and time-resolved fluorescence resonance energy

transfer technology are the key in GPCR-related drug discovery
(Zhang and Xie, 2012). However, experimental methods are

inevitably costly, labor-exhausting, and time-consuming. As
predicting the interaction of GPCR–drug pairs will help to avoid

wasting a lot of time and money in synthetic drug research,
prediction approaches in silico are widely utilized to assist the
experimental methods with the rapid development of prediction
algorithms and datasets.

In recent years, a number of researchers have proposed
effective predicted methods which are based on 3D structures
of GPCR for predicting the target drug interaction (Yamanishi
et al., 2008; Ru et al., 2020). However, a lot of 3D structures of
GPCR have not been measured yet. As a result, the application
of these methods based on the 3D structures of proteins is greatly
restricted.With the accumulation of GPCR–drug interaction data
stored in Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2006), SuperTarget (Gunther et al., 2008), and
DrugBank (Wishart et al., 2008), methods based on sequence
information may be efficient for identifying the interaction
between GPCR and drug. Therefore, we will focus the research
only based on sequence information in this study.

Since the interaction between GPCRs and drugs involves two
types of molecules, the method which combines the chemical
structure information of drugs and the sequence information of
proteins is often used. Yamanishi et al. (2008) used statistical
methods to predict the GPCR–drug interaction based on
the combination of protein chemical structure and sequence
information. On the basis of optimizing the feature selection
process, He et al. (2010) used the nearest neighbor algorithm as a
classifier to predict the interaction between drugs and four targets
including GPCRs. In this method, drug was formulated into a 28-
D vector based on the chemical functional group, and protein
was formulated into a 139-D vector using a pseudo-amino

acid composition (PseAAC) (Arif et al., 2018; Mei and Zhao,
2018). Xiao et al. (2013) proposed a sequence-based predictor
called “iGPCR–drug”. In the predictor, the component of the
drug was represented by a two-dimensional fingerprint via a
chemical toolbox called OpenBabel (O’Boyle et al., 2011), and
then discrete Fourier transform (DFT) was used to extract 256
features. The GPCR was composed of PseAAC generated with
the gray model theory, and the prediction engine adopted the
fuzzy K-nearest neighbor algorithm. TargetGDrug (Hu et al.,
2016) was also a sequence-based predictor for predicting GPCR–
drug interactions. The method formed the features of the GPCR–
drug pair by combining the evolutionary features of the GPCR
sequence with the molecular fingerprint features of the drug
based on discrete wavelet transform and input the features into
a trained random forest classifier for initial prediction. Finally, a
new post-processing procedure based on drug association matrix
is proposed to reduce potential false positives or false negatives
in initial predictions. Recently, Wang et al. (2020b) proposed
a novel sequence-based method for identifying the GPCR–
drug interaction. In such work, the sequences of GPCRs were
encoded by the physicochemical properties of amino acids, and
then clustering technology was used to create four wordbooks.
The wordbooks contained 20, 20, 30, and 58 words which are
determined with the method of trial and error; it is a little tedious
and unreliable. Then, the GPCR–drug pairs were concatenated
to a 256-D vector comprising of a 128-D wordbooks vector
for GPCR and a 128-D DFT vector for drugs with fingerprint.
Finally, a simple machine learning algorithm, distance-weighted
K-nearest neighbors (DWKNN) (Dudani, 1976), was adopted as
the predictor via training on eventual features. Although this
advanced model was better than the foregoing ones, the machine
learning algorithm was such simple that it could not get a better
performance, so it is meaningful to employ advanced algorithm
to develop a model with higher performance.

In this study, we propose a novel sequence-based machine
learning model for identifying the GPCR–drug interaction based
on wordbook learning from sequences. For GPCR, we use an
improved bag-of-words (BOW) (Wang et al., 2020b) model
containing four wordbooks to extract features by introducing
silhouette coefficient to determine the best number of words.
For the drug, we carry out discrete wavelet transform (DWT) on
molecular fingerprint to extract features. The SMOTE algorithm
is implemented to balance the training dataset, and an artificial
neural network (ANN) (Rumelhart et al., 1986; Hinton and
Salakhutdinov, 2006; Hinton, 2007; Zou et al., 2016; Wan et al.,
2017; Chao et al., 2019) model is used to extract GPCR–drug pair
features and reduce the dimension from 242-D to 121-D. A more
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effective algorithm called gradient boosting decision tree (GBDT)
(Friedman, 2001; Lv et al., 2020a; Sahin, 2020) is employed as the
classifier for interaction prediction. According to the result on the
independent test dataset, the proposed model, BOW-GBDT, can
achieve better performance than those of the existing references.

DATASETS AND METHODS

Experimental Datasets and Performance
Measurement
In this study, two benchmark datasets, i.e., D92M and Check390
(Hu et al., 2016), are served for testing the proposed method.
D92M is used for a cross-validation dataset which contains
635 interactive GPCR–drug pairs and 1,225 non-interactive
pairs. Check390 is used for an independent test dataset which
consists of 130 interactive GPCR–drug pairs and 260 non-
interactive GPCR–drug pairs, and each element in Check390
cannot be found in D92M. In our experiment, we evaluate the
performance of the predictor from five metrics listed in formula
(1), which include accuracy (Acc), sensitivity (Sn), specificity
(Sp), Matthews correlation coefficient (MCC), and strength (Str,
the average of Sn and Sp) (Cheng et al., 2019). In the following
formula, TP is the number of the actual interactive GPCR–
drug pairs predicted as interactive GPCR–drug pairs, TN is the
number of the actual non-interactive pairs predicted as non-
interactive pairs, FP is the number of the actual non-interactive
pairs but predicted as interactive pairs, and FN is the number of
the actual interactive pairs but predicted as non-interactive pairs.
What is more, receiver operating characteristic (ROC) curve and
area under the ROC curve (AUC) are also applied to evaluate the
models in this work.







































Accuracy = TP+TN
TP+TN+FP+FN

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Strength = Sensitivity+Specificity
2

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)+(TN+FP)(TN+FN)

(1)

Feature Extraction From GPCRs
Based on the work of Wang et al. (2020b), who developed an
effective method to represent GPCR with BOW model, this
study will enhance the BOWmodel by using weighted silhouette
coefficient and a variety of ways for determining the wordbooks.
The steps of feature extraction are as follows:

• Step 1: Encoding GPCRs with amino acid index

AAindex (Kawashima and Kanehisa, 2000) is a database which
collects more than 500 amino acid indices. Wang et al. (2020b)
tested the effects of five common amino acid indices: hydropathy
index, molecular weight, isoelectric point, pK-N, and pK-C.
According to the experimental result, we choose hydropathy
index as the suitable amino acid index in this paper.

• Step 2: Designing wordbooks for GPCRs

FIGURE 1 | The process of cutting G protein-coupled receptor sequence for

WBB and WBC.

FIGURE 2 | The process of cutting G protein-coupled receptor sequences

for WBD.

In this paper, four kinds of wordbooks were defined and denoted
as WBA, WBB, WBC, and WBD. GPCR sequences were encoded
according to hydropathy index. Here the amino acid composition
(AAC) is the candidate for wordbookWBA, which is the same as
in Wang et al. (2020b), and the number of words is 20 obviously.

To obtain wordbook WBB, the encoded sequences were split
into fragments with different window sizes. The window size of
WBB was set as 2, and the stride of the moving window is 1 in this
paper. Given a GPCR sequence, the process of this step is shown
in Figure 1. The window size is 2 in the example.

As regards wordbook WBC, the model applies a similar
process to obtain them except that the window size is 3, and the
process of cutting the GPCR sequence is marked with a green
background as shown in Figure 1.

For theWBD, the proposedmodel split the encoded sequences
into fragments with a window size 2. The window is different
from the one used in WBB and WBC since it is separated by one
amino acid. The stride of the moving window is also 1. Given a
GPCR sequence, the process is shown in Figure 2.
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FIGURE 3 | The profile of weighted Silhouette Coefficient and K.

• Step 3: Determine the best number of the clustering by using
weighted silhouette coefficient

Here we used K-means (Hartigan and Wong, 1979; Kanungo
et al., 2002) algorithm to cluster the fragments with the same
length, respectively, and take the clustering centers as the words
of the GPCR wordbook. In the process of creating the four
kinds of wordbooks, it is important to determine the numbers of
the clustering centers which would fluctuate the results greatly
(Wang et al., 2020b). In this step, a metric called weighted
silhouette coefficient (Rousseeuw, 1987) (noted as WSC, an
evaluation method of clustering effect) was used to decide the
best K which is the number of clustering centers.

For a given dataset, D =
{

(x1, y1
)

,
(

x2, y2
)

, · · · , (xM , yM)},
yi is the label of the sample xi, yi ∈ {1, · · · , C}, and C is the
number of clusters. The weighted silhouette coefficient would be

calculated with the formula WSC =
∑M

i=1 WSCxi
M according to

Rousseeuw (1987), in which WSCxi is the WSC of sample xi and
obtained with the following steps:

Firstly, for any sample xi, Dxi = {(x, y)|(x, y) ∈ D and y =
yi}, let d

in

xi
represents the internal means distance which can be

obtained with formula (2)

d
in

xi
=

∑

∥

∥Dxi

∥

∥

j=1 wdist(xi, xj)
∥

∥Dxi

∥

∥

(2)

where wdist(xi, xj) = 1

1+e
−dist(xi ,xj)

∗dist(xi, xj), dist(xi, xj) is the

Euclidean distance of samples xi and xj, and
∥

∥Dxi

∥

∥ is the number
of samples in set Dxi .

Secondly, let d
ex

xi
represents the external mean distance which

can be obtained with formula (3), and dc may be derived with the
following sub-steps:

d
ex

xi
= min{dc|c ∈ {1, 2, · · · , C}, c 6= yi} (3)

TABLE 1 | The number of words of different wordbooks.

Wordbook Number of words

WBA 20

WBB 16

WBC 62

WBD 16

(1) For any cluster with label c, let Dc = {(x, y)|(x, y) ∈ D, y =
c and y 6= yi};

(2) For (xk, yk) ∈ Dc, calculate dist(xi, xk) which is the Euclidean
distance of sample xi and xk;

(3) The weighted distance is wdist(xi, xk) = 1

1+e− dist(xi ,xk)
∗

dist(xi, xk);
(4) Calculate the mean weighted distance of the cth cluster by

dc =
∑‖Dc‖

j=1 wdist(xi ,xk)

‖Dc‖ , ‖Dc‖ is the number of samples in
set Dc.

Finally, the weighted silhouette coefficient of sample xi, i.e.,

WSCxi , would be obtained withWSCxi =
d
ex
xi
− d

in
xi

max{d
ex

xi
,d
in
xi
}
.

For WBB, the line chart of the relationship between weighted
silhouette coefficient and K is shown in the left subpicture of
Figure 3. It is easy to find that, whenK is 16, the highest weighted
silhouette coefficient is achieved. Therefore, the best number of
the clustering centers in WBB is 16. For WBC, it is not difficult
to find that the best number of the clustering centers is 62. For
the words of the GPCR wordbook WBD, the best number of
words is 16 on basis that, when K equals 16, the highest weighted
silhouette coefficient is achieved.

In summary, the numbers of words of the different wordbooks
are shown in Table 1.

• Step 4: Feature extraction based on wordbooks
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Based on the wordbooks, any GPCR can be represented with a
feature vector following the steps below:

(1) Encode the GPCR sequence by hydropathy index.
(2) Split the encoded sequence into fragments of which the shape

is like the shape of each word in the wordbook.
(3) Count the number of times each word appears in

the sequence.
(4) Represent the GPCR in terms of a feature vector with

formula (4).

G
(

l, Cl

)

=
[

f l1, f
l
2, · · · , f

l
Cl

]

(4)

where l means the length of a word, Cl is the number of words

in the wordbook, and f li (i = 1, 2, · · · ,Cl.) is the frequency of a
word in the sequence.

Because of four kinds of wordbooks, any GPCR
can be represented as four feature vectors denoted as
G (1, 20) , G (2, 16) ,G (3, 62), and G (4, 16). Finally, we
concatenate the four vectors into a 114-D vector of GPCR listed
as follows:

G=
[

f 11 , f
1
2, · · · , f

1
20, f

2
1, f

2
2, · · · , f

2
16, f

3
1 , f

3
2 , · · · , f

3
62, f

4
1, f

4
2 , · · · , f

4
16

]

(5)

Feature Extraction From Drugs
Molecular fingerprint, which is a bit-string representation of
molecular structure and property (Eckert and Bajorath, 2007),
has demonstrated its effectiveness for the prediction of drug–
target interactions in previous studies (Xiao et al., 2013; Hu
et al., 2016; Li et al., 2019; Wang et al., 2020b). In this study,
we also extract drug features from their molecular fingerprints. A
drug’s MOL file, which contains information about the chemical
structure, can be acquired from the KEGG database (http://www.
kegg.jp/kegg/) by using the drug code. Then, the software called
OpenBabel (http://openbabel.org/) is used to convert the MOL
file into a molecular fingerprint file. OpenBabel can generate
multiple output formats: FP2, FP3, FP4, and MACSS. Here the
FP2 is a good choice for this study. The FP2molecular fingerprint
is represented by a 256-bit hexadecimal string.

In previous studies, Wang et al. (2020b) and Hu et al. (2016)
have confirmed the effectiveness of applying DFT (Jackson, 1996)
or DWT (Haar, 1911; Jackson, 1996) on molecular fingerprint,
respectively. In this study, we use DFT and DWT for extracting
drug features, respectively, and compare the effect of the two
kinds of signal processing for predicting the interactions of
GPCR—drug pairs later.

For extracting drug features by using DFT, because of the
symmetry of the frequency amplitudes of a digital signal, we
only choose the first 128 amplitudes to form the drug feature
vector DDFT .

DDFT = [F1, F2, · · · , F128] (6)

To extract drug features by using DWT, the process should apply
single-level discrete 1-D wavelet transform on a digital signal and

FIGURE 4 | The structure of the artificial neural network for feature extraction.

FIGURE 5 | Receiver operating characteristic curves of 10-fold

cross-validation on D92M.

would reach at two kinds of coefficient sets: one is the set of
approximation coefficients which would be considered as useful
information, and the other one is the set of detail coefficients
which would be recognized as useless noise. Then, we use the
set of approximation coefficients to make up the drug feature
vector DDWT .

DDWT = [W1,W2, · · · ,W128] (7)

In the following process, DDWT or DDFT is used to represent
drugs according to the results of comparative experiments.

Finally, a potential GPCR–drug pair is concatenated to a 242-
D feature vector P which can be represented by the following
formula (8).

P =
[

f A1 , f
A
2 , · · · , f

A
20 , f

B
1 , f

B
2 , · · · , f

B
16, f

C
1 , f

C
2 ,

· · · , f C62 , f
D
1 , f

D
2 , · · · , fD16 , P

0
]

(8)

where P0 means DDWT or DDFT .
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FIGURE 6 | The different artificial neural network model.

FIGURE 7 | Receiver operating characteristic curves of 10-fold cross-validation on D92M.

Feature Extraction by ANN
ANN (Zeng et al., 2019; Wang et al., 2020a; Zhao et al., 2020a,b)
is a kind of information processing system based on imitating
the structure and function of the brain neural network, which
is a complex network structure formed by a large number of
interconnected processing units (neurons). In this study, we
create a simple ANN model to extract features further, and the
structure of ANN is shown in Figure 4. The ANN model has
three layers: two layers are hidden layers, and the other layer is
an output layer. The 242-D GPCR–drug pair feature vector P
will input into the model, and the output of hidden layer 2 is
intercepted as a new feature.

Synthetic Minority Oversampling
Technique
The Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002; Blagus and Lusa, 2013; Wang et al., 2019)

proposed by Chawla et al. is a very popular oversampling method
to solve the problem of imbalance dataset. The basic idea of the
SMOTE algorithm is to generate new data from two types of
sample data to analyze and simulate a small number of sample
sets and add new artificially simulated samples to the dataset. The
specific procedure is as follows:

(1) Select the k nearest neighbors of each sample xi according
to the Euclidean distance between xi and all samples in the
minority class {x1, x2, x3, · · · , xm} .

(2) Set a sampling rate based on the class imbalance ratio N, and
select N samples {xi1, xi2, · · · , xiN} randomly from k nearest
neighbors of sample xi.

(3) Generate a new sample according to the formula xnew =
xi + α

(

xi − xij
)

; here 1 ≤ i ≤ m, 1 ≤ j ≤ N and α represents
a random value selected from interval (0, 1).

(4) Add new artificially simulated samples to the old dataset and
get a new balance dataset.
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TABLE 2 | The results of different algorithms.

Algorithms Sn (%) Sp (%) Acc (%) Str (%)
Matthews correlation

coefficient

RF 70.6 94.2 86.1 82.4 0.68

SVM 63.8 93.8 83.5 78.8 0.62

LR 52.9 87.6 75.8 70.3 0.44

GBDT 76.1 93.9 87.8 85.0 0.72

Italic mean that they are the best scores compared with other methods.

TABLE 3 | The results of the model with the SMOTE algorithm or without.

Datasets Sn (%) Sp (%) Acc (%) Str (%)
Matthews correlation

coefficient

Imbalance dataset 76.1 93.9 87.8 85.0 0.72

Balance dataset 79.5 93.1 88.5 86.3 0.74

Italic mean that they are the best scores compared with other methods.

TABLE 4 | Performance of different methods tested with leave-one-out

cross-validation.

Method Sn (%) Sp (%) Acc (%) Str (%)
Matthews correlation

coefficient

IGPCR-Drug 78.3 91.4 86.9 84.9 0.71

OET-KNN 77.8 88.7 85.0 83.3 0.67

QuickRBF 74.8 92.4 86.4 83.6 0.69

SVM 74.2 92.7 86.4 83.6 0.69

RF 76.5 92.9 87.3 84.7 0.71

RF + PPP 79.7 92.8 88.3 86.3 0.73

DWKNN 81.4 84.7 83.6 83.1 0.64

DWKNN(Ensemble) 81.1 87.1 85.1 84.1 0.67

BOW-GBDT 79.5 93.1 88.5 86.3 0.74

Italic mean that they are the best scores compared with other methods.

CLASSIFIER SELECTION

Gradient Boosting Decision Tree
The GBDT (Friedman, 2001) is a kind of a boosting algorithm
based on classification and regression trees (CART) (Breiman
et al., 1984). Because of its strong generalization ability, GBDT
has been widely used to be designed as a classifier. GBDT is good
at handling lots of kinds of data flexibly, including continuous
value and discrete value. The idea of GBDT is to generatemultiple
weak models iteratively and then add the prediction results of
each weak model.

Random Forest
Random forest (RF) (Breiman, 2001; Song et al., 2017; Cheng
and Hu, 2018; Cheng, 2019; Ru et al., 2019; Xu et al., 2019; Lv
et al., 2020b) is a kind of bagging algorithm containing many
decision trees, which has been widely used in computer science,
bioinformatics, and so on. Each tree in the forest is generated
by different samples and features. CART is often chosen as the
decision tree for RF. When an unknown sample is needed to be

TABLE 5 | The results of different methods over independent test dataset

Check390.

Method Sn (%) Sp (%) Acc (%) Str (%)

Matthews

correlation

coefficient
Threshold

IGPCR-drug 80.8 66.9 71.6 73.9 0.45 N/A

OET-KNN 67.7 84.2 78.7 76.9 0.52 0.5

QuickRBF 76.2 77.7 77.2 77.6 0.52 0.45

SVM 76.2 78.9 78.0 77.6 0.53 0.42

RF 78.5 78.1 78.2 78.3 0.54 0.51

RF + PPP 83.1 79.6 80.8 81.3 0.6 0.51

DWKNN 83.9 80.0 81.3 81.9 0.61 0.5

DWKNN

(ensemble)
83.1 82.7 82.8 82.9 0.63 0.5

BOW-GBDT 80.0 90.0 86.7 85.0 0.70 0.5

Italic mean that they are the best scores compared with other methods.

classified, each tree will vote, and then RF will count the votes.
The unknown sample will be decided to belong to the category
with the largest number of votes.

Support Vector Machines
The support vector machines (SVM) proposed by Vapnik (1995),
is a classical machine learning method which has been developed
for many years, and its theory has been perfect. It is very popular
in bioinformatics, pattern recognition, and so on. The strategy
of SVM is to generate the optimal hyperplane based on learning
from dataset. There are kinds of kernels in SVM, such as Gaussian
radial basis function (RBF), linear kernel, and so on. The most
frequently used kernel is RBF.

Logistic Regression
The logistic regression (LR) (Hosmer and Lemeshow, 1989;
Cheng et al., 2019) algorithm used widely in data mining, disease
automatic diagnosis, economic prediction, and other fields is one
of the most basic and simplest algorithms in machine learning.
LR is a kind of a linear classifier which aims at the problem
of linear separability. The main idea of using logistic regression
to classify is to establish regression formula for classification
boundary line according to the training dataset.

RESULTS

Firstly, DFT and DWT are carried out on molecular fingerprint,
respectively, and are evaluated with formula (1) to find the
effective one from the two features. It is proved by experiments
that applying DWT to extract the features of a drug are better
than those of DFT, and then DWT is used to represent drugs.
Secondly, an ANNmodel is established to extract features further,
and the prediction performance of GBDT is compared with the
different features generated by different layers through cross-
validation. Thirdly, a variety of classifiers are applied in the
experiments for performance comparison, and GBDT is selected
as the default classifier for its good performance. Later, SMOTE
algorithm is adopted to balance D92M. Finally, a novel model
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FIGURE 8 | The framework of BOW-GBDT.

called BOW-GBDT is proposed and tested with the balance
D92M along with the existing models through cross-validation
and an independent test. According to the result, BOW-GBDT
has a better generalization ability.

Effect of Different Feature Representations
of Drugs
In a previous work, carrying out DFT or DWT on molecular
fingerprint had been demonstrated to be an effective feature
extraction method for drugs. However, there is no experimental
comparison between DFT and DWT. In this section, 10-fold
cross-validation is carried on D92M while representing drugs
with DFT or DWT, respectively. The results about ROC curves
are shown in Figure 5. It is clear that the AUC with a value of
0.890 and ROC of DWT is better than that of DFT (whose AUC
value is 0.876). Therefore, we use DWT as the default method to
extract features from drugs in this study.

Effect of Different Features Generated by
ANN Models
The structure of ANN is very flexible. In this section, we would
decide the number of hidden layers in the ANN model. To be
simple, the number of units of hidden layer 1 is 242, and the
next hidden layer has half the number of units compared with
the previous hidden layer. There are two different structures of
the ANN model in Figure 6. The left one has two hidden layers
whose number of units are 242 and 121, respectively. The right
one has three hidden layers whose number of units are 242, 121,
and 60, respectively. In this paper, the ANN models are built and
trained using Tensorflow, which is a popular Python software
package. The hyperparameters including learning rate, epochs,
and batch size of the two models are set as 0.01, 100, and 128,

respectively. The activation function of the hidden layers and the
output layers are LeakyReLU and Sigmoid separately.

According to the structures of the different ANN models, the
features generated by different hidden layers would be extracted
from the twomodels separately, and the results of the ROC curves
are shown in Figure 7. From the figure on the left, we can see
that the AUC (0.893) of the features generated by hidden layer 2
is bigger than the one generated by hidden layer 1 (0.869) in the
ANN model having two hidden layers. The results in the figure
on the right show that the AUC of hidden layer 2 is bigger than
the one of hidden layer 3 and hidden layer 1 in the ANN model
having three hidden layers. What is more, the AUC of hidden
layer 2 of the two models is close to 0.893. Considering that the
ANN model having two hidden layers is simpler than the one
having three hidden layers, we adopt the ANN having two hidden
layers in this research and the features generated by hidden layer
2 as the final features.

Choose a Better Classifier
For a binary classification problem, the machine learning
algorithm (Larrañaga et al., 2006) is very important to some
extent. The knowledge learned by different algorithms from the
same dataset may be very different, and the generalization ability
is also different. In this section, we compare the performance
of different algorithms by carrying out leave-one-out cross-
validation on D92M. The algorithms that we adopt and the
result values of Sn, Sp, Acc, Str, and MCC are listed in
Table 2. Compared with the results of different machine learning
algorithms, the Sn, Acc, Str, and MCC of GBDT gain most of
good performance as marked with an italic font in the last line of
Table 2. Therefore, we determine to adopt GBDT as the default
algorithm to build prediction models.
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The Effect of SMOTE Algorithm
The dataset D92M containing 635 interactive GPCR–drug pairs
and 1,225 non-interactive pairs is an imbalance dataset. The
previous work (Yamanishi et al., 2008; He et al., 2010; Xiao et al.,
2013; Hu et al., 2016; Wang et al., 2020b) did not deal with
the imbalanced problem of dataset. In this study, we use the
SMOTE algorithm to deal with the imbalance dataset and get a
new balance dataset. Then, the balance dataset and the imbalance
dataset are input into GBDT over leave-one-out cross-validation,
respectively. The results of Acc, MCC, Sn, Sp, and Str are listed in
Table 3.

As can be seen in Table 3, the Sn, Acc, Str, and MCC values
increase by 3.4, 0.7, and 1.3% and 0.02, respectively. The results
show that the SMOTE algorithm can improve the performance
of GBDT. Therefore, the SMOTE algorithm is used to deal with
the imbalance dataset D92M.

Comparison of Other Methods
In order to confirm the performance of our model called BOW-
GBDT, we test them on D92M and Check390, respectively, and
compare it with existing methods, such as IGPCR-Drug, OET-
KNN, QuickRBF, and so on. The results of the different methods
on D92M over leave-one-out cross-validation are shown in
Table 4, along with those of other eight methods listed in Xiao
et al. (2013). As shown in the table, the DWKNN has the biggest
value of Sn, and the SP, Acc, Str, andMCC values of BOW-GBDT
are higher than those of other methods. This result confirms the
good performance of the proposed method.

Though BOW-GBDT achieves a good result in leave-one-out
cross-validation, the generalization ability is more important for
a machine learning model. We use the SMOTE algorithm to
balance the D92M and generate a new dataset. With the new
dataset as training dataset and Check390 as the independent test,
the results of the other eight methods mentioned in Xiao et al.
(2013) are also listed in Table 5. From this table, we can notice
that the proposed model BOW-GBDT has a better generalization
ability. Like the result in Table 4, BOW-GBDT has the highest
values of Sp, Acc, Str, and MCC besides Sn. Compared with
other state-of-the-art methods, the Acc of BOW-GBDT is 3.9%
higher than the second one, the Sp is 5.8% higher than the second
one, the Str is 2.1% higher than the second one, and the MCC
is 0.07 higher than the second one. This result demonstrates
that BOW-GBDT is a good model for predicting the GPCR–
drug interaction.

CONCLUSIONS

In this paper, the authors proposed a new method for
predicting the interaction between GPCR and drug. In terms
of representation GPCR, a BOW model was used to extract
features from GPCR sequences. For the representation of drugs,
the DWTmethod was applied for the reason that DWT can have
a better prediction performance than DFT. The highlight of this
study is that the ANN model was introduced to extract more
effective features by automatically learning from the original

features. What is more, a popular and powerful oversampling
algorithm called SMOTE was applied to balance the training
dataset. According to the results on the D92M over leave-one-out
cross-validation and the testing dataset Check390, the proposed
method has a better generalization ability. By the way, the
structure of the ANN model is very flexible, and it is hard to find
the best model containing how many hidden layers and the units
in every layer. Actually, this method gets a good performance
for predicting the GPCR–drug pair interaction by using a simple
ANN model containing two hidden layers, yet there is still room
to be improved in the future.

GPCRs are involved in many physiological processes such as
photosensitivity, regulation of the immune system, regulation
of the autonomic nervous system, regulation of behavior and
emotion, and so on. They are the most import drug targets in
modern medicine. The research on identifying the interaction
between GPCRs and drugs is of great importance for the
discovery of GPCR-related drugs. In order to solve the problem
of high cost and low efficiency of high-throughput experimental
methods, we develop a model called BOW-GBDT based on
GBDT algorithm for predicting the interaction between GPCR
and drug. The proposed framework of BOW-GBDT can be
summarized as shown in Figure 8. The boxes marked with a
green border show the representation process for GPCR and
tawny for drug. Although BOW-GBDT has better performance
as compared to other methods when it is tested in dataset
Check390, it should still be tested in other datasets to evaluate
it further.
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