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Abstract. The comprehensive analysis of single or multiple 
microarray datasets is currently available in Gene Expression 
Omnibus (GEO) databases, with several studies having 
identified genes strongly associated with the development of 
lung adenocarcinoma (LUAD). However, the mechanisms of 
LUAD development remain largely unknown and has not yet 
been systematically studied; thus, further studies are required 
in this field. In the present study, weighted gene co‑expression 
network analysis (WGCNA) was used for the evaluation of key 
genes with potential high risk of LUAD, and to provide more 
reliable evidence concerning its pathogenesis. The GSE140797 
dataset from the high‑throughput GEO database was down‑
loaded and was first analyzed using the Limma package in the 
R language in order to determine the differentially expressed 
genes. The dataset was then analyzed using the WGCNA 
package to analyze the co‑expressed genes, and the modular 
genes with the highest correlation with the clinical phenotype 
were identified. Subsequently, the pathogenic genes shared in 
common between the result of the two analyses were imported 
into the STRING database for protein‑protein interaction 
network analysis. The hub genes were screened out using 
Cytoscape, and then The Cancer Genome Atlas analysis, 
receiver operating characteristic analysis and survival 
analysis were subsequently performed. Finally, the key genes 
were evaluated using reverse transcription‑quantitative PCR 
and western blot analysis. Bioinformatics analysis of the 
GSE140797 dataset revealed eight key genes: AURKA, BUB1, 

CCNB1, CDK1, MELK, NUSAP1, TOP2A and PBK. Finally, 
the AURKA, TOP2A and MELK genes were evaluated in 
samples from patients with lung cancer using WGCNA and 
RT‑qPCR, western blot analysis experiments, providing basis 
for further research on the mechanisms of LUAD development 
and targeted therapy.

Introduction

Lung cancer is considered as one of the most lethal tumors, 
having the most increased incidence rate among tumors, with 
the highest mortality rate worldwide. Lung cancer remains 
the leading cause of cancer‑related mortality, ranking first in 
percentage due to cancer in 2020 (1). According to the patho‑
logical type, lung cancer can be divided into small cell lung 
cancer and non‑small cell lung cancer (NSCLC), of which 
NSCLC accounts for 80% of all, and lung adenocarcinoma 
(LUAD) accounts for the majority of NSCLC. The majority 
of patients with NSCLC, patients with LUAD in particular, 
exhibit symptoms not earlier than the middle or late stages of 
the disease, since the etiology remains unclear and early symp‑
toms are not evident. In spite of several advancements being 
made in the treatment of LUAD, the average overall survival 
of patients with LUAD is limited to <5 years (2). Therefore, it 
is of utmost urgency to further identify novel key molecules 
for the development of novel therapeutic targets.

Several LUAD molecular markers have been identified in 
previous studies (3‑7); however, a single gene cannot accu‑
rately represent the characteristics of LUAD due to its complex 
pathophysiology. Unlike the differential expression analysis 
that focuses on a single gene, co‑expression network analysis 
provides new insight into understanding the pathogenesis of 
diseases and opportunities for therapeutic intervention by unsu‑
pervised identification of co‑expressed gene modules (8,9). 
It has been successfully applied to the study of various 
biological processes, including chronic obstructive pulmonary 
disease and cancer, and has been proven to be quite effective 
in identifying candidate biological markers and therapeutic 
targets (9,10).

Currently, several studies have identified genes that are 
closely associated with LUAD development through compre‑
hensive analysis of single or multiple microarray datasets 
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in the currently available in the Gene Expression Omnibus 
(GEO) database. For example, Dong et al (11) identified 
aurora kinase A (AURKA) and DNA topoisomerase II alpha 
(TOP2A) as the two genes with the highest lymph node stage 
(N), which may be targets for the diagnosis and treatment 
of LUAD. Zhang et al (12) observed mitotic spindle‑related 
features that may be used as independent prognostic indi‑
cators for patients with LUAD. Wang et al (13) observed 
that TOP2A may be one of the key protein‑coding genes 
for LUAD possibly serving as a biomarker and therapeutic 
target for LUAD. Li et al (14) suggested that eight genes, 
including TOP2A, marker of proliferation Ki‑67 (MKI67), 
platelet and endothelial cell adhesion molecule 1 (PECAM1), 
CDK1, secreted phosphoprotein 1 (SPP1), checkpoint kinase 
1 (CHEK1), cyclin B1 (CCNB1), and ribonucleotide reductase 
regulatory subunit M2 (RRM2) may be novel pivotal genes 
closely associated with the progression and prognosis of 
LUAD. Wang et al (15) revealed that CCNB1, BUB1 mitotic 
checkpoint serine/threonine kinase B (BUB1B), cell division 
cycle 20 (CDC20), TTK protein kinase (TTK) and mitotic 
arrest deficient 2 like 1 (MAD2L1) may be potential targets 
for the treatment of LUAD. Chen et al (16) demonstrated that 
10 gene targets including CDK1 and CDC20 were associ‑
ated with a poor prognosis of patients with lung cancer. 
Fan et al (17) suggested that TOP2A, G protein‑coupled 
receptor kinase 5 (GRK5), sirtuin 7 (SIRT7), minichromo‑
some maintenance complex component 7 (MCM7), EGFR 
and collagen type I alpha 2 chain (COL1A2) may be used as 
predictors for the diagnosis of LUAD. Guo et al (18) proposed 
that TOP2A and UBE2C were independent prognostic factors 
for LUAD. Regardless of the abundance of studies on this 
topic, the mechanisms responsible for the development of 
LUAD remain unclear and have not yet been systematically 
studied, with further studies required.

In the present study, the gene expression profile dataset, 
GSE140797, was acquired from the GEO database, containing 
gene expression data from 14 samples, including seven 
normal lung and seven LUAD tissues for analysis. Following 
normalized data preprocessing, the differentially expressed 
genes (DEGs) between the two sample sets were analyzed. 
Concurrently, weighted gene co‑expression network analysis 
(WGCNA) was performed to construct a gene co‑expression 
network of LUAD and identify co‑expression modules. 
Subsequently, eight cancer tissue and eight adjacent tissue 
samples were collected from patients with LUAD and reverse 
transcription‑quantitative PCR (RT‑qPCR) and western blot 
analysis were performed, in order to verify the WGCNA 
analysis, and the expression analysis of the three key genes, 
AURKA, TOP2A and maternal embryonic leucine zipper 
kinase (MELK), was evaluated. 

AURKA is a cyclin whose activation is required for the 
process of cell division through the regulation of mitosis. The 
ectopic overexpression of the AURKA gene results in the 
inactivation of the G2‑phase DNA damage checkpoint and 
the mitotic spindle assembly checkpoint, as well as tetraploid 
and centrosome expansion, particularly in cells with defec‑
tive p53‑dependent DNA damage checkpoints upstream of 
AURKA. At the transporter level, the EGF‑induced expression 
of AURKA is dependent on the interaction of nuclear EGFR 
and STAT5. At the downstream end of AURKA, certain 

substrates of AURKA play critical inhibitory roles, with p53 
and large tumor suppressor kinase 2 being the most important 
substrates of AURKA. AURKA substrates have received 
widespread attention as tumor suppressors (19).

TOP2A has been demonstrated to be related to the 
progression of several cancer types, such as hepatocellular 
carcinoma (20), breast cancer (21), bladder cancer (22), ovarian 
cancer (23), cervical cancer (24), pancreatic cancer (25), 
stomach cancer (26), including NSCLC (27,28). 

Increased expression of MELK has been observed in 
various cancer cells and tissues, playing a crucial and critical 
role in the proliferation and self‑renewal of progenitor and 
tumor stem cells and is overexpressed in LUAD, increasing the 
probability of tumorigenesis. Among them, MELK increases 
the proliferation of cervical, breast, colorectal and pancreatic 
cancer cell lines (29), while it is also involved in and affects 
the development of hepatocellular carcinoma (30) and bladder 
cancer (31).

Materials and methods

Data source and preprocessing. GSE gene expression profile 
data and clinical information were obtained from the GEO 
database at the National Center for Bioinformatics. Gene 
expression data from 14 samples in the GSE140797 dataset 
were analyzed, including seven normal lung tissue and 
seven LUAD tissue samples. The annotation information 
of the GPL13497 (Agilent‑026652 Whole Human Genome 
Microarray 4x44Kv2) platform was used as a reference to 
convert the probe to the corresponding gene symbol, and 
the Limma software (version 3.54.2) package was used to 
normalize the data for further analysis.

DEG analysis. The samples were divided into the normal 
control and LUAD groups, and the conditions |log2FC|>1 and 
P<0.05 were set to screen for genes with significant differences 
in expression.

Data filtering. Co‑expression networks were constructed using 
the WGCNA package in the R language. To obtain a valid 
co‑expression network, the expression variance of each gene in 
all samples was calculated, and the genes with the same vari‑
ance were considered for the construction of the co‑expression 
network. Cluster analysis was performed, in order to detect 
and remove outliers.

Construction of gene co‑expression network. Scale‑free 
networks were constructed by selecting an appropriate 
weighting coefficient (soft threshold) to make the connections 
between genes adhere to the scale‑free distribution of network 
connection requirements, and the correlation coefficient 
between genes was used to construct hierarchical clustering 
tree. Different branches of the clustering tree represented 
different gene modules, and different colors represented 
different gene modules. Subsequently, genes were categorized 
according to their expression patterns based on their weighted 
correlation coefficients. The genes that exhibited similar gene 
expression patterns were then grouped into a module, and 
then classified by gene expression pattern for further analysis. 
Lastly, by applying this coefficient, the correlation matrix was 
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converted into an adjacency matrix, which was then converted 
into a topological overlap matrix.

Module and clinical feature correlation analysis. The 
Pearson's correlation coefficients and P‑values of the matrices 
composed of gene and sample and clinical correlations per 
module were calculated using WGCNA, and the Pearson's 
correlation coefficients were used to measure the correla‑
tion between different modules and clinical traits, and the 
module with the highest correlation coefficient was used in 
subsequent analysis. The correlation between gene expressed 
in the module and the phenotype [gene significance (GS)] and 
the correlation between gene expressed in the module and the 
module membership (MM) were analyzed, and the genes were 
screened according to GS >0.8 and MM >0.8.

Functional enrichment analysis. The cross section of 
modules with the highest correlation between WGCNA 
and DEGs were selected, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) analyses 
were performed on this part of the gene set using the R 
package cluster profiler (https://www.bioconductor.org/pack‑
ages/release/bioc/html/clusterProfiler.html).

Construction of protein‑protein interaction (PPI) networks. 
The STRING database (https://string‑db.org/) was used 
to select intersecting genes to construct the PPI network. 
PPI pairs in the network were visualized with a combined 
confidence score of ≥0.4. Hub genes in the PPI network were 
identified using cytohubba, a plug‑in for Cytoscape software 

(version 3.7.2. https://cytoscape.org/) that identifies the top 10 
hub genes.

Verification of the central gene. The Gene Expression 
Profiling Interactive Analysis Database (http://gepia.
cancer‑pku.cn/) (32) is an online analysis tool which can be 
used to validate the top 10 central genes selected through 
protein‑protein interaction networks, which are based on The 
Cancer Genome Atlas (TCGA) of Lung Adenocarcinoma (33) 
and the Genotype‑Tissue Expression (GTEx) LUAD database, 
which provides differential expression analysis, profiling, and 
survival analysis for central gene expression analysis, receiver 
operating characteristic (ROC) curve analysis, and survival 
analysis.

Collection and processing of clinical tissue samples. A total 
of eight fresh frozen clinical samples were obtained from 
lung adenocarcinoma patients in Renmin Hospital of Wuhan 
University. In addition, three male and five female patients, 
ranging in age from 51 to 80 years, were recruited between 
December 14 and December 28, 2020. The specific age, sex, 
and disease stage were i) male 70 years old, 2020.12.14, ⅡB 
stage; ii) male 63 years old, 2020.12.16, ⅠA2 stage; iii) female 
62 years old, 2020.12.16, ⅠA stage; iv) female 59 years old, 
2020.12.16, A stage; v) male 51 years old, 2020.12.17, A stage; 
vi) female 80 years old, 2020.12.24, ⅠA3 stage; vii) Female 
73 years old, 2020.12.25, ⅠA stage; viii) female 73 years old, 
2020.12.28, IA stage). The samples were obtained with patient 
consent and ethical approval (approval no.WDRY2022‑K231) 
from Renmin Hospital of Wuhan University (Wuhan, China).

Table I. Oligonucleotide primers used in the present study.

Gene  Oligonucleotide primer sequence (5'‑3')

GAPDH Sense  GGAAGCTTGTCATCAATGGAAATC
 Antisense TGATGACCCTTTTGGCTCCC
CDK1 Sense AAGGGTAGACACAAAACTACAGGTC
 Antisense  ATGTACTGACCAGGAGGGATAGA
TOP2A Sense CCTTCTATGGTGGATGGTTTGA
 Antisense  ATGGGCTGCAAGAGGTTTAGAT
MELK Sense GATGTTCCCAAGTGGCTCTCTC
 Antisense TCCTCCATTGTTTGCCTGTTG
NUSAP1 Sense  CTGCTGCTGTTATTACCCCATTC
 Antisense CTTTCTTCTCCTTTCGTTCTTGC
BUB1 Sense GAAGAAATACCACAATGACCCAAG
 Antisense TGGGTTTCAGTGAGGCGTGT
AURKA Sense  TGCCCTGTCTTACTGTCATTCG
 Antisense AAAGGAGGCTTCCCAACTAAAA
CCNB1  Sense GCCTATTTTGGTTGATACTGCCTC
 Antisense CTCCATCTTCTGCATCCACATC
PBK Sense TGACTGCTCCTGCCTTCATAAC
 Antisense TAACACCATTCTCCTCCACAGC

CDK1, cyclin dependent kinase 1; TOP2A, DNA topoisomerase II alpha; MELK, maternal embryonic leucine zipper kinase; NUSAP1, 
nucleolar and spindle associated protein 1; BUB1, BUB1 mitotic checkpoint serine/threonine kinase B; AURKA, aurora kinase A; CCNB1, 
cyclin B1; PBK, PDZ binding kinase.
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RT‑qPCR. RNA was obtained from frozen fresh samples of 
lung cancer and normal paracancerous lung tissue from eight 
lung adenocarcinoma patients. RNA extraction was conducted 
using TRIzol® reagent (cat. no. 15596026, Invitrogen; 
Thermo Fisher Scientific, Inc.) and reverse transcribed into 
cDNA using the PrimeScript RT Reagent kit according to the 
manufacturer's instructions (cat. no. RR037A; Takara Bio, 
Inc.). Candidate primers for each gene were designed using 
Premier 5 design program (PREMIER Biosoft). PCR reac‑
tion was performed with the quantitative TB Green‑based 
PCR kit (cat. no. RR420A; Takara Bio, Inc.) using a CFX 
Connect PCR machine (CFX Connect TM; Bio‑Rad 
Laboratories, Inc.). The following conditions were applied: 
Pre‑denaturation stage: 95˚C, 1 min for 1 cycle; amplifica‑
tion stage: denaturation at 95˚C, 5 sec and annealing at 58˚C, 
30 sec, 40 cycles; melting curve stage: 65˚C to 95˚C, incre‑
ment 0.5˚C for 5 second. The results were analyzed using the 
2‑ΔΔCq method (34), and the primer pair sequences for each 
gene are listed in Table I.

Western blot analysis. Western blot analysis of relative 
protein expression levels was performed as described as 
follows: Lung adenocarcinoma and parapulmonary carci‑
noma were lysed with RIPA (cat. no. P0013B; Beyotime 
Institute of Biotechnology) buffer to extract total proteins, and 
the protein concentrations were then detected using a BCA 
kit (cat. no. P0012S; Beyotime Institute of Biotechnology). 
The protein samples were denatured in a dry heater at 95˚C 
and subsequently subjected to electrophoresis; 10% SDS gel 
(cat. no. P0012A; Beyotime Institute of Biotechnology) was 
used for electrophoresis and 25 µg of protein was loaded in 
each strip Following electrophoresis, the separated proteins 
were transferred to polyvinylidene difluoride membranes 
(cat. no. FFP2; Beyotime Institute of Biotechnology) by the 
wet transfer membrane method. Non‑specific proteins on 
the membrane were blocked for 1 h at room temperature 
and then incubated with primary monoclonal antibodies 
corresponding to the proteins overnight at 4˚C. The anti‑
bodies used are as follows: A rabbit anti‑AURKA polyclonal 
antibody (cat. no. A15728), a rabbit anti‑BUB1 mitotic 
checkpoint serine/threonine kinase (BUB1) polyclonal 
antibody (cat. no. A1929), a rabbit anti‑CCNB1 polyclonal 
antibody (cat. no. A16800), a rabbit anti‑CDK1 polyclonal 
antibody (cat. no. A0220), a rabbit anti‑MELK monoclonal 
antibody (cat. no. A3530), a rabbit anti‑nucleolar and 
spindle associated protein 1 (NUSAP1) polyclonal antibody 
(cat. no. A16000), a rabbit anti‑TOP2A polyclonal antibody 
(cat. no. A16440) and a mouse monoclonal antibody for 
β‑actin (cat. no. AC004) (all from ABclonal Biotech Co., 
Ltd. and all at 1:1,000).

The following day, the membranes were incubated for 1 h 
at room temperature using the corresponding secondary anti‑
body; Goat Anti‑Rabbit IgG H&L (HRP; cat. no. ab205719)
and Goat Anti‑Mouse IgG H&L (HRP; cat. no. ab205719 all 
from Abcam and all at 1:10,000. This was followed by a brief 
incubation with ECL Western Blotting Detection Reagent 
(cat. no. P0018S; Beyotime Institute of Biotechnology) and 
a final exposure with an iBright imaging system (Thermo 
Fisher Scientific, Inc.). Density measurement was by ImageJ 
(version V1.8.0.112; National Institutes of Health).

Statistical analysis. For the statistical calculations, 
the R (version 3.6) and WGCNA packages were used. 
The calculation of the correlation coefficient between 
the relevant clinical characteristics of LUAD tissue 
and the ME of each co‑expression module used in this 
article was based on the R language platform Rstudio 
(version 8.9.173593; https://support‑‑rstudio‑com.netlify.
app/products/rstudio/download/). WGCNA was used to 
identify genes with similar functions. For each gene pair, 
WGCNA determines the likelihood of association by using 
a soft threshold. A weighted network of co‑expression was 
formed based on this concept. The data are expressed as the 
mean ± SE. Parametric data were analyzed using the Student's 
paired t‑test and non‑parametric data were analyzed using the 
Mann‑Whitney U test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Data filtering. Α co‑expression network was constructed by 
including 5,435 genes with 25% of the maximum variation 
in the present study. No significant outliers were observed by 
building hierarchical clustering trees for 5,435 genes from 
14 lung tissue samples. A total number of 580 DEGs were 
identified in the dataset (Fig. 1), among which 254 genes were 
downregulated and 326 genes were upregulated.

Construction of the gene co‑expression network module. 
According to the non‑scale network distribution fitting, a 
value of 20 was selected as the soft threshold (β value) for this 
dataset and a co‑expression network was constructed (Fig. 2) 
for module identification using the dynamic cut tree method, 
finally acquiring 10 modules (Fig. 3A).

Correlation analysis of modules and clinical characteris‑
tics. By applying the correlation analysis of each module 
using sample clinical information, the green module 
presented with the highest positive correlation, and the 
blue module the highest degree of negative correlation with 
LUAD (Fig. 3B). 

Identification and analysis of pivotal genes. According to 
the criteria of GS >0.8 and MM >0.8 to screen the key genes 
in the blue module and the green module for the following 
research stage, 845 and 285 key genes were selected from the 
blue and green modules, respectively. Subsequently, GO func‑
tion enrichment analysis and KEGG enrichment analysis were 
performed on the 845 genes selected from blue module and 
the 285 genes selected from green module (Fig. 4A and B). 
As regards the green module, GO functional enrichment 
analysis revealed that common pathogenic genes were mainly 
enriched in mitotic cell cycle phase transition, cell cycle 
phase transition and cytoplasmic division, whereas in the blue 
module, the common pathogenic genes were mainly enriched 
in blood vessel development, blood vessel morphogenesis 
and angiogenesis (Fig. 4C). KEGG pathway analysis mainly 
demonstrated enrichment in the cell cycle, p53 signaling 
pathway and Fanconi anemia pathway in the green module, 
and proteoglycans in cancer, alcoholism and axon guidance in 
the blue module (Fig. 4D). 
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Figure 1. Normalization of gene expression and gene differential expression of data between two groups of samples. (A) Standardization of data. The blue bars 
represent the data before normalization, and the red bars represent the data following normalization. (B) Principal component analysis of two groups of sample 
data. (C) Differential expression of data between the two groups of samples. Red dots indicate upregulated genes and green dots indicate downregulated genes 
(|fold change|>2.0, adj‑P<0.05). Gray dots indicate genes with no significant difference in expression.

PPI network construction and analysis. The 845 genes from 
the blue module and 580 differentially expressed genes were 
intersected, in order to obtain 324 genes. Similarly, the 285 
genes from the green module and 580 differential genes were 
intersected to obtain 107 genes. The two PPI networks for the 
aforementioned 324 and 107 genes were then respectively estab‑
lished using Cytoscape software (Fig. 5), and 10 key genes were 
selected from the two PPI networks, respectively according to 

the degree of connectivity, including AURKA, BUB1, CCNB1, 
CDC45, CDK1, MELK, NUSAP1, PBK, TOP2A, TTK, BDKRB2, 
CCL19, CX3CR1, CXCL13, CXCL9, CXCR4, CXCR5, GNAI1, 
GNG11 and NMUR1. Among the genes, BDKRB2, CCL19, 
CX3CR1, CXCL13, CXCL9, CXCR4, CXCR5, GNAI1, GNG11 
and NMUR1 were selected from the blue module, with AURKA, 
BUB1, CCNB1, CDC45, CDK1, MELK, NUSAP1, PBK, TOP2A 
and TTK selected from the green module.
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Verification of the expression of the 20 selected genes in 
TCGA database. Subsequently, the expression profiles of 59 
normal lung tissues and 515 LUAD tissues were acquired from 
TCGA database to verify the expression of the aforementioned 
20 key genes. With the exception of the expression of CXCR4 
among the 20 genes, the expression of the remaining 19 genes 

differed significantly between normal lung tissue and LUAD 
tissues (Fig. 6). 

ROC curve analysis. Subsequently, ROC curve analysis was 
performed on the 19 genes verified in TCGA database, and 
it was observed that apart from BDKRB2, CCL19, CXCR5, 

Figure 2. WGCNA analysis of the data. (A) Determination of the optimal soft thresholding power. (B) Construction of co‑expression matrix and module 
visualization. WGCNA weighted gene co‑expression network analysis. WGCNA, weighted gene co‑expression network analysis.
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Figure 3. Module correlation analysis. (A) Correlation analysis between modules. The poor correlation between modules indicates that the module division is 
successful. (B) Correlation analysis between modules and diseases. The green module negatively correlated with disease (R2=0.91; P=5x10‑6), while the blue 
module positively correlated with disease (R2 =0.95; P=2x10‑7).

CXCL9, GNAL1 and CX3CR1, and the other 13 genes had 
AUCs >0.9 (Fig. 7) and were considered in the following 
stages of the analysis.

Survival analysis. Subsequently, survival analysis using the 
13 genes was performed by GEPIA and it was determined 
that the P‑value of eight genes was <0.05, including AURKA, 
BUB1, CCNB1, CDK1, MELK, NUSAP1, PBK and TOP2A 
(Fig. 8), indicating that they may be key genes that reduce 
lung adenocarcinoma survival and affect prognosis and were 
included in the following analysis. 

Gene expression in human LUAD and normal paracan‑
cerous tissues. To validate the results of bioinformatics 
analysis, the expression levels of the aforementioned eight 
genes were verified in human LUAD tissues and paired 
lung paracancerous tissues using RT‑qPCR and western 
blot analysis. The relative mRNA expression levels of seven 
out of eight genes, namely AURKA, BUB1, CCNB1, CDK1, 
MELK, NUSAP1 and TOP2A, were significantly higher in 
the LUAD than in the adjacent normal lung tissues (Fig. 9). 
The protein levels of three out of these seven overexpressed 
genes, including AURKA, MELK and TOP2A, were signifi‑
cantly higher in the LUAD than in adjacent normal lung 
tissues (Fig. 10).

Discussion

Lung cancer is one of the most prevalent types of cancer 
and currently presents with the highest mortality rate. 
Among patients recently diagnosed with lung cancer, the 
5‑year survival rate following diagnosis has been observed 
to be extremely reduced in the majority of countries, 
with a survival rate of only 1/10 to 1/5 (35). Ηowever, the 
molecular mechanisms underlying LUAD remain poorly 
understood. Without early diagnosis, the majority of patients 
are not treated promptly, resulting in a very poor prognosis. 
Therefore, there is an urgent need for the identification of effi‑
cient biomarkers for the early detection and treatment of lung 
cancer. The screening of early biomarkers and key genes for 
malignant and benign diseases using bioinformatics analysis 
has been proven a very efficient method (36‑39). However, the 
procedure of data analysis in a scientifically sound and effi‑
cient manner is currently a serious hindrance. In the present 
study, the information extracted from a high‑throughput gene 
expression dataset was analyzed, firstly sorting the differen‑
tially expressed genes, and WGCNA was then used to obtain 
the genes in the modules with the highest correlation with 
the clinical phenotype. Subsequently, PPI and correlation 
analyses were performed on the common pathogenic genes 
of the two analyses.
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Several inhibitors with high specificity for AURKA have 
been developed with clinical efficacy, including MLN8237 
and ENMD‑2076 (40). Moreover, cell cycle inhibition by 

regulating the AURKA/ polo‑like kinase 1 (PLK1) pathway 
has been reported to induce apoptosis in LUAD (41), with 
AURKA not only being a potential biomarker for predicting 

Figure 4. Correlation analysis between genes and traits for the green and blue modules. (A) Module membership vs. gene significance map of genes for green 
module. Hub genes with GS >0.8 and MM >0.8 were selected. (B) Module membership vs. gene significance map of genes for the blue module. Hub genes with 
GS >0.8 and MM >0.8 were selected. (C) The top 10 biological processes of hub gene enrichment analysis for the green module and blue modules. (D) Hub 
gene KEGG enrichment analysis of the top 10 pathways for the green and blue modules. GS, gene significance; MM, module membership; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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Figure 5. PPI analysis of all Hub genes in the green and blue modules. (A) PPI analysis of Hub gene for the green module. Red, yellow and green are the top 
three protein‑protein interaction subnetworks respectively. (B) PPI analysis of hub genes for the blue module. Red, yellow and green are the top three PPI 
subnetworks respectively. PPI, protein‑protein interaction.
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Figure 6. In total, 59 control samples and 504 cancer samples were derived from TCGA database for verification. From the 10 genes selected from the two 
modules, a total of 20 genes were verified. A total of 19 of these changes were verified, and the other one (CXCR4) was excluded. (A) The expression of AURKA, 
BUB1, CCNB1, CDC45, CDK1, MELK, NUSAP1, PBK, TOP2A and TTK genes in normal lung tissues and lung adenocarcinoma tissues, where red indicates 
normal lung tissues and green indicates lung adenocarcinoma tissues. (B) The expression of BDKRB2, CCL19, CX3CR1, CXCL13, CXCL9, CXCR4, CXCR5, 
GNAI1, GNG11 and NMUR1 genes in normal lung tissues and lung adenocarcinoma tissues, with red indicating normal lung tissues and green indicating lung 
adenocarcinoma tissues. t‑test of normal lung tissue and lung adenocarcinoma tissue. *P<0.05, **P<0.01 and ****P<0.0001.
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the poor prognosis of smoking‑related LUAD. Furthermore, 
the AURKA rs1047972 variant has been found to be signifi‑
cantly associated with EGFR mutation in patients with LUAD, 
particularly in women and non‑smoking patients. The AURKA 
variant may contribute to the pathologic development of 
LUAD (42‑44). The AURKA‑induced amplification or acti‑
vation of liver kinase B1 (LKB1)/AMPK signaling pathway 
impairment contributes to the initiation and progression of 
NSCLC, suggesting that AURKA may be a potential thera‑
peutic target against AURKA‑driven overactive LUAD (45).

 Chemotherapy resistance research has emerged as a major 
challenge in cancer treatment. Currently, resistance to radia‑
tion therapy in LUAD has been attributed to elevated levels 
of autophagy and thus resistance, and AURKA is critical for 
the reduction chemotherapy resistance in LUAD, as evidenced 
by high levels of AURKA expression associated with chemo‑
resistance and proliferation in LUAD. Genetic resistance in 
response to chronic EGFR inhibition attenuates drug‑induced 
apoptosis, and silencing AURKA reduces drug resistance in 
EGFR‑mutant LUAD (46,47).

It has been reported that TOP2A expression levels are 
upregulated in both surgically resected lung cancer tissues and 
lung cancer cell lines. As previously demonstrated, the knock‑
down of TOP2A in human lung cancer cell lines inhibited cell 

proliferation, migration and invasion, while the inhibition of 
TOP2A reduced the expression levels of CCNB1 and CCNB2. 
High expression of TOP2A has been reported to significantly 
increase the risk of mortality in patients with NSCLC, a 
risk that is particularly pronounced in patients with LUAD, 
and its molecular mechanism is associated with activation 
of PI3K/AKT and Wnt/β‑catenin signaling pathways, which 
promote apoptosis. Etoposide, which targets TOP2A, has been 
approved for the treatment of small cell lung cancer, but there 
are currently no drugs for LUAD (48,49). Through various 
bioinformatics approaches, TOP2A has been identified as an 
independent factor affecting the prognosis of patients with 
LUAD (50‑53), whereas an increased TOP2A expression has 
also been identified as a potential risk factor for pathological 
stage I LUAD (54). Ciclopirox olamine and quercetin have 
also been demonstrated to exert tumor‑suppressive effects via 
TOP2A in LUAD (55,56).

MELK is highly expressed in LUAD, and the increased 
expression of MELK has been associated with a poor prog‑
nosis; MELK may serve as a potential diagnostic marker and 
therapeutic target for LUAD. The molecular mechanisms by 
which MELK affects cancer include the possibility of the 
kinase activity of MELK affecting lung adenocarcinogenesis 
by inhibiting the pro‑apoptotic function of Bcl‑GL. High levels 

Figure 7. ROC curve analysis of 20 genes. AUCs >0.9 were included in the subsequent analysis. A total of 13 genes (AURKA, CDC45, TTK, TOP2A, CCNB1, 
NUSAP1, MELK, PBK, BUB1, CDK1, CXCL13, GNG11 and NMUR1) were included, and seven genes were excluded. (A) ROC curve analysis was performed 
for the AURKA, CDC45, TTK, TOP2A and CCNB1 genes sequentially. (B) ROC curve analysis was performed for the NUSAP1, MELK, PBK, BPKPB2 and 
BUB1 genes sequentially. (C) ROC curve analysis was performed for the CDK1, CCL19, CXCR5, CXCL13 and CXCL9 genes sequentially. (D) ROC curve 
analysis was performed for the CXCR4, GNG11, GNAL1 and NMUR1, CX3CR1 genes sequentially. ROC, receiver operating characteristic; AUC, area under 
the curve.
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Figure 8. Survival analysis was performed and survival curves were obtained using GEPIA database. According to the P‑values, there were eight genes with 
P<0.05 (AURKA, TOP2A, CCNB1, NUSAP1, MELK, PBK, BUB1 and CDK1). (A‑H) The survival curves of CDK1, BUB1, CCNB1, TOP2A, PBK, NUSAP1, 
AURKA and MELK genes in TCGA database are presented in order. TCGA, The Cancer Genome Atlas.
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Figure 9. mRNA expression of eight genes screened using WGCNA in clinical tissue samples. Clinical samples are divided into lung adenocarcinoma adjacent 
tissues and lung adenocarcinoma tissue samples. (A‑H) In each graph, the left bar represents the lung adenocarcinoma adjacent tissues, and the right bar the 
lung adenocarcinoma tissues. The mRNA expression levels of AURKA, BUB1, CCNB1, CDK1, MELK, NUSAP1 and TOP2A genes in lung adenocarcinoma 
were higher than those in paired adjacent normal tissues. WGCNA, weighted gene co‑expression network analysis.
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Figure 10. Protein expression of seven genes screened using WGCNA in clinical tissue samples. (A) Representative western blots of AURKA, BUB1, CCNB1, 
CDK1, MELK, NUSAP1 and TOP2A protein expression in adjacent lung adenocarcinoma tissues and lung adenocarcinoma tissue samples. (B) The quantita‑
tive analysis of the data in panel A, in which the protein levels of AURKA, TOP2A and MELK in lung adenocarcinoma tissues were higher than those in 
matched adjacent lung adenocarcinoma tissues. WGCNA, weighted gene co‑expression network analysis.
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of MELK expression have been associated with high‑grade 
tumors, an increased aggressiveness, a poorer patient prognosis 
and radioresistance, and an increased expression of MELK is 
associated with TOP2A, CDK1 and AURKB (57). Various 
MELK inhibitors have been developed as potential cancer 
therapeutic agents, molecules, including OTS and MELK‑T1 
have demonstrated efficacy in experimental animals to delay 
the proliferation of cancer cells (58).

It has been reported that TOP2A interacts directly with 
MELK, CDC20, CCNB2, UBE2T, KIAA0101 and TK1 
through a PPI network (11). However, this cannot system‑
atically reflect the interaction pattern between key pathogenic 
genes in LUAD. In the present study, bioinformatics analysis 
of LUAD using WGCNA and validation by human tissue 
samples yielded three key genes, AURKA, MELK and TOP2A, 
whose co‑expression may be important for early diagnosis and 
prognosis as well as further elucidation of the pathogenesis of 
LUAD. 
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