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Background: The presence of portal vein tumor thrombus (PVTT) is a significant indicator of advanced-
stage hepatocellular carcinoma (HCC). Unfortunately, the prediction of PVTT occurrence remains 
challenging, and there is a lack of comprehensive research exploring the underlying mechanisms of PVTT 
formation and its association with immune infiltration. 
Methods: Our approach involved analyzing single-cell sequencing data, applying high dimensional 
weighted gene co-expression network analysis (hdWGCNA), and identifying key genes associated with 
PVTT development. Furthermore, we constructed competing endogenous RNA (ceRNA) networks and 
employed weighted gene co-expression network analysis (WGCNA), as well as three machine-learning 
techniques, to identify the upstream regulatory microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) 
of the crucial mRNAs. We employed fuzzy clustering of time series gene expression data (Mfuzz), gene 
set variation analysis (GSVA), and cell communication analysis to uncover significant signaling pathways 
involved in the activation of these important mRNAs during PVTT development. In addition, we conducted 
immune infiltration analysis, survival typing, and drug sensitivity analysis using The Cancer Genome Atlas 
(TCGA) cohort to gain insights into the two patient groups under study. 
Results: Through the implementation of hdWGCNA, we identified 110 genes that was closely associated 
with PVTT. Among these genes, TMEM165 emerged as a crucial candidate, and we further investigated its 
significance using COX regression analysis. Furthermore, through machine learning techniques and survival 
analysis, we successfully identified the upstream regulatory miRNA (hsa-miR-148a) and lncRNA (LINC00909) 
that targeted TMEM165. These findings shed light on the complex regulatory network surrounding 
TMEM165 in the context of PVTT. Moreover, we conducted CIBERSORT analysis, which unveiled 
correlations between TMEM165 and immune infiltration in HCC patients. Specifically, TMEM165 exhibited 
associations with various immune cell populations, including memory B cells and CD8+ T cells. Additionally, 
we observed implications for immune function, particularly in relation to immune checkpoints, within the 
context of HCC. 
Conclusions: The regulatory axis involving TMEM165, hsa-miR-148a, and LINC00909 emerges as a 
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Introduction

Primary liver cancer, with hepatocellular carcinoma (HCC) 
and intrahepatic cholangiocarcinoma as the main subtypes, 
is a prevalent gastrointestinal malignancy worldwide. 
HCC, responsible for 75–85% of primary liver cancer 
cases, is associated with a poor prognosis and is a leading 
cause of cancer-related deaths globally. In patients with 
cirrhosis and HCC, the development of portal vein tumor 
thrombus (PVTT) is a common occurrence (1-3). Although 

advances in imaging technology have improved early 
detection of HCC, a considerable proportion of patients 
(12.5–39.7%) still present with portal vein invasion that 
goes undetected. PVTT is considered a distinct form of 
hematogenous metastasis of HCC, characterized by the 
invasive growth of HCC cells within the portal vein. This 
results in widespread tumor dissemination throughout the 
liver, elevated portal vein pressure, rupture of esophageal 
varices, reduced portal vein flow, ascites, jaundice, hepatic 
encephalopathy, and liver failure. Consequently, the 
prognosis for HCC patients deteriorates significantly upon 
the development of PVTT, with a median survival time of 
only 2.7–4 months in the absence of appropriate treatment. 
Although transcatheter arterial chemoembolization (TACE) 
has demonstrated some success in selected patients, the 
median survival period remains limited to 3.8–9.5 months. 
Monotherapy targeting PVTT in HCC patients has shown 
minimal improvement in prognosis, with response rates 
below 20% (4-7). Previous studies have implicated various 
molecules, such as chemokine receptors CXCR4, KiSS-1, 
matrix metalloproteinase-9, protein disulfide isomerase A6, 
and apolipoprotein AI, are involved in the development of 
PVTT (8-10). However, a comprehensive understanding 
of the precise underlying mechanisms of this lethal tumor 
thrombus is still lacking. Therefore, unraveling the 
molecular basis of PVTT formation is crucial for both 
predicting and devising effective treatments for PVTT in 
HCC patients.

MicroRNAs (miRNAs), a class of highly conserved 
and tissue-specific non-protein-coding short RNAs, 
exert control over gene expression by recognizing and 
binding to homologous sequences, thereby interfering 
with transcription, translation, or epigenetic processes. 
These small molecules have a wide range of target genes 
and influence virtually all genetic processes, including cell 
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cycle checkpoints, cell proliferation, and apoptosis (11-13). 
Initially, the post-transcriptional control of gene expression 
was believed to occur through the binding of miRNAs to 
the miRNA response element (MRE) on target mRNA, 
leading to translational inhibition or mRNA degradation. 
However, as researchers delve into in-depth transcriptome 
research, they discovered the presence of MRE not only 
exist in mRNA but also in other RNA types such as 
lncRNA, pseudogene, and circRNA. This implies that the 
same miRNA can interact with multiple types of RNA, 
resulting in a competitive relationship among different 
RNA molecules that bind to the same miRNA (14-16). 
These findings have led to the proposal of the competing 
endogenous RNA (ceRNA) hypothesis, which represents 
a novel regulatory mechanism in gene expression. CeRNA 
operates in conjunction with the miRNA regulatory 
network, expanding the regulatory network to encompass a 
broader range of genes and RNA types. Investigating gene 
function and regulation at a deeper level, including the 
involvement of ceRNA in both healthy and pathological 
conditions, is crucial for understanding various biological 
processes, such as cellular development and the molecular 
mechanisms underlying diseases (17,18).

The continuous progress in bioinformatics technologies 
and machine learning algorithms has enabled more precise 
evaluation of transcriptomics data. Taking advantage 
of these advancements, this study integrated diverse 
bioinformatics analysis techniques and machine learning 
algorithms. By analyzing transcriptome data from HCC, 
we seek to identify significant genes and ceRNA regulatory 
networks involved in the development of PVTT. Through 
this comprehensive approach, we aim to unravel the precise 
mechanisms underlying the formation of PVTT in HCC 
patients and provide novel insights for future studies in 
this field. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1589/rc).

Methods

Downloading and preliminary collation of single cell 
sequencing data

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). We obtained 
s ingle-cel l  sequencing data (registrat ion number 
GSE149614) from the Gene Expression Omnibus (GEO) 
database. The dataset consisted of one metastatic lymph 

node tissue, two PVTT tissues, eight normal tissues, and 
ten primary HCC tissues, totaling 21 tissue sequencing data. 
The initial processing of the upstream data was performed 
using Cell Ranger software (version 2.2.0). For subsequent 
analysis, we focused on two PVTT tissues and ten primary 
tumor tissues. The Seurat package (version 4.1.1) was 
employed for single-cell data processing. To ensure data 
quality and eliminate low-quality cells, we implemented 
several quality control measures. The following criteria 
were used: (I) cells expressing fewer than 500 or more 
than 6,000 genes were excluded; (II) the unique molecular 
identifier (UMI) count value of each cell sequencing had 
to exceed 1,000, and the top 3% of cells with the highest 
UMI count were removed; (III) the mitochondrial gene 
expression in each cell was required to account for less 
than 35% of the total gene expression, and the top 2% 
of cells with the highest mitochondrial gene expression 
were eliminated; (IV) the percentage of rRNA expression 
across all genes was determined, and the cells with the 
lowest and highest top 1% values were excluded. Since 
our study involved combining single-cell sequencing data 
from multiple samples, it was essential to account for batch 
effects. Cells from different chips, sequencing channels, or 
time points were classified into distinct groups. Batch effects 
can arise due to variations in experimental conditions, 
potentially impacting transcriptome measurements and 
cellular transcriptional changes. To mitigate batch effects 
and ensure robust downstream analysis, we utilized the 
harmony method implemented in the “harmony” package 
(version 0.1.0) to integrate and remove batch effects from 
the 12 samples. Given the inherent variability in each 
operational step, even when sequencing the same cell twice, 
differences in the counting depth may occur. To address this 
technical variation and prevent downstream analysis errors, 
we employed the Normalization function. This procedure 
adjusted the count data, enabling the comparison of relative 
gene expression abundance among cells.

Subgroup clustering and cell annotation

After the initial processing, the single-cell data still 
retained a high dimensionality. To reduce computational 
costs, minimize noise, and improve data visualization, we 
employed the FindVariableFeatures function to select 
2,000 genes known as highly variable genes. These genes 
provided information on the data’s variability and served 
as features for downstream analysis. To conform the 
gene expression z-scores to a Gaussian distribution, we 
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applied the ScaleData function. Next, we employed the 
principal component analysis (PCA) algorithm, a linear 
dimensionality reduction method, to map the expression 
matrix to a low-dimensional space. We sought to identify 
the optimal low dimension that could capture the biological 
morphology represented by the cell expression profiles 
while preserving all the data’s information. For further 
dimensionality reduction, we utilized the uniform manifold 
approximation and projection (UMAP) method, a nonlinear 
dimensionality reduction technique. This step allowed us 
to map the multidimensional data to a two-dimensional 
space suitable for observation. To establish connections 
between units based on their shared overlap (Jaccard 
similarity) in the immediate neighborhood, we utilized the 
FindNeighbors function. This approach involved building a 
K-nearest neighbor (KNN) graph using Euclidean distance 
in the PCA space. The edge weights between units were 
refined according to their shared overlap.

To enhance modular functionality, we utilized the 
FindClusters function with a resolution parameter set to 0.5. 
This step facilitated the aggregation of cells into distinct 
clusters based on their similarities and differences, enabling 
further analysis and interpretation. To ensure reliable 
and accurate cell annotation, we combined results from 
both automatic and manual annotation approaches. For 
automatic annotation, we primarily relied on the “singleR” 
package (version 1.8.1), which predicted the potential 
cell types of each cell by comparing them to a reference 
transcriptome data set of pure cell types. Manual annotation 
was based on the results of differential analysis, which 
aimed to identify genes that were differentially expressed 
between subgroups and all other subgroups. We used the 
FindAllMarkers function with a filtering criterion of P value 
less than 0.05 for this analysis. To validate and supplement 
the automatic annotation results from the “singleR” 
package, we employed additional resources. These included 
the CellMarker database (19), the BMC Genome Biology 
online database, and an extensive literature search. By 
combining information from these sources, we obtained 
comprehensive annotation results for each cell cluster. 
To distinguish between benign and malignant cells, we 
calculated the copy number distribution of individual 
cells using the state-of-the-art Copykat technique. The 
subclonal structure was determined by combining the 
Bayesian method with hierarchical clustering. Additionally, 
we utilized the Gaussian mixture model (GMM) to calculate 
the variance of each cell population. High-confidence 
diploid cells were identified as the cell population with 

the minimum estimated variance, based on stringent 
categorization criteria. Finally, hierarchical clustering of 
single-cell copy number data was performed to achieve 
the greatest separation between diploid normal cells and 
aneuploid tumor cells, providing insights into the genomic 
alterations associated with the tumor cells.

Weighted gene co-expression network analysis (WGCNA) 
of single cell sequencing

We implemented WGCNA for single-cell data using 
the “hdWGCNA” package (version 0.2.2) developed by 
Morabito et al. (20,21). This advanced package allowed us 
to construct a co-expression network across multi-scale 
cells and spatial hierarchies, identifying robust modules of 
interconnected genes and enabling WGCNA of single-
cell sequencing data. To perform WGCNA, we first set 
up a Seurat object. We then used the KNN algorithm to 
identify similar cell groups that needed to be aggregated 
using hdWGCNA. The average or sum expression of 
these cells was calculated to generate a low sparse meta 
cell gene expression matrix. Next, we defined the cell 
type consisting of malignant cells using the SetDatExpr 
function and created an expression matrix. To determine 
the appropriate soft power threshold for building the co-
expression network, we conducted parameter scans using 
the TestSoftPowers function. We evaluated the architecture 
of the resultant networks for different power values and 
selected the soft power threshold that maintained a robust 
gene-gene adjacency matrix while eliminating weak links. In 
this study, we chose the minimum soft power threshold of 
0.8 or higher based on the scale-free topology model. Using 
the ConstructNetwork function, we built the co-expression 
network below the selected soft threshold. To identify 
module feature genes, we employed the ModuleEigengenes 
tool, which performed PCA on a subset of the gene 
expression matrix for each module. This allowed us to 
obtain the module feature genes [module eigengene (ME)] 
present in various modules. Additionally, we calculated the 
central gene feature score for each module using the Seurat 
or UCell algorithms with the help of the ModuleExprScore 
function. To visualize the association between modules, we 
utilized the ModuleCorrelogram tool, which represented 
the relationships among modules based on their hME 
(hub gene), ME, or hub gene scores. To identify essential 
modules, we employed three techniques. First, we conducted 
correlation analysis on the modules and identified the most 
crucial modules using the GetModuleTraitCorrelation 
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method. The PlotModuleTraitCorrelation function was 
used to visualize the results as a heatmap. Second, we 
compared the correlation between module membership 
and sample information, specifically differentiating primary 
tissue from PVTT tissue. Lastly, we employed random 
forest (RF) to assess the significance of all modules and 
“sample” data, ranking them based on the IncNodePurity 
value. The module with the highest-ranking value was 
considered the most relevant to PVTT.

Screening of PVTT-related genes (PRGs) based on The 
Cancer Genome Atlas (TCGA) cohort

For further screening of module genes, we utilized TCGA 
cohort. Specifically, we accessed the HCC data [TCGA-
Liver Hepatocellular Carcinoma (TCGA-LIHC)] from the 
TCGA database, which provided Fragments Per Kilobase 
of Exon Model Per Million Mapped Fragments (FPKM) 
data for the TCGA cohort patients. We also processed the 
clinical data of the patients appropriately. To perform the 
analysis, we extracted the survival data from the TCGA 
cohort, including survival time and month. We excluded 
patients who were younger than 18 years old or had a 
survival time of fewer than 30 days. Next, we obtained 
the gene expression matrix of the TCGA cohort module 
and conducted univariate COX regression analysis on 
all variables. The genes that showed an association with 
prognosis in the univariate COX regression analysis were 
included in the subsequent multivariate COX regression 
study. In the multivariate COX regression analysis, we 
focused on the genes that were previously identified as 
significant predictors of prognosis. Among these genes, we 
specifically selected those that were associated with PVTT, 
forming a set of PRGs.

Construction of ceRNA network based on online database

Based on an online database, we constructed a ceRNA 
network. To identify potential interactions between the 
PRGs and miRNAs, we utilized the TargetScan database 
(accessed on 23 November 2022). Additionally, we searched 
the StarBase database (accessed on 23 November 2022) to 
identify likely target long non-coding RNAs (lncRNAs) 
of the miRNAs. To visualize the mRNA-miRNA-lncRNA 
ceRNA network, we employed Cytoscape v3.9.1, which 
allowed us to depict the interactions and relationships 
among these components.

Screening of PVTT-related miRNA and lncRNA based on 
WGCNA

To validate the predictions made by the TargetScan and 
StarBase databases, we divided the TCGA cohort into 
two groups based on the median expression value of the 
PRGs. The high PRG expression group and the low PRG 
expression group were compared to assess their association 
with the development of PVTT. The high-risk group 
demonstrated a significantly higher propensity for PVTT 
compared to the low-risk group. To identify miRNAs and 
lncRNAs that are significantly associated with PVTT, we 
performed WGCNA on the miRNA expression matrix and 
lncRNA expression matrix of the two patient groups. The 
WGCNA analysis was conducted using the “WGCNA” 
package (version 1.71). Initially, we calculated the median 
absolute deviation (MAD) for each gene and eliminated 
the 50% of genes with the smallest MAD. The remaining 
differentially expressed genes (DEGs) were used to construct 
a scale-free co-expression network. The adjacency degree 
was computed using a soft threshold power (β) derived from 
co-expression similarity, and the adjacency was transformed 
into a topological overlap matrix (TOM) to calculate gene 
dissimilarity and connectivity. Subsequently, we applied a 
dynamic tree-cutting function and hierarchical clustering 
to detect modules based on average linkage hierarchical 
clustering and TOM-based dissimilarity. Genes with similar 
expression profiles were grouped into gene modules. To 
merge modules for further analysis, we computed the 
dissimilarity of module feature genes and determined the 
appropriate cutting line in the module tree. To identify 
the most important regulatory axis in the ceRNA network, 
we employed various machine learning methods after the 
WGCNA screening. The following machine learning 
algorithms were used: (I) least absolute shrinkage and 
selection operator (LASSO): Based on the “glmnet” package 
(version 4.1.4), LASSO performed variable selection and 
regularization while fitting the generalized linear model; (II) 
support vector machine recursive feature elimination (SVM-
RFE): using the “e1071” package (version 1.7.11), SVM-
RFE employed a sequential backward selection approach to 
extract features from two different types of data based on 
the maximum margin principle; (III) RF: RF estimated the 
average contribution of each feature to each decision tree in 
the RF using the “randomForest” package (version 4.7.1.1). 
The features were ranked based on their contributions for 
further analysis.
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Mfuzz pattern expression clustering and enrichment 
analysis

For gene expression or protein expression profile data 
processing, we utilized the “Mfuzz” package (version 2.54.0), 
which offers a clustering approach. This approach, known 
as fuzzy c-means (FCM) clustering, allowed us to cluster 
transcriptome and proteome data with both time series and 
non-time series features. It enabled the grouping of genes 
or proteins based on their similar expression patterns. To 
evaluate the disparities among different expression pattern 
clusters, we calculated scores using single-sample gene 
set enrichment analysis (ssGSEA) and compared them. 
Subsequently, we employed Pearson correlation analysis to 
determine the correlation between each clustering module 
and the PRGs. By examining the correlation coefficient and 
P value, we identified the gene module that exhibited the 
closest association with PRG. To gain insights into the gene 
functions of the identified modules, we performed Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses on the retrieved gene modules. 
This analysis helped us understand the biological processes 
and pathways associated with the identified modules. 
Additionally, we conducted gene set variation analysis 
(GSVA) on the TCGA cohort using PRG as a reference. 
We compared the results of the Mfuzz clustering module’s 
enrichment analysis with the findings from the GSVA to 
validate the reliability of the enrichment analysis results. 
In summary, the Mfuzz package, through FCM clustering, 
ssGSEA scoring, and correlation analysis, allowed us to 
identify gene modules associated with PRG. Subsequent 
functional analysis provided insights into the biological 
functions of these modules, and the validation process 
enhanced the reliability of the enrichment analysis results.

Cell communication analysis

By employing cell communication analysis, we were able to 
identify aberrantly activated signaling pathways within the 
tumor microenvironment of primary tumors and PVTT. 
Cell communication refers to the transfer of information 
between cells, leading to a corresponding cellular response. 
In animals and plants, the primary mechanism of intercellular 
communication involves chemical signal molecules. Cell-
cell communication mediated by ligand-receptor complexes 
plays a crucial role in coordinating various biological 
processes, such as development, differentiation, and 
inflammation. To infer and analyze intercellular interaction 

networks, we utilized the “CellChat” package (version 
1.1.3). Our approach involved several steps. First, we 
identified ligands or receptors that were overexpressed in 
a given cell population. We then mapped gene expression 
data onto a protein-protein interaction (PPI) network. If 
either the ligand or receptor was found to be overexpressed, 
we detected the interaction between the overexpressed 
ligand and its receptor. Subsequently, we inferred the 
communication probability at the signaling pathway level 
by calculating the communication probability for all ligand-
receptor interactions associated with each signaling pathway. 
This allowed us to quantify the likelihood of communication 
occurring via specific signaling pathways. To establish a cell 
communication network, we calculated the aggregation 
communication network between cells by considering 
the number of links or the aggregate communication 
probability. This network captured the overall intercellular 
communication patterns. Moreover, we constructed a cell 
communication network at the level of cell-specific ligand-
receptor interactions and signaling pathways, providing 
insights into the precise interactions and communication 
events occurring among cells. In summary, our utilization of 
the “CellChat” package enabled the inference and analysis of 
intercellular interaction networks. This approach facilitated 
the identification of overexpressed ligands and receptors, as 
well as the evaluation of communication probabilities at the 
signaling pathway level. The resulting cell communication 
network provided a comprehensive view of intercellular 
communication within the tumor microenvironment.

Drug sensitivity analysis of patients in different risk 
groups

Using the previous grouping of patients, we proceeded 
to analyze the sensitivity of these patients to different 
medications. The assessment of drug sensitivity was 
conducted using the pRRophetic package (version 0.5) 
developed by Geeleher et al. in 2014 (22). The pRRophetic 
algorithm employs a ridge regression model that utilizes 
the gene expression profiles from the Genomics of Drug 
Sensitivity in Cancer (GDSC) cell line and the TCGA 
gene expression profiles. This model predicts the half-
inhibitory concentration (IC50), which represents the drug 
concentration required to induce a 50% reduction in cell 
viability or cause 50% apoptotic cells. In our analysis, we 
selected clinical therapeutic medications for the treatment 
of HCC based on a combination of clinical experience and 
prior research from randomized controlled trials (RCTs). 
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This approach allowed us to consider established knowledge 
in the field and evidence from rigorous scientific studies 
when making decisions regarding medication choices for 
HCC treatment. By leveraging the pRRophetic package 
and considering both gene expression profiles and clinical 
knowledge, we aimed to gain insights into the medication 
sensitivity of patients within different risk groups. This 
analysis provided valuable information for understanding 
potential treatment responses and guiding personalized 
therapeutic strategies for HCC patients.

CIBERSORT identified immune infiltration patterns in 
HCC patients in different modes

The expression matrix of human immune cell subtypes 
was subjected to deconvolution using the CIBERSORT 
method. This method utilizes linear support vector 
regression to estimate the proportions of immune cell 
subtypes present in the expression matrix. The default gene 
expression feature set, LM22, consisting of 22 immune cell 
subtypes, was used as a reference dataset. By deconvolving 
the expression matrix, we were able to determine the levels 
of immune cell infiltration in the samples. To examine 
the differences in immune cell infiltration between the 
two patient groups, we applied the concept of differential 
analysis. By comparing the immune cell profiles of the 
two groups, we assessed the variations in immune function 
within the immunological milieu of the different patient 
groups. Additionally, we investigated the expression 
patterns of common immunological checkpoints in patients 
with different immune cell infiltration patterns. To forecast 
the responsiveness of patients with different immune 
profiles to immunotherapy, we utilized the Tumor Immune 
Dysfunction and Exclusion (TIDE) online database. TIDE 
provided a predictive framework for assessing the likelihood 
of response to immunotherapy based on the specific 
immune characteristics observed in patients. By integrating 
these analyses, we aimed to gain insights into the immune 
landscape and functionality in the two patient groups, 
as well as to provide predictions regarding the potential 
response to immunotherapy. This information has the 
potential to guide treatment decisions and improve patient 
outcomes in the context of immunotherapy for cancer.

Identification of different survival pattern subtypes of HCC 
patients based on regulatory axis

We stratified HCC patients into different survival 

subgroups based on the expression levels of mRNA, 
miRNA, and lncRNA. The median expression value was 
used as a threshold, where expression levels above the 
median were classified as high expression and levels below 
the median were classified as low expression. All HCC cases 
were assigned to one of the eight survival patterns, as listed 
below: 

mRNAhigh/miRNAhigh/lncRNAhigh (mode 1);
mRNAhigh/miRNAlow/lncRNAhigh (mode 2);
mRNAlow/miRNAhigh/lncRNAhigh (mode 3);
mRNAlow/miRNAlow/lncRNAhigh (mode 4);
mRNAhigh/miRNAhigh/lncRNAlow (mode 5);
mRNAhigh/miRNAlow/lncRNAlow (mode 6);
mRNAlow/miRNAhigh/lncRNAlow (mode 7);
mRNAlow/miRNAlow/lncRNAlow (mode 8).
These eight categories represent different combinations 

of high and low expression for mRNA, miRNA, and 
lncRNA. To investigate the survival outcomes of patients 
with different HCC profiles, we utilized the Kaplan-Meier 
(KM) method to analyze the survival curves for each of the 
eight patient groups. This analysis allows us to assess the 
association between RNA expression patterns and patient 
survival, providing valuable insights into the prognosis and 
potential treatment strategies for different subgroups of 
HCC patients.

Online websites

	GEO: https://www.ncbi.nlm.nih.gov/geo/;
	CellMarker: http://xteam.xbio.top/CellMarker/;
	BMC Genome Biology: https://genomebiology.

biomedcentral.com/;
	TCGA: https://www.cancer.gov/about-nci/organization/

ccg/research/structural-genomics/tcga;
	Targetscan: https://www.targetscan.org/vert_80/;
	Starbase: https://starbase.sysu.edu.cn/;
	CIBERSORTx: https://cibersortx.stanford.edu/;
	TIDE: http://tide.dfci.harvard.edu/.

Statistical analysis 

All data processing in this study was conducted using 
R (version 4.1.3). Differential analysis between all 
experimental and control groups was performed using the 
Wilcoxon rank-sum test. Pearson correlation method was 
employed for correlation analysis on public databases. The 
significance level for all analyses was set at P<0.05, and 
Benjamini-Hochberg correction method was applied to 

https://genomebiology.biomedcentral.com/
https://genomebiology.biomedcentral.com/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://tide.dfci.harvard.edu/
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adjust P values for multiple comparisons.

Results

GSE149614 dataset revealed cellular components in 
primary and PVTT tissues of HCC patients

The flowchart outlining the study’s process is presented 
in Figure S1. At the post-processing stage, single-cell 
sequencing samples from 12 HCC patients were processed 
and analyzed. The raw data consisted of 25,208 genes and 
40,385 cells. After quality control, a Seurat object containing 
36,241 cells and 25,208 genes was obtained (Figure S2A). 
For further investigation, the first 30 principal components 
were selected after performing PCA (Figure S2B).  
By reducing the dimensions of all cells using UMAP, 22 cell 
clusters were identified (Figure 1A). Among these clusters, 
4,692 cells originated from PVTT tissues, while 31,549 cells 
originated from original tumor tissues (Figure 1B). Different 
cell clusters exhibited varying levels of gene expression. 
Clusters 1, 6, and 9 demonstrated higher gene expression 
levels compared to clusters 5, 8, and 11, while clusters 1, 
6, and 11 displayed lower levels (Figure 1C). Based on the 
stromal cell marker gene “MME”, the immune cell marker 
gene “PTPRC”, and the tumor cell marker gene “AFP”, 
the total cell clusters were roughly categorized (Figure 1D). 
Various annotation methods were employed to further 
identify the cell types within each cluster, leading to the 
preliminary identification of ten cell types (Figure 1E). The 
marker genes for CD4+ T cells were “CD3D” and “CD4”, 
for CD8+ T cells were “CD7” and “CD8A”, for regulatory 
T cells was “FOXP3”, for plasma cells were “IGHG1” and 
“CD79A”, for monocytes were “CD14” and “CD68”, for 
Kupffer cells were “CD68” and “VSIG4”, for stellate cells 
was “ACTA2”, for hepatocytes were “ARG1” and “ALB”, 
for bile duct cells was “KRT19”, and for endothelial cells 
were “CD34” and “BTNL9”. Aneuploid cells identified 
by the Copykat algorithm were similar to the cell clusters 
identified by the tumor marker gene “AFP” and were 
derived from hepatocytes (Figure 1F, Figure S2C). Detailed 
proportions of different clusters and cells across tissues and 
samples are presented in Figure 1G-1L.

Single-cell WGCNA considered module 23 to be most 
relevant for PVTT formation in HCC patients

We selected the optimal soft threshold of “9” to construct 
a single-cell co-expression network using hdWGCNA  

(Figure 2A). By clustering the single-cell data, we specifically 
focused on tumor cell clusters (clusters 1, 4, 9, 10, 12, 14, 
18, 19, and 21) identified by the Copykat technique for 
subsequent network analysis. Our goal was to identify 
important modules within HCC cells that contribute to 
the development of PVTT. After merging related modules, 
we obtained a total of 24 modules that played a crucial 
role in PVTT formation (Figure 2B,2C). The correlation 
between the modules was visualized using a Pearson analysis  
(Figure 2D). The enrichment analysis of module genes 
and module core genes within cell clusters is presented in  
Figure 2E,2F.

To determine the most relevant module for HCC cell 
types, we employed the author’s method to assess the inter-
module connections and selected one module for further 
investigation. Module 23 exhibited the highest correlation 
coefficient (cor =0.64) and was deemed the most pertinent 
module for HCC cell typology (Figure 3A). Subsequently, 
we evaluated the correlation between module 23 and the 
cell tissue sources (primary tumor and PVTT) using the 
conventional WGCNA module screening method. The 
analysis revealed that module 23 exhibited the strongest 
association with the cell tissue sources (Figure 3B). To 
validate these findings, we employed RF analysis. The 
metrics MeanDecreaseAccuracy and MeanDecreaseGini, 
which measure the importance of variables in RF models, 
consistently indicated that module 23 played a crucial role 
in identifying the cell tissue sources (Figure 3C). Thus, we 
concluded that module 23, identified through hdWGCNA, 
was the most significant module. The genes within this 
module likely influenced the aggressiveness of HCC 
primary tumors towards PVTT (Figure 3D,3E).

Further identification of TMEM165 as a PRG in HCC 
based on TCGA cohort

Module 23 consisted of 110 genes. To identify key core 
genes, we further validated these 110 genes in the TCGA 
cohort. Among them, ten genes displayed altered expression 
patterns in HCC tissues compared to normal liver tissues 
(Figure 4A,4B). Given the strong relationship between 
PVTT development and the prognosis of HCC patients, we 
focused on identifying prognostic genes among these ten 
genes. Through univariate COX regression analysis, four 
genes were initially identified as being associated with the 
prognosis of HCC patients: TMEM165 (P<0.001), RRAGD 
(P=0.006), FADS3 (P=0.01), and MYPOP (P=0.005) (Figure 

https://cdn.amegroups.cn/static/public/TCR-23-1589-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1589-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1589-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1589-Supplementary.pdf
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Figure 1 Results of single cell sequencing data analysis in HCC tissues. (A) Twenty-two cell clusters were divided after quality control and 
dimensionality reduction (PCA, UMAP). (B) Tissue types of all cell sources. (C) Gene expression per cell, the darker the color, the higher 
the cell expression. (D) Preliminary annotation of cell types in the tumor microenvironment based on general markers of immune cells, 
stromal cells, and tumor cells. (E) The annotation results of 22 cell clusters by multiple methods. (F) Copykat method for the identification 
of malignant cells and non-malignant cells. Red represents aneuploid cells, namely malignant cells. (G-L) The stacked bar graph shows the 
proportions of different cell compartments from different tissue/sample sources. (G) The proportion of 22 cell clusters in PT and PVTT 
tissues. (H) The proportion of 10 cell types in PT and PVTT tissues. (I) The proportion of three microenvironment components in 12 
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Figure 2 Co-expression network for single-cell sequencing using hdWGCNA. (A) Select the scale-free topology model to fit the lowest 
soft power threshold greater than or equal to 0.8, so that the constructed network is more consistent with the scale-free topology. (B) A co-
expression network is constructed based on the optimal soft threshold, and a gene clustering tree is drawn after genes are divided into different 
modules. The upper part is the hierarchical clustering tree of genes, and the lower part is gene module, namely network module. (C) Calculate 
the feature-based gene connectivity (kME) of each gene in the co-expression network analysis to determine the highly connected genes (hub 
genes) in each module. (D) Correlation heat map between modules based on Pearson correlation analysis. X: no correlation. (E) Calculating 
gene scores for each module gene based on the UCell algorithm. (F) Gene scores are calculated for the central genes of each module based on 
the UCell algorithm. hdWGCNA, high dimensional weighted gene co-expression network analysis; kME, module membership.
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Figure 4 Differential analysis and univariate/multivariate COX regression for further screening of key module genes. (A) Gene heatmaps 
showing differential expression of 110 module genes in normal and tumor tissues (TCGA cohort). (B) The gene volcano plot of  
110 module genes showing differential expression between normal and tumor tissues (TCGA cohort). Black dots represent genes with no 
significant changes. Red dots represent upregulated genes. (C) Univariate COX regression results of eight differentially expressed genes. (D) 
Multivariate COX regression results of four genes proved to have prognostic significance in univariate COX regression. fdr, false discovery 
rate; FC, fold change; CI, confidence interval; TCGA, The Cancer Genome Atlas.

4C). Subsequently, these four genes underwent multivariate 
COX regression analysis to eliminate the influence of 
other variables and to identify independent prognostic 
genes. Only TMEM165 (P=0.02) was able to predict the 
prognosis of HCC patients and was deemed an independent 
prognostic factor for HCC patients according to the COX 
regression analysis (Figure 4D). As a result, TMEM165 was 
identified as a PRG in HCC.

Construction of ceRNA network involving TMEM165 
and screening of important mRNA-miRNA-lncRNA 
regulatory axis

Based on the Targetscan and StarBase databases, we initially 
identified potential upstream regulatory molecules of 

TMEM165. The Targetscan database revealed 92 upstream 
regulatory miRNAs for TMEM165, while the StarBase 
database provided 427 lncRNAs associated with these  
92 miRNAs. The mRNA-miRNA-lncRNA regulatory 
network was visualized using the Cytoscape program 
(available online: https://cdn.amegroups.cn/static/public/
tcr-23-1589-1.xlsx).

To identify key regulatory axes within the regulatory 
network, we divided the TCGA cohort into high-risk 
and low-risk groups based on the median expression of 
TMEM165. Subsequently, we conducted WGCNA on the 
miRNA and lncRNA expression matrices of the two patient 
groups. In the miRNA expression data, we constructed a co-
expression network with a soft threshold of 26 (Figure 5A,5B)  
and identified modules associated with TMEM165. We 

https://cdn.amegroups.cn/static/public/tcr-23-1589-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-1589-1.xlsx
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Figure 5 WGCNA recognized six miRNAs associated with TMEM165. (A,B) The optimal soft thresholding or power was determined to 
make the constructed network more consistent with the scale-free topology. (A) Scale-free fit index (y-axis) under different soft threshold 
(x-axis). The red line represents the subjectively selected scale-free fitting index value, which is 0.9 in this study. (B) Mean connectivity. 
(C) The co-expression network was constructed based on the optimal soft threshold, and the gene clustering tree was drawn after genes 
were divided into different modules. The upper part was the hierarchical clustering tree of genes, and the lower part was gene module, 
namely network module. (D) Gene clustering tree after merging similar modules. (E) Calculate the correlation and significance between the 
module and the expression level of TMEM165, and draw a correlation heat map. The first-row number in each module was the correlation 
coefficient, and the second-row number was the P value. Red represented positive correlation; blue represented negative correlation. (F) 
Scatter plot showed that there was a highly significant correlation between the GS of MM and the expression level of TMEM165 in red 
module. WGCNA, weighted gene co-expression network analysis; GS, gene significance; MM, module member.
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Figure 6 WGCNA recognized 36 lncRNA related with TMEM165. (A,B) The optimal soft thresholding or power was determined to make 
the constructed network more consistent with the scale-free topology. (A) Scale-free fit index (y-axis) under different soft threshold (x-axis). 
The red line represents the subjectively selected scale-free fitting index value, which is 0.9 in this study. (B) Mean connectivity. (C) The co-
expression network was constructed based on the optimal soft threshold, and the gene clustering tree was drawn after genes were divided 
into different modules. The upper part was the hierarchical clustering tree of genes, and the lower part was gene module, namely network 
module. (D) Gene clustering tree after merging similar modules. (E) Calculate the correlation and significance between the module and 
the expression level of TMEM165, and draw a correlation heat map. The first-row number in each module was the correlation coefficient, 
and the second-row number was the P value. Red represented positive correlation; blue represented negative correlation. (F) The scatter 
plot showed that there was a highly significant correlation between the gene significance of module members and the expression level of 
TMEM165 in yellow and blue modules. WGCNA, weighted gene co-expression network analysis.
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then merged related modules (Figure 5C,5D) and ultimately 
selected the red module (R=−0.41, P=5e−18) for further 
analysis (Figure 5E,5F). In the lncRNA expression data, we 
constructed a co-expression network with a soft threshold 
of 6 (Figure 6A,6B) and identified modules associated with 
TMEM165. Similar to the miRNA analysis, we merged 
related modules (Figure 6C,6D) and ultimately selected the 
blue module (R=0.41, P=5e−19) and the yellow module 
(R=−0.41, P=9e−19) for further analysis (Figure 6E,6F). By 
merging the WGCNA results of miRNA and lncRNA with 
the projected findings, we identified a total of 6 miRNAs 
and 36 lncRNAs.

To narrow down the key miRNAs and lncRNAs, a 
survival analysis using the KM approach was conducted. 
Among the six miRNAs, hsa-miR-22 and hsa-miR-148a 
were found to be associated with the prognosis of HCC 

patients (Figure 7A,7B). Similarly, eight out of the 36 
lncRNAs (C6orf223, IQCH-AS1, LINC00667, LINC00847, 
LINC00909, LINC01554, PSMB8-AS1, and TP53TG1) 
were found to be related to the prognosis of HCC patients 
(Figure 7C-7J). To further analyze the remaining large 
quantity of lncRNAs, three machine-learning methods were 
employed. LASSO, SVM-RFE, and RF analyses classified 
five out of the eight lncRNAs as significant (Figure 8A-8F). 
By merging the screening results from the three different 
machine-learning approaches, three important lncRNAs 
were identified (Figure 8G). Finally, we determined the 
TMEM165/hsa-miR-148a/LINC00909 axis as the most 
crucial regulatory axis in the regulatory network, playing a 
significant role in the formation of PVTT in HCC patients 
based on the miRNA-lncRNA correspondence in the 
ceRNA network.
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Various methods to determine that TMEM165 promotes 
PVTT progression through the Notch pathway

Using Mfuzz cluster analysis, we stratified the TCGA 
cohort into 50 subgroups based on the expression levels 
of TMEM165 (Figure 9A). Through correlation and 
difference analyses, we determined that subgroup 22 was 
the most significant (Figure 9B-9D). To conduct a KEGG 
enrichment analysis, we retrieved all the genes (n=624) 
from subgroup 22. The enrichment analysis revealed 
that these 624 genes were primarily associated with the 
FoxO signaling pathway, PPAR signaling system, Hippo 
signaling pathway, Notch signaling pathway, and pentose 
phosphate pathway (Figure 9E). Additionally, we performed 
GSVA analysis directly on the TCGA cohort using 
TMEM165 as the input. The GSVA results indicated that 
the neurotrophin signaling pathway, NOTCH signaling 

pathway, MTOR signaling pathway, NOD-like receptor 
signaling pathway, adipocytokine signaling pathway, T 
cell receptor signaling pathway, and PPAR signaling 
pathway were significantly influenced by TMEM165 
expression (Figure 9F). Subsequently, we conducted cell 
communication analysis to identify differentially expressed 
signaling pathways between primary tumor tissues and 
PVTT tissues using single-cell sequencing data. In the 
tumor microenvironment, intercellular communication was 
found to be notably stronger in the PVTT group compared 
to the PT group (Figure 10A,10B). However, the changes 
in signal communication of HCC cells within tumors were 
not as significant as those observed in other cell types, 
such as hepatic stellate cells (Figure 10C). We analyzed the 
differences in important signaling pathways between the 
two groups, and the results are depicted in Figure 10D,10E.  
Combining the findings from the three pathway analyses, 
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Figure 9 GSVA analysis based on Mfuzz cluster analysis identified TMEM165 involvement in Notch signaling pathway activation. (A) 
Mfuzz cluster analysis extracted the characteristics of all genes and divided them into 50 subgroups. (B) The correlation analysis between 
50 subgroups and TMEM165 expression. (C) The scatter plot between subgroup 22 and TMEM165 expression. (D) The subgroups with 
differences between the two groups were displayed. *, P<0.05; **, P<0.01; ***, P<0.001. (E) The results of KEGG enrichment analysis of the 
genes in subgroup 22. (F) The expression matrix was subjected to GSVA results directly according to the expression of TMEM165. GSVA, 
gene set variation analysis; Mfuzz, fuzzy clustering of time series gene expression data; KEGG, Kyoto Encyclopedia of Genes and Genomes.

we identified the Notch signaling pathway as the sole 
pathway of significance. Therefore, we concluded that 
TMEM165’s involvement in the Notch signaling pathway 
played a critical role in triggering PVTT development.

Susceptibility response revealed differences in efficacy of 
different drugs for patients in different risk groups

From the intersection of pharmaceuticals available in the 
pRRophetic package and commonly used drugs in clinical 
practice, we selected eight medications for a drug sensitivity 
study. These medications included brivanib, camptothecin, 
cisplatin, doxorubicin, erlotinib, gemcitabine, sorafenib, 
and sunitinib. Through sensitivity analysis, we found 

variations in drug efficacy between high-risk and low-risk 
individuals. Erlotinib demonstrated higher effectiveness in 
high-risk patients (Figure 11A), while gemcitabine, cisplatin, 
camptothecin, doxorubicin, and brivanib were more 
effective in low-risk patients (Figure 11B-11F). On the other 
hand, there were no significant differences in treatment 
response between the two risk groups for brivanib, 
sorafenib, and sunitinib (Figure 11G,11H).

TMEM165 revealed two different immune infiltration 
patterns in HCC patients

Using the CIBERSORT deconvolution method, we 
investigated immune infiltration in the TCGA cohort and 
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Figure 10 Notch signaling pathway involved in TMEM165 demonstrated by cell communication analysis. (A) The tumor between PT group 
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identified 22 immune cell types that had infiltrated the 
tumor microenvironment (Figure 12A). Upon performing 
differential analysis and excluding cells with low expression, 
we observed distinct patterns of immune cell infiltration 
between the low-risk and high-risk groups. In the low-
risk group, CD8+ T cells, gamma delta T cells, and M2 
macrophages were found to be highly infiltrated, while the 
high-risk group exhibited significant infiltration of activated 
CD4+ memory T cells, M0 macrophages, resting dendritic 

cells, and neutrophils (Figure 12B). These immune cell 
populations may play important roles in the development of 
PVTT. Additionally, the two groups displayed differences 
in various immunological functions, with higher immune 
checkpoint activity observed in the high-risk group 
compared to the low-risk group (Figure 12C). Subsequently, 
we examined the expression of immunological checkpoints 
in the two patient groups and found that patients in the 
high-risk group exhibited overall higher expression of 
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Figure 11 Drug sensitivity analysis of eight common drugs. (A-H) Drug correlation and sensitivity. (A) Erlotinib; (B) gemcitabine; (C) 
cisplatin; (D) camptothecin; (E) doxorubicin; (F) brivanib; (G) sorafenib; (H) sunitinib. IC50, half-inhibitory concentration.

immune checkpoints, including well-known ones such 
as CTLA4, CD28, and PDCD1 (Figure 12D). This 
suggests that patients at high-risk experience more 
pronounced immunosuppression. Finally, we predicted the 
responsiveness of the two patient groups to immunotherapy 
and found that the high-risk group may exhibit less 
favorable response to immunotherapy compared to the low-
risk group (Figure 12E).

TMEM165/hsa-miR-148a/LINC00909 axis for HCC 
survival pattern classification

Despite the association between the three RNA molecules 
of the TMEM165/hsa-miR-148a/LINC00909 axis and 
patient prognosis, their individual impact differed. Hsa-
miR-148a exhibited a positive correlation with patient 
prognosis, whereas TMEM165 and LINC00909 showed 
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negative correlations. In light of these findings, we devised 
an innovative analytical model to explore the relationship 
between different combinations of the three RNA 
expression patterns and overall survival (OS) in patients with 
HCC. The results revealed significant variations among 
the eight models generated. HCC patients in models 2 and 
4 experienced poorer prognosis, as did those in models 7 
and 3 (Figure 13A). The survival analysis heatmap exhibited 
notable P values for several models (Figure 13B). Overall, 

our classification results aligned with the conclusions drawn 
from our investigation, affirming the validity and accuracy 
of the identified RNA molecules.

Discussion

HCC is a highly aggressive gastrointestinal tumor known 
for its propensity to invade the liver vascular system. 
Once tumor cells infiltrate the main portal vein or its 
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branches, the hepatic vein or its branches, or the inferior 
vena cava within the liver, HCC patients enter the phase 
of macrovascular invasion (MVI) (23). MVI serves as a 
strong indicator of poor prognosis and advanced-stage 
HCC (24,25). Among the various forms of MVI, PVTT 
is the most prevalent and severe type (26). The formation 
of PVTT in HCC primary tumor cells typically involves 
multiple stages, including cellular invasion acquisition, 
anti-apoptosis within the extracellular matrix (ECM), 
remodeling and migration, infiltration, and growth along 
the portal vein (27). Transcriptomic alterations in HCC 
cells play a critical role in the entire process of PVTT 
formation, particularly during the initial stage. It is evident 
that changes in cancer-related genes associated with 
PVTT, such as RMP and CXCR4 (9,28), as well as non-
coding RNAs like MiR-135a and ICAM-1-related non-
coding RNA (29,30), directly facilitate PVTT development. 
Moreover, interactions between external factors like the 
immunosuppressive microenvironment, hypoxia, hepatitis 
virus infection (31-33), and the tumor’s interactions with 
normal cells/components (e.g., endothelial cells, platelets, 
neutrophils, etc.) (34-36), can also contribute to genetic 
alterations in HCC cells. Therefore, further exploration 
of the transcriptomic differences between PVTT cells and 
primary tumor cells holds great significance in elucidating 

the mechanism of PVTT formation, improving clinical 
treatments, and enhancing the prognosis for HCC patients. 

hdWGCNA is a versatile R package developed by 
Morabito et al. (21) from the Swarup laboratory, specifically 
designed for conducting WGCNA on high-dimensional 
transcriptomic data, including single-cell RNA-seq or 
spatial transcriptomics. In the module screening process, 
in addition to the correlation-based method proposed 
by Morabito et al., we also employed the RF method to 
validate the module screening results. The modules that 
demonstrate consistency between the two analysis methods 
are considered the most reliable modules in the process 
of PVTT formation. Since PVTT formation significantly 
impacts the prognosis of HCC patients, it is essential for 
each RNA in the mRNA/miRNA/lncRNA regulatory axis 
to be associated with HCC survival. Therefore, whether 
through hdWGCNA, subsequent WGCNA, or machine 
learning-based variable selection, the results should align 
with COX regression or KM analysis. To ensure rigor in the 
screening process, the identification of miRNA and lncRNA 
cannot solely rely on their correlation with TMEM165 or 
the presence of binding sites with TMEM165 in online 
databases. Both conditions must be met to establish them as 
upstream regulatory RNAs of TMEM165.

TMEM165 is a transmembrane protein localized in 
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the Golgi apparatus, where it contributes to maintaining 
Golgi ion homeostasis and vesicle trafficking. Initially, 
TMEM165 mutations were identified in individuals with a 
congenital glycosylation disorder. Subsequent investigations 
have suggested a potential association between TMEM165 
expression and aggressive behavior in certain tumors (37,38). 
In a study by Lee et al. conducted in 2018 (39), reverse 
transcription polymerase chain reaction (RT-PCR) analysis 
was performed on tumor and normal tissues obtained from 
88 patients with HCC. The results confirmed the high 
expression of TMEM165 in HCC tissues. Furthermore, 
statistical analysis revealed a correlation between TMEM165 
overexpression and macroscopic vascular invasion as well 
as serosal invasion in HCC patients. Through experiments 
conducted on HCC cell lines, the researchers demonstrated 
that the depletion of TMEM165 reduced the invasive 
activity of cancer cells by inhibiting the expression of 
matrix metalloproteinase 2 (MMP-2). Our study not only 
validated their findings but also identified TMEM165 as a 
key gene involved in the formation of PVTT. Additionally, 
we identified upstream regulatory non-coding RNAs for 
TMEM165. Previous research has indicated that hsa-miR-
148a is associated with the development and progression 
of various tumors (40,41), as well as non-neoplastic 
diseases (42,43). In the context of liver diseases, hsa-miR-
148a has been specifically linked to alcohol-induced liver 
injury (44). On the other hand, LINC00909 is a recently 
discovered lncRNA with an unknown mechanism of 
action. Nonetheless, evidence suggests that LINC00909 
is implicated in the progression of several neoplastic 
diseases, including colon cancer (45), ovarian cancer (46), 
and glioma (47).

In order to elucidate the signaling pathways associated 
with TMEM165, we performed a comprehensive analysis 
utilizing three methods and two types of datasets. To 
ensure result comparability, we utilized reference datasets 
based on previous literature and the KEGG database for 
enrichment analysis following Mfuzz clustering, GSVA, and 
cell communication analysis. By employing Mfuzz cluster 
analysis based on the enrichment analysis of DEGs, we 
were able to identify the most relevant subgroup closely 
associated with TMEM165 from multiple subgroups. The 
Notch signaling pathway is an evolutionarily conserved 
cascade that plays a crucial role in normal biological 
processes such as cell differentiation, development, and 
homeostasis. Dysregulation of the Notch pathway has 
been associated with tumor progression and represents 
a promising target for cancer therapy (48,49). Notably, 

the Notch pathway is significant in liver tissue cell fate 
determination from embryonic to adult stages and can 
regulate liver repair and regeneration (50). However, 
aberrant activation of the Notch pathway can contribute to 
HCC development and promote HCC cell migration (51).  
Our findings once again demonstrate that Notch pathway 
activation is not only involved in the initiation and 
progression of HCC but also serves as a critical mediator 
for TMEM165 in promoting PVTT formation. This not 
only confirms previous research findings but also provides 
important evidence for understanding the mechanisms 
underlying PVTT formation in HCC patients in the future.

Both systemic drug therapy and TACE play significant 
roles in the treatment of HCC. In this study, we selected 
eight candidate drugs based on previous RCTs. The 
patients in the TCGA cohort were stratified into two 
groups according to their risk of developing PVTT in 
HCC. Through a sensitivity analysis of these eight drugs in 
treating both groups of patients, we aimed to predict their 
efficacy in managing PVTT. In comparison to the low-
risk group, sorafenib, which is commonly recommended 
by the Barcelona Clinic Liver Cancer (BCLC) guidelines 
for PVTT patients, did not demonstrate a significant 
advantage in treating the high-risk patients. Similar 
results were observed for brivanib (52) and sunitinib (53). 
Other drugs such as gemcitabine (54), cisplatin (55) and  
camptothecin (56) were found to be less effective in the high-
risk group compared to the low-risk group. Interestingly, 
erlotinib (57) exhibited greater sensitivity in the high-risk 
group than in the low-risk group. Based on these findings, we 
believe that erlotinib shows promise as a potential treatment 
option for PVTT and warrants further investigation.

The tumor microenvironment encompasses non-
cancerous cells and components present within tumors, 
along with the molecules they produce and release. The 
dynamic interaction between tumor cells and the tumor 
microenvironment plays a pivotal role in tumorigenesis, 
tumor development,  metastas is ,  and response to  
treatment (58). Immune cells represent a crucial component 
of the tumor microenvironment, given their diverse 
functions (59). Single-cell sequencing has emerged as a 
vital tool for investigating the immune microenvironment. 
However, due to the limited number of PVTT samples 
included in this study, there were insufficient tumor 
cells from other tumor microenvironments, aside from 
HCC cells, for comprehensive analysis. Nonetheless, our 
CIBERSORT method revealed the infiltration of immune 
cells in different risk groups. Notably, activated CD4+ 
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memory T cells, M0 macrophages, resting dendritic cells, 
and neutrophils exhibited high infiltration levels in the 
high-risk group, suggesting their potential unique roles in 
PVTT formation.

Finally, our study still has certain limitations. Due to 
the loss of surgical indications once portal vein tumor 
thrombosis occurs in HCC patients, collecting PVTT 
tissues in clinical settings is extremely challenging. 
Furthermore, progress in animal modeling of PVTT is 
slow, and currently, it is difficult to establish animal models 
with significant effects. These factors contribute to the 
lack of validation of our study results at the tissue level. 
However, our research provides a methodology for future 
investigations into the association between TMEM165 and 
portal vein tumor thrombosis in HCC. We anticipate that 
more in-depth studies will be conducted to further explore 
the relationship between TMEM165 and the formation of 
portal vein tumor thrombosis in liver cancer.

Conclusions

The regulatory axis consisting of TMEM165, hsa-miR-148a, 
and LINC00909 exhibits a strong correlation with immune 
infiltration within the HCC tumor microenvironment, 
contributing to immune dysfunction and potential failures 
in immunotherapy. Hence, targeting TMEM165 holds 
promise in ameliorating immune dysregulation in HCC 
patients and potentially mitigating the occurrence of portal 
vein thrombosis.
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