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Background: The presence of portal vein tumor thrombus (PVTT) is a significant indicator of advanced-
stage hepatocellular carcinoma (HCC). Unfortunately, the prediction of PVTT occurrence remains
challenging, and there is a lack of comprehensive research exploring the underlying mechanisms of PVIT'T
formation and its association with immune infiltration.

Methods: Our approach involved analyzing single-cell sequencing data, applying high dimensional
weighted gene co-expression network analysis (h[dWGCNA), and identifying key genes associated with
PVTT development. Furthermore, we constructed competing endogenous RNA (ceRNA) networks and
employed weighted gene co-expression network analysis (WGCNA), as well as three machine-learning
techniques, to identify the upstream regulatory microRNAs (miRINAs) and long non-coding RINAs (IncRNAs)
of the crucial mRINAs. We employed fuzzy clustering of time series gene expression data (Mfuzz), gene
set variation analysis (GSVA), and cell communication analysis to uncover significant signaling pathways
involved in the activation of these important mRNAs during PVTT development. In addition, we conducted
immune infiltration analysis, survival typing, and drug sensitivity analysis using The Cancer Genome Atlas
(TCGA) cohort to gain insights into the two patient groups under study.

Results: Through the implementation of hdAWGCNA, we identified 110 genes that was closely associated
with PVT'T. Among these genes, TMEMI165 emerged as a crucial candidate, and we further investigated its
significance using COX regression analysis. Furthermore, through machine learning techniques and survival
analysis, we successfully identified the upstream regulatory miRNA (bsa-miR-1484) and IncRNA (LINC00909)
that targeted TMEM165. These findings shed light on the complex regulatory network surrounding
TMEMI65 in the context of PVTT. Moreover, we conducted CIBERSORT analysis, which unveiled
correlations between TMEM]I65 and immune infiltration in HCC patients. Specifically, TMEM165 exhibited
associations with various immune cell populations, including memory B cells and CD8" T cells. Additionally,
we observed implications for immune function, particularly in relation to immune checkpoints, within the
context of HCC.

Conclusions: The regulatory axis involving TMEM165, hsa-miR-148a, and LINC00909 emerges as a
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crucial determinant in the development of PVTT in HCC patients, and it holds significant implications for
prognosis. Furthermore, alterations in the TMEM]I65/bsa-miR-1484/LINC00909 regulatory axis exhibit a

strong correlation with immune infiltration within the HCC tumor microenvironment, leading to immune

dysfunction and potential failure of immunotherapy.
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Introduction

Primary liver cancer, with hepatocellular carcinoma (HCC)
and intrahepatic cholangiocarcinoma as the main subtypes,
is a prevalent gastrointestinal malignancy worldwide.
HCC, responsible for 75-85% of primary liver cancer
cases, is associated with a poor prognosis and is a leading
cause of cancer-related deaths globally. In patients with
cirrhosis and HCC, the development of portal vein tumor
thrombus (PVTT) is a common occurrence (1-3). Although
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*  We identified 110 genes that were closely associated with portal
vein tumor thrombus (PVTT). Among these genes, TMEMI165
emerged as a crucial candidate, and we further investigated its
significance using COX regression analysis. Furthermore, through
machine learning techniques and survival analysis, we successfully
identified the upstream regulatory microRNA (hsa-miR-148a) and
long non-coding RNA (LINC00909) that targeted TMEMI65.
These findings shed light on the complex regulatory network
surrounding TMEM]I65 in the context of PVTT. Moreover, we
conducted CIBERSORT analysis, which unveiled correlations
between TMEMI65 and immune infiltration in hepatocellular
carcinoma (HCC) patients.

What is known and what is new?

* PVTT is one of the late-stage indicators in HCC patients, and
there is a clear awareness that this malignant tumor behavior can
result in devastating consequences for individuals with HCC.

*  We identified the TMEM165/hsa-miR-1484/LINC00909 axis as a
crucial pathway contributing to the formation of PVTT in HCC
patients.

What is the implication, and what should change now?

*  We provide a new perspective on the formation of PVTT in HCC
patients. Based on this, people can explore the deeper level of
PVTT formation.
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advances in imaging technology have improved early
detection of HCC, a considerable proportion of patients
(12.5-39.7%) still present with portal vein invasion that
goes undetected. PVTT is considered a distinct form of
hematogenous metastasis of HCC, characterized by the
invasive growth of HCC cells within the portal vein. This
results in widespread tumor dissemination throughout the
liver, elevated portal vein pressure, rupture of esophageal
varices, reduced portal vein flow, ascites, jaundice, hepatic
encephalopathy, and liver failure. Consequently, the
prognosis for HCC patients deteriorates significantly upon
the development of PVTT, with a median survival time of
only 2.7-4 months in the absence of appropriate treatment.
Although transcatheter arterial chemoembolization (TACE)
has demonstrated some success in selected patients, the
median survival period remains limited to 3.8-9.5 months.
Monotherapy targeting PVIT'T in HCC patients has shown
minimal improvement in prognosis, with response rates
below 20% (4-7). Previous studies have implicated various
molecules, such as chemokine receptors CXCR4, KiSS-1,
matrix metalloproteinase-9, protein disulfide isomerase A6,
and apolipoprotein Al, are involved in the development of
PVTT (8-10). However, a comprehensive understanding
of the precise underlying mechanisms of this lethal tumor
thrombus is still lacking. Therefore, unraveling the
molecular basis of PVTT formation is crucial for both
predicting and devising effective treatments for PVTT in
HCC patients.

MicroRNAs (miRNAs), a class of highly conserved
and tissue-specific non-protein-coding short RNAs,
exert control over gene expression by recognizing and
binding to homologous sequences, thereby interfering
with transcription, translation, or epigenetic processes.
These small molecules have a wide range of target genes
and influence virtually all genetic processes, including cell

Transl Cancer Res 2024;13(4):1737-1761 | https://dx.doi.org/10.21037/ter-23-1589



Translational Cancer Research, Vol 13, No 4 April 2024

cycle checkpoints, cell proliferation, and apoptosis (11-13).
Initially, the post-transcriptional control of gene expression
was believed to occur through the binding of miRNAs to
the miRNA response element (MRE) on target mRINA,
leading to translational inhibition or mRNA degradation.
However, as researchers delve into in-depth transcriptome
research, they discovered the presence of MRE not only
exist in mRNA but also in other RNA types such as
IncRNA, pseudogene, and circRNA. This implies that the
same miRNA can interact with multiple types of RNA,
resulting in a competitive relationship among different
RNA molecules that bind to the same miRNA (14-16).
These findings have led to the proposal of the competing
endogenous RNA (ceRNA) hypothesis, which represents
a novel regulatory mechanism in gene expression. CeRINA
operates in conjunction with the miRNA regulatory
network, expanding the regulatory network to encompass a
broader range of genes and RINA types. Investigating gene
function and regulation at a deeper level, including the
involvement of ceRNA in both healthy and pathological
conditions, is crucial for understanding various biological
processes, such as cellular development and the molecular
mechanisms underlying diseases (17,18).

The continuous progress in bioinformatics technologies
and machine learning algorithms has enabled more precise
evaluation of transcriptomics data. Taking advantage
of these advancements, this study integrated diverse
bioinformatics analysis techniques and machine learning
algorithms. By analyzing transcriptome data from HCC,
we seek to identify significant genes and ceRINA regulatory
networks involved in the development of PVTT. Through
this comprehensive approach, we aim to unravel the precise
mechanisms underlying the formation of PVTT in HCC
patients and provide novel insights for future studies in
this field. We present this article in accordance with the
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1589/rc).

Methods

Downloading and preliminary collation of single cell
sequencing data

This study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013). We obtained
single-cell sequencing data (registration number

GSE149614) from the Gene Expression Omnibus (GEO)
database. The dataset consisted of one metastatic lymph
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node tissue, two PVTT tissues, eight normal tissues, and
ten primary HCC tissues, totaling 21 tissue sequencing data.
The initial processing of the upstream data was performed
using Cell Ranger software (version 2.2.0). For subsequent
analysis, we focused on two PVTT tissues and ten primary
tumor tissues. The Seurat package (version 4.1.1) was
employed for single-cell data processing. To ensure data
quality and eliminate low-quality cells, we implemented
several quality control measures. The following criteria
were used: (I) cells expressing fewer than 500 or more
than 6,000 genes were excluded; (II) the unique molecular
identifier (UMI) count value of each cell sequencing had
to exceed 1,000, and the top 3% of cells with the highest
UMI count were removed; (III) the mitochondrial gene
expression in each cell was required to account for less
than 35% of the total gene expression, and the top 2%
of cells with the highest mitochondrial gene expression
were eliminated; (IV) the percentage of rRNA expression
across all genes was determined, and the cells with the
lowest and highest top 1% values were excluded. Since
our study involved combining single-cell sequencing data
from multiple samples, it was essential to account for batch
effects. Cells from different chips, sequencing channels, or
time points were classified into distinct groups. Batch effects
can arise due to variations in experimental conditions,
potentially impacting transcriptome measurements and
cellular transcriptional changes. To mitigate batch effects
and ensure robust downstream analysis, we utilized the
harmony method implemented in the “harmony” package
(version 0.1.0) to integrate and remove batch effects from
the 12 samples. Given the inherent variability in each
operational step, even when sequencing the same cell twice,
differences in the counting depth may occur. To address this
technical variation and prevent downstream analysis errors,
we employed the Normalization function. This procedure
adjusted the count data, enabling the comparison of relative
gene expression abundance among cells.

Subgroup clustering and cell annotation

After the initial processing, the single-cell data still
retained a high dimensionality. To reduce computational
costs, minimize noise, and improve data visualization, we
employed the FindVariableFeatures function to select
2,000 genes known as highly variable genes. These genes
provided information on the data’s variability and served
as features for downstream analysis. To conform the
gene expression z-scores to a Gaussian distribution, we
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applied the ScaleData function. Next, we employed the
principal component analysis (PCA) algorithm, a linear
dimensionality reduction method, to map the expression
matrix to a low-dimensional space. We sought to identify
the optimal low dimension that could capture the biological
morphology represented by the cell expression profiles
while preserving all the data’s information. For further
dimensionality reduction, we utilized the uniform manifold
approximation and projection (UMAP) method, a nonlinear
dimensionality reduction technique. This step allowed us
to map the multidimensional data to a two-dimensional
space suitable for observation. To establish connections
between units based on their shared overlap (Jaccard
similarity) in the immediate neighborhood, we utilized the
FindNeighbors function. This approach involved building a
K-nearest neighbor (KNN) graph using Euclidean distance
in the PCA space. The edge weights between units were
refined according to their shared overlap.

To enhance modular functionality, we utilized the
FindClusters function with a resolution parameter set to 0.5.
This step facilitated the aggregation of cells into distinct
clusters based on their similarities and differences, enabling
further analysis and interpretation. To ensure reliable
and accurate cell annotation, we combined results from
both automatic and manual annotation approaches. For
automatic annotation, we primarily relied on the “singleR”
package (version 1.8.1), which predicted the potential
cell types of each cell by comparing them to a reference
transcriptome data set of pure cell types. Manual annotation
was based on the results of differential analysis, which
aimed to identify genes that were differentially expressed
between subgroups and all other subgroups. We used the
FindAllMarkers function with a filtering criterion of P value
less than 0.05 for this analysis. To validate and supplement
the automatic annotation results from the “singleR”
package, we employed additional resources. These included
the CellMarker database (19), the BMC Genome Biology
online database, and an extensive literature search. By
combining information from these sources, we obtained
comprehensive annotation results for each cell cluster.
To distinguish between benign and malignant cells, we
calculated the copy number distribution of individual
cells using the state-of-the-art Copykat technique. The
subclonal structure was determined by combining the
Bayesian method with hierarchical clustering. Additionally,
we utilized the Gaussian mixture model (GMM) to calculate
the variance of each cell population. High-confidence
diploid cells were identified as the cell population with
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the minimum estimated variance, based on stringent
categorization criteria. Finally, hierarchical clustering of
single-cell copy number data was performed to achieve
the greatest separation between diploid normal cells and
aneuploid tumor cells, providing insights into the genomic
alterations associated with the tumor cells.

Weighted gene co-expression network analysis (WGCNA)

of single cell sequencing

We implemented WGCNA for single-cell data using
the “hdWGCNA” package (version 0.2.2) developed by
Morabito ez al. (20,21). This advanced package allowed us
to construct a co-expression network across multi-scale
cells and spatial hierarchies, identifying robust modules of
interconnected genes and enabling WGCNA of single-
cell sequencing data. To perform WGCNA, we first set
up a Seurat object. We then used the KINN algorithm to
identify similar cell groups that needed to be aggregated
using hdWGCNA. The average or sum expression of
these cells was calculated to generate a low sparse meta
cell gene expression matrix. Next, we defined the cell
type consisting of malignant cells using the SetDatExpr
function and created an expression matrix. To determine
the appropriate soft power threshold for building the co-
expression network, we conducted parameter scans using
the TestSoftPowers function. We evaluated the architecture
of the resultant networks for different power values and
selected the soft power threshold that maintained a robust
gene-gene adjacency matrix while eliminating weak links. In
this study, we chose the minimum soft power threshold of
0.8 or higher based on the scale-free topology model. Using
the ConstructNetwork function, we built the co-expression
network below the selected soft threshold. To identify
module feature genes, we employed the ModuleEigengenes
tool, which performed PCA on a subset of the gene
expression matrix for each module. This allowed us to
obtain the module feature genes [module eigengene (ME)]
present in various modules. Additionally, we calculated the
central gene feature score for each module using the Seurat
or UCell algorithms with the help of the ModuleExprScore
function. To visualize the association between modules, we
utilized the ModuleCorrelogram tool, which represented
the relationships among modules based on their h(ME
(hub gene), ME, or hub gene scores. To identify essential
modules, we employed three techniques. First, we conducted
correlation analysis on the modules and identified the most
crucial modules using the GetModuleTraitCorrelation
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method. The PlotModuleTraitCorrelation function was
used to visualize the results as a heatmap. Second, we
compared the correlation between module membership
and sample information, specifically differentiating primary
tissue from PVTT tissue. Lastly, we employed random
forest (RF) to assess the significance of all modules and
“sample” data, ranking them based on the IncNodePurity
value. The module with the highest-ranking value was
considered the most relevant to PVTT.

Screening of PVT T-related genes (PRGs) based on The
Cancer Genome Atlas (TCGA) cobort

For further screening of module genes, we utilized TCGA
cohort. Specifically, we accessed the HCC data [TCGA-
Liver Hepatocellular Carcinoma (TCGA-LIHC)] from the
TCGA database, which provided Fragments Per Kilobase
of Exon Model Per Million Mapped Fragments (FPKM)
data for the TCGA cohort patients. We also processed the
clinical data of the patients appropriately. To perform the
analysis, we extracted the survival data from the TCGA
cohort, including survival time and month. We excluded
patients who were younger than 18 years old or had a
survival time of fewer than 30 days. Next, we obtained
the gene expression matrix of the TCGA cohort module
and conducted univariate COX regression analysis on
all variables. The genes that showed an association with
prognosis in the univariate COX regression analysis were
included in the subsequent multivariate COX regression
study. In the multivariate COX regression analysis, we
focused on the genes that were previously identified as
significant predictors of prognosis. Among these genes, we
specifically selected those that were associated with PVTT,
forming a set of PRGs.

Construction of ceRNA network based on online database

Based on an online database, we constructed a ceRNA
network. To identify potential interactions between the
PRGs and miRNAs, we utilized the TargetScan database
(accessed on 23 November 2022). Additionally, we searched
the StarBase database (accessed on 23 November 2022) to
identify likely target long non-coding RNAs (IncRNAs)
of the miRNAs. To visualize the mRNA-miRNA-IncRNA
ceRNA network, we employed Cytoscape v3.9.1, which
allowed us to depict the interactions and relationships
among these components.

© Translational Cancer Research. All rights reserved.
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Screening of PVT T-related miRNA and IncRNA based on
WGCNA

To validate the predictions made by the TargetScan and
StarBase databases, we divided the TCGA cohort into
two groups based on the median expression value of the
PRGs. The high PRG expression group and the low PRG
expression group were compared to assess their association
with the development of PVTT. The high-risk group
demonstrated a significantly higher propensity for PVI'T
compared to the low-risk group. To identify miRNAs and
IncRNAs that are significantly associated with PVTT, we
performed WGCNA on the miRNA expression matrix and
IncRNA expression matrix of the two patient groups. The
WGCNA analysis was conducted using the “WGCNA”
package (version 1.71). Initially, we calculated the median
absolute deviation (MAD) for each gene and eliminated
the 50% of genes with the smallest MAD. The remaining
differentially expressed genes (DEGs) were used to construct
a scale-free co-expression network. The adjacency degree
was computed using a soft threshold power (B) derived from
co-expression similarity, and the adjacency was transformed
into a topological overlap matrix (TOM) to calculate gene
dissimilarity and connectivity. Subsequently, we applied a
dynamic tree-cutting function and hierarchical clustering
to detect modules based on average linkage hierarchical
clustering and TOM-based dissimilarity. Genes with similar
expression profiles were grouped into gene modules. To
merge modules for further analysis, we computed the
dissimilarity of module feature genes and determined the
appropriate cutting line in the module tree. To identify
the most important regulatory axis in the ceRINA network,
we employed various machine learning methods after the
WGCNA screening. The following machine learning
algorithms were used: (I) least absolute shrinkage and
selection operator (LASSO): Based on the “glmnet” package
(version 4.1.4), LASSO performed variable selection and
regularization while fitting the generalized linear model; (II)
support vector machine recursive feature elimination (SVM-
RFE): using the “e1071” package (version 1.7.11), SVM-
RFE employed a sequential backward selection approach to
extract features from two different types of data based on
the maximum margin principle; (II) RF: RF estimated the
average contribution of each feature to each decision tree in
the RF using the “randomForest” package (version 4.7.1.1).
The features were ranked based on their contributions for
further analysis.
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Mfuzz pattern expression clustering and enrichment
analysis

For gene expression or protein expression profile data
processing, we utilized the “Mfuzz” package (version 2.54.0),
which offers a clustering approach. This approach, known
as fuzzy c-means (FCM) clustering, allowed us to cluster
transcriptome and proteome data with both time series and
non-time series features. It enabled the grouping of genes
or proteins based on their similar expression patterns. To
evaluate the disparities among different expression pattern
clusters, we calculated scores using single-sample gene
set enrichment analysis (ssGSEA) and compared them.
Subsequently, we employed Pearson correlation analysis to
determine the correlation between each clustering module
and the PRGs. By examining the correlation coefficient and
P value, we identified the gene module that exhibited the
closest association with PRG. To gain insights into the gene
functions of the identified modules, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses on the retrieved gene modules.
This analysis helped us understand the biological processes
and pathways associated with the identified modules.
Additionally, we conducted gene set variation analysis
(GSVA) on the TCGA cohort using PRG as a reference.
We compared the results of the Mfuzz clustering module’s
enrichment analysis with the findings from the GSVA to
validate the reliability of the enrichment analysis results.
In summary, the Mfuzz package, through FCM clustering,
ssGSEA scoring, and correlation analysis, allowed us to
identify gene modules associated with PRG. Subsequent
functional analysis provided insights into the biological
functions of these modules, and the validation process
enhanced the reliability of the enrichment analysis results.

Cell communication analysis

By employing cell communication analysis, we were able to
identify aberrantly activated signaling pathways within the
tumor microenvironment of primary tumors and PVTT.
Cell communication refers to the transfer of information
between cells, leading to a corresponding cellular response.
In animals and plants, the primary mechanism of intercellular
communication involves chemical signal molecules. Cell-
cell communication mediated by ligand-receptor complexes
plays a crucial role in coordinating various biological
processes, such as development, differentiation, and
inflammation. To infer and analyze intercellular interaction
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networks, we utilized the “CellChat” package (version
1.1.3). Our approach involved several steps. First, we
identified ligands or receptors that were overexpressed in
a given cell population. We then mapped gene expression
data onto a protein-protein interaction (PPI) network. If
either the ligand or receptor was found to be overexpressed,
we detected the interaction between the overexpressed
ligand and its receptor. Subsequently, we inferred the
communication probability at the signaling pathway level
by calculating the communication probability for all ligand-
receptor interactions associated with each signaling pathway.
This allowed us to quantify the likelihood of communication
occurring via specific signaling pathways. To establish a cell
communication network, we calculated the aggregation
communication network between cells by considering
the number of links or the aggregate communication
probability. This network captured the overall intercellular
communication patterns. Moreover, we constructed a cell
communication network at the level of cell-specific ligand-
receptor interactions and signaling pathways, providing
insights into the precise interactions and communication
events occurring among cells. In summary, our utilization of
the “CellChat” package enabled the inference and analysis of
intercellular interaction networks. This approach facilitated
the identification of overexpressed ligands and receptors, as
well as the evaluation of communication probabilities at the
signaling pathway level. The resulting cell communication
network provided a comprehensive view of intercellular
communication within the tumor microenvironment.

Drug sensitivity analysis of patients in different risk
groups

Using the previous grouping of patients, we proceeded
to analyze the sensitivity of these patients to different
medications. The assessment of drug sensitivity was
conducted using the pRRophetic package (version 0.5)
developed by Geeleher ez al. in 2014 (22). The pRRophetic
algorithm employs a ridge regression model that utilizes
the gene expression profiles from the Genomics of Drug
Sensitivity in Cancer (GDSC) cell line and the TCGA
gene expression profiles. This model predicts the half-
inhibitory concentration (IC50), which represents the drug
concentration required to induce a 50% reduction in cell
viability or cause 50% apoptotic cells. In our analysis, we
selected clinical therapeutic medications for the treatment
of HCC based on a combination of clinical experience and
prior research from randomized controlled trials (RCTS).
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This approach allowed us to consider established knowledge
in the field and evidence from rigorous scientific studies
when making decisions regarding medication choices for
HCC treatment. By leveraging the pRRophetic package
and considering both gene expression profiles and clinical
knowledge, we aimed to gain insights into the medication
sensitivity of patients within different risk groups. This
analysis provided valuable information for understanding
potential treatment responses and guiding personalized
therapeutic strategies for HCC patients.

CIBERSORT identified immune infiltration patterns in
HCC patients in different modes

The expression matrix of human immune cell subtypes
was subjected to deconvolution using the CIBERSORT
method. This method utilizes linear support vector
regression to estimate the proportions of immune cell
subtypes present in the expression matrix. The default gene
expression feature set, LM22, consisting of 22 immune cell
subtypes, was used as a reference dataset. By deconvolving
the expression matrix, we were able to determine the levels
of immune cell infiltration in the samples. To examine
the differences in immune cell infiltration between the
two patient groups, we applied the concept of differential
analysis. By comparing the immune cell profiles of the
two groups, we assessed the variations in immune function
within the immunological milieu of the different patient
groups. Additionally, we investigated the expression
patterns of common immunological checkpoints in patients
with different immune cell infiltration patterns. To forecast
the responsiveness of patients with different immune
profiles to immunotherapy, we utilized the Tumor Immune
Dysfunction and Exclusion (TIDE) online database. TIDE
provided a predictive framework for assessing the likelihood
of response to immunotherapy based on the specific
immune characteristics observed in patients. By integrating
these analyses, we aimed to gain insights into the immune
landscape and functionality in the two patient groups,
as well as to provide predictions regarding the potential
response to immunotherapy. This information has the
potential to guide treatment decisions and improve patient
outcomes in the context of immunotherapy for cancer.

Identification of different survival pattern subtypes of HCC
patients based on regulatory axis

We stratified HCC patients into different survival
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subgroups based on the expression levels of mRNA,
miRNA, and IncRNA. The median expression value was
used as a threshold, where expression levels above the
median were classified as high expression and levels below
the median were classified as low expression. All HCC cases
were assigned to one of the eight survival patterns, as listed
below:

mRNAhigh/miRNAhigh/IncRNAhigh (mode 1);

mRNAhigh/miRNAlow/IncRNAhigh (mode 2);

mRNAlow/miRNAhigh/IncRNAhigh (mode 3);

mRNAlow/miRNAlow/IncRNAhigh (mode 4);

mRNAhigh/miRNAhigh/IncRNAlow (mode 5);

mRNAhigh/miRNAlow/IncRNAlow (mode 6);

mRNAlow/miRNAhigh/IncRNAlow (mode 7);

mRNAlow/miRNAlow/IncRNAlow (mode 8).

These eight categories represent different combinations
of high and low expression for mRNA, miRNA, and
IncRNA. To investigate the survival outcomes of patients
with different HCC profiles, we utilized the Kaplan-Meier
(KM) method to analyze the survival curves for each of the
eight patient groups. This analysis allows us to assess the
association between RNA expression patterns and patient
survival, providing valuable insights into the prognosis and
potential treatment strategies for different subgroups of
HCC patients.
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GEO: https://www.ncbi.nlm.nih.gov/geo/;
CellMarker: http://xteam.xbio.top/CellMarker/;
BMC Genome Biology: https://genomebiology.
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biomedcentral.com/;

X4
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CIBERSORTx: https://cibersortx.stanford.edu/;
TIDE: http://tide.dfci.harvard.edu/.
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Statistical analysis

All data processing in this study was conducted using
R (version 4.1.3). Differential analysis between all
experimental and control groups was performed using the
Wilcoxon rank-sum test. Pearson correlation method was
employed for correlation analysis on public databases. The
significance level for all analyses was set at P<0.05, and
Benjamini-Hochberg correction method was applied to
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adjust P values for multiple comparisons.

Results

GSE149614 dataset revealed cellular components in
primary and PVTT tissues of HCC patients

The flowchart outlining the study’s process is presented
in Figure S1. At the post-processing stage, single-cell
sequencing samples from 12 HCC patients were processed
and analyzed. The raw data consisted of 25,208 genes and
40,385 cells. After quality control, a Seurat object containing
36,241 cells and 25,208 genes was obtained (Figure S2A).
For further investigation, the first 30 principal components
were selected after performing PCA (Figure S2B).
By reducing the dimensions of all cells using UMAP, 22 cell
clusters were identified (Figure 14). Among these clusters,
4,692 cells originated from PVT'T tissues, while 31,549 cells
originated from original tumor tissues (Figure 1B). Different
cell clusters exhibited varying levels of gene expression.
Clusters 1, 6, and 9 demonstrated higher gene expression
levels compared to clusters 5, 8, and 11, while clusters 1,
6, and 11 displayed lower levels (Figure 1C). Based on the
stromal cell marker gene “MME?”, the immune cell marker
gene “PTPRC”, and the tumor cell marker gene “AFP”,
the total cell clusters were roughly categorized (Figure 1D).
Various annotation methods were employed to further
identify the cell types within each cluster, leading to the
preliminary identification of ten cell types (Figure 1E). The
marker genes for CD4" T cells were “CD3D” and “CD4”,
for CD8" T cells were “CD7” and “CD8A”, for regulatory
T cells was “FOXP3”, for plasma cells were “IGHG1” and
“CD79A”, for monocytes were “CDI14” and “CD68”, for
Kupffer cells were “CD68” and “VSIG4”, for stellate cells
was “ACTA2”, for hepatocytes were “ARGI” and “ALB”,
for bile duct cells was “KRT19”, and for endothelial cells
were “CD34” and “BTNLY”. Aneuploid cells identified
by the Copykat algorithm were similar to the cell clusters
identified by the tumor marker gene “4FP” and were
derived from hepatocytes (Figure 1F, Figure S2C). Detailed
proportions of different clusters and cells across tissues and
samples are presented in Figure 1G-1L.

Single-cell WGCNA considered module 23 to be most
relevant for PVIT formation in HCC patients

We selected the optimal soft threshold of “9” to construct
a single-cell co-expression network using hdWGCNA

© Translational Cancer Research. All rights reserved.
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(Figure 2A). By clustering the single-cell data, we specifically
focused on tumor cell clusters (clusters 1, 4, 9, 10, 12, 14,
18, 19, and 21) identified by the Copykat technique for
subsequent network analysis. Our goal was to identify
important modules within HCC cells that contribute to
the development of PVT'T. After merging related modules,
we obtained a total of 24 modules that played a crucial
role in PVTT formation (Figure 2B,2C). The correlation
between the modules was visualized using a Pearson analysis
(Figure 2D). The enrichment analysis of module genes
and module core genes within cell clusters is presented in
Figure 2E,2F.

To determine the most relevant module for HCC cell
types, we employed the author’s method to assess the inter-
module connections and selected one module for further
investigation. Module 23 exhibited the highest correlation
coefficient (cor =0.64) and was deemed the most pertinent
module for HCC cell typology (Figure 3A4). Subsequently,
we evaluated the correlation between module 23 and the
cell tissue sources (primary tumor and PVTT) using the
conventional WGCNA module screening method. The
analysis revealed that module 23 exhibited the strongest
association with the cell tissue sources (Figure 3B). To
validate these findings, we employed RF analysis. The
metrics MeanDecreaseAccuracy and MeanDecreaseGini,
which measure the importance of variables in RF models,
consistently indicated that module 23 played a crucial role
in identifying the cell tissue sources (Figure 3C). Thus, we
concluded that module 23, identified through hdWGCNA,
was the most significant module. The genes within this
module likely influenced the aggressiveness of HCC
primary tumors towards PVTT (Figure 3D,3E).

Further identification of TMEM165 as a PRG in HCC
based on TCGA cobort

Module 23 consisted of 110 genes. To identify key core
genes, we further validated these 110 genes in the TCGA
cohort. Among them, ten genes displayed altered expression
patterns in HCC tissues compared to normal liver tissues
(Figure 44,4B). Given the strong relationship between
PVTT development and the prognosis of HCC patients, we
focused on identifying prognostic genes among these ten
genes. Through univariate COX regression analysis, four
genes were initially identified as being associated with the
prognosis of HCC patients: TMEM165 (P<0.001), RRAGD
(P=0.006), FADS3 (P=0.01), and MYPOP (P=0.005) (Figure
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Figure 4 Differential analysis and univariate/multivariate COX regression for further screening of key module genes. (A) Gene heatmaps

showing differential expression of 110 module genes in normal and tumor tissues (TCGA cohort). (B) The gene volcano plot of

110 module genes showing differential expression between normal and tumor tissues (TCGA cohort). Black dots represent genes with no

significant changes. Red dots represent upregulated genes. (C) Univariate COX regression results of eight differentially expressed genes. (D)

Multivariate COX regression results of four genes proved to have prognostic significance in univariate COX regression. fdr, false discovery
rate; FC, fold change; CI, confidence interval; TCGA, The Cancer Genome Atlas.

4C). Subsequently, these four genes underwent multivariate
COX regression analysis to eliminate the influence of
other variables and to identify independent prognostic
genes. Only TMEM165 (P=0.02) was able to predict the
prognosis of HCC patients and was deemed an independent
prognostic factor for HCC patients according to the COX
regression analysis (Figure 4D). As a result, TMEM]I165 was
identified as a PRG in HCC.

Construction of ceRNA network involving TMEM165
and screening of important mRNA-miRNA-IncRNA
regulatory axis

Based on the Targetscan and StarBase databases, we initially
identified potential upstream regulatory molecules of

© Translational Cancer Research. All rights reserved.

TMEM]I65. The Targetscan database revealed 92 upstream
regulatory miRNAs for TMEM]I165, while the StarBase
database provided 427 IncRNAs associated with these
92 miRNAs. The mRNA-miRNA-IncRNA regulatory
network was visualized using the Cytoscape program
(available online: https://cdn.amegroups.cn/static/public/
ter-23-1589-1.xlsx).

To identify key regulatory axes within the regulatory
network, we divided the TCGA cohort into high-risk
and low-risk groups based on the median expression of
TMEM165. Subsequently, we conducted WGCNA on the
miRNA and IncRNA expression matrices of the two patient
groups. In the miRINA expression data, we constructed a co-
expression network with a soft threshold of 26 (Figure 5A4,5B)
and identified modules associated with TMEM165. We

Transl Cancer Res 2024;13(4):1737-1761 | https://dx.doi.org/10.21037/ter-23-1589
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Figure 5 WGCNA recognized six miRNAs associated with TMEM]I65. (A,B) The optimal soft thresholding or power was determined to
make the constructed network more consistent with the scale-free topology. (A) Scale-free fit index (y-axis) under different soft threshold
(x-axis). The red line represents the subjectively selected scale-free fitting index value, which is 0.9 in this study. (B) Mean connectivity.
(C) The co-expression network was constructed based on the optimal soft threshold, and the gene clustering tree was drawn after genes
were divided into different modules. The upper part was the hierarchical clustering tree of genes, and the lower part was gene module,
namely network module. (D) Gene clustering tree after merging similar modules. (E) Calculate the correlation and significance between the
module and the expression level of TMEM]I65, and draw a correlation heat map. The first-row number in each module was the correlation
coefficient, and the second-row number was the P value. Red represented positive correlation; blue represented negative correlation. (F)
Scatter plot showed that there was a highly significant correlation between the GS of MM and the expression level of TMEMI165 in red
module. WGCNA, weighted gene co-expression network analysis; GS, gene significance; MM, module member.
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Figure 6 WGCNA recognized 36 IncRNA related with TMEM]165. (A,B) The optimal soft thresholding or power was determined to make
the constructed network more consistent with the scale-free topology. (A) Scale-free fit index (y-axis) under different soft threshold (x-axis).
The red line represents the subjectively selected scale-free fitting index value, which is 0.9 in this study. (B) Mean connectivity. (C) The co-
expression network was constructed based on the optimal soft threshold, and the gene clustering tree was drawn after genes were divided

into different modules. The upper part was the hierarchical clustering tree of genes, and the lower part was gene module, namely network
module. (D) Gene clustering tree after merging similar modules. (E) Calculate the correlation and significance between the module and

the expression level of TMEM]165, and draw a correlation heat map. The first-row number in each module was the correlation coefficient,

and the second-row number was the P value. Red represented positive correlation; blue represented negative correlation. (F) The scatter
plot showed that there was a highly significant correlation between the gene significance of module members and the expression level of
TMEM165 in yellow and blue modules. WGCNA, weighted gene co-expression network analysis.

© Translational Cancer Research. All rights reserved.
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Figure 7 The survival analysis of candidate miRNA and IncRNA. (A,B) KM survival analysis was performed on two miRNAs. (A) hsa-miR-
148a; (B) hsa-miR-22. (C-J) KM survival analysis was performed on eight IncRNAs. (C) Céorf223; (D) IQCH-ASI; (E) LINC00667; (F)
LINC00847; (G) LINC00909; (H) LINCO01554; (I) PSMB8-AS1; (J) TP53TG1. KM, Kaplan-Meier.

then merged related modules (Figure 5C,5D) and ultimately
selected the red module (R=-0.41, P=5e-18) for further
analysis (Figure SE,5F). In the IncRNA expression data, we
constructed a co-expression network with a soft threshold
of 6 (Figure 64,6B) and identified modules associated with
TMEMI165. Similar to the miRNA analysis, we merged
related modules (Figure 6C,6D) and ultimately selected the
blue module (R=0.41, P=5¢-19) and the yellow module
(R=-0.41, P=9¢-19) for further analysis (Figure 6E,6F). By
merging the WGCNA results of miRNA and IncRNA with
the projected findings, we identified a total of 6 miRNAs
and 36 IncRNAs.

To narrow down the key miRNAs and IncRNAs, a
survival analysis using the KM approach was conducted.
Among the six miRNAs, bsa-miR-22 and bsa-miR-148a
were found to be associated with the prognosis of HCC

© Translational Cancer Research. All rights reserved.

patients (Figure 74,7B). Similarly, eight out of the 36
IncRNAs (C60rf223, IQCH-AS1, LINC00667, LINCO0S47,
LINC00909, LINCO1554, PSMB8-AS1, and TP5S3TGI)
were found to be related to the prognosis of HCC patients
(Figure 7C-7%). To further analyze the remaining large
quantity of IncRNAs, three machine-learning methods were
employed. LASSO, SVM-RFE, and RF analyses classified
five out of the eight IncRNAs as significant (Figure 84-8F).
By merging the screening results from the three different
machine-learning approaches, three important IncRNAs
were identified (Figure 8§G). Finally, we determined the
TMEM165/hsa-miR-148a/LINC00909 axis as the most
crucial regulatory axis in the regulatory network, playing a
significant role in the formation of PVTT in HCC patients
based on the miRNA-IncRNA correspondence in the
ceRNA network.
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Various methods to determine that TMEMI165 promotes
PVTT progression through the Notch pathway

Using Mfuzz cluster analysis, we stratified the TCGA
cohort into 50 subgroups based on the expression levels
of TMEM165 (Figure 9A4). Through correlation and
difference analyses, we determined that subgroup 22 was
the most significant (Figure 9B-9D). To conduct a KEGG
enrichment analysis, we retrieved all the genes (n=624)
from subgroup 22. The enrichment analysis revealed
that these 624 genes were primarily associated with the
FoxO signaling pathway, PPAR signaling system, Hippo
signaling pathway, Notch signaling pathway, and pentose
phosphate pathway (Figure 9E). Additionally, we performed
GSVA analysis directly on the TCGA cohort using
TMEM]165 as the input. The GSVA results indicated that
the neurotrophin signaling pathway, NOTCH signaling

© Translational Cancer Research. All rights reserved.

pathway, MTOR signaling pathway, NOD-like receptor
signaling pathway, adipocytokine signaling pathway, T
cell receptor signaling pathway, and PPAR signaling
pathway were significantly influenced by TMEMI165
expression (Figure 9F). Subsequently, we conducted cell
communication analysis to identify differentially expressed
signaling pathways between primary tumor tissues and
PVTT tissues using single-cell sequencing data. In the
tumor microenvironment, intercellular communication was
found to be notably stronger in the PVITT group compared
to the PT group (Figure 104,10B). However, the changes
in signal communication of HCC cells within tumors were
not as significant as those observed in other cell types,
such as hepatic stellate cells (Figure 10C). We analyzed the
differences in important signaling pathways between the
two groups, and the results are depicted in Figure 10D, 10E.
Combining the findings from the three pathway analyses,
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we identified the Notch signaling pathway as the sole
pathway of significance. Therefore, we concluded that
TMEM165’s involvement in the Notch signaling pathway
played a critical role in triggering PVTT development.

Susceptibility response revealed differences in efficacy of
different drugs for patients in different risk groups

From the intersection of pharmaceuticals available in the
pRRophetic package and commonly used drugs in clinical
practice, we selected eight medications for a drug sensitivity
study. These medications included brivanib, camptothecin,
cisplatin, doxorubicin, erlotinib, gemcitabine, sorafenib,
and sunitinib. Through sensitivity analysis, we found

© Translational Cancer Research. All rights reserved.

variations in drug efficacy between high-risk and low-risk
individuals. Erlotinib demonstrated higher effectiveness in
high-risk patients (Figure 114), while gemcitabine, cisplatin,
camptothecin, doxorubicin, and brivanib were more
effective in low-risk patients (Figure 11B-11F). On the other
hand, there were no significant differences in treatment
response between the two risk groups for brivanib,
sorafenib, and sunitinib (Figure 11G,11H).

TMEM165 revealed two different immune infiltration
patterns in HCC patients

Using the CIBERSORT deconvolution method, we
investigated immune infiltration in the TCGA cohort and
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Figure 10 Notch signaling pathway involved in TMEM165 demonstrated by cell communication analysis. (A) The tumor between PT group

and PVTT group was the comparison of the number and intensity of cell communication in patients (bar plot). (B) The tumor between

PT group and PVTT group was a network of cell communication in patients. (C) The tumor between PT group and PVTT group was
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identified 22 immune cell types that had infiltrated the
tumor microenvironment (Figure 124). Upon performing
differential analysis and excluding cells with low expression,
we observed distinct patterns of immune cell infiltration
between the low-risk and high-risk groups. In the low-
risk group, CD8" T cells, gamma delta T cells, and M2
macrophages were found to be highly infiltrated, while the
high-risk group exhibited significant infiltration of activated
CD4" memory T cells, MO macrophages, resting dendritic

© Translational Cancer Research. All rights reserved.

cells, and neutrophils (Figure 12B). These immune cell
populations may play important roles in the development of
PVTT. Additionally, the two groups displayed differences
in various immunological functions, with higher immune
checkpoint activity observed in the high-risk group
compared to the low-risk group (Figure 12C). Subsequently,
we examined the expression of immunological checkpoints
in the two patient groups and found that patients in the
high-risk group exhibited overall higher expression of

Transl Cancer Res 2024;13(4):1737-1761 | https://dx.doi.org/10.21037/tcr-23-1589
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Figure 11 Drug sensitivity analysis of eight common drugs. (A-H) Drug correlation and sensitivity. (A) Erlotinib; (B) gemcitabine; (C)
cisplatin; (D) camptothecin; (E) doxorubicin; (F) brivanib; (G) sorafenib; (H) sunitinib. IC50, half-inhibitory concentration.

immune checkpoints, including well-known ones such
as CTLA4, CD28, and PDCD1 (Figure 12D). This
suggests that patients at high-risk experience more
pronounced immunosuppression. Finally, we predicted the
responsiveness of the two patient groups to immunotherapy
and found that the high-risk group may exhibit less
favorable response to immunotherapy compared to the low-

risk group (Figure 12E).

© Translational Cancer Research. All rights reserved.

TMEM165/bsa-miR-148a/LINC00909 axis for HCC
survival pattern classification

Despite the association between the three RNA molecules
of the TMEM165/bhsa-miR-148a/LINC00909 axis and
patient prognosis, their individual impact differed. Hsa-
miR-148a exhibited a positive correlation with patient

prognosis, whereas TMEM]I165 and LINC00909 showed

Transl Cancer Res 2024;13(4):1737-1761 | https://dx.doi.org/10.21037/ter-23-1589
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Figure 12 Changes of immune microenvironment in patients with high risk of PVTT formation. (A) The infiltration of immune cells in

tumor microenvironment of HCC patients was demonstrated based on CIBERSORT deconvolution method. (B) The box plot qualitatively

analyzed the difference in infiltration of immune cells in 22 high-risk groups and low-risk groups. *,

Identify differences in immune function between high-risk and low-risk groups. *,

checkpoints in the high-risk group and the low-risk group. *,

P<0.05; **, P<0.01; ***, P<0.001. (C)
P<0.05; ***, P<0.001. (D) Identify different immune

P<0.05; **, P<0.01; ***, P<0.001. (E) Predict whether there was a difference

between high-risk and low-risk groups for immunotherapy. *, P<0.05. NK, natural killer; APC, antigen-presenting cell; CCR, chemokine

receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon; TIDE, Tumor Immune Dysfunction

and Exclusion; HCC, hepatocellular carcinoma; PVTT, portal vein tumor thrombus.

negative correlations. In light of these findings, we devised

an innovative analytical model to explore the relationship
between different combinations of the three RNA
expression patterns and overall survival (OS) in patients with
HCC. The results revealed significant variations among
the eight models generated. HCC patients in models 2 and
4 experienced poorer prognosis, as did those in models 7
and 3 (Figure 13A). The survival analysis heatmap exhibited
notable P values for several models (Figure 13B). Overall,

© Translational Cancer Research. All rights reserved.

our classification results aligned with the conclusions drawn

from our investigation, affirming the validity and accuracy
of the identified RNA molecules.

Discussion

HCC is a highly aggressive gastrointestinal tumor known

for its propensity to invade the liver vascular system.

Once tumor cells infiltrate the main portal vein or its
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Figure 13 A new survival classification based on the TMEM165/bsa-miR-148a/LINC00909 axis. (A) The KM analysis and log-rank test
results of eight survival subtypes. (B) The heatmap of P value of pairwise comparison of eight survival subtypes. Modl: mRNAhigh/
miRNAhigh/IncRNAhigh (n=37); mod2: mRNAhigh/miRNAlow/IncRNAhigh (n=61); mod3: mRNAlow/miRINAhigh/IncRNAhigh (n=54);
mod4: mRNAlow/miRNAlow/IncRNAhigh (n=17); mod5: mRNAhigh/miRNAhigh/IncRNAlow (n=23); mod6: mRNAhigh/miRNAlow/
IncRNAlow (n=48); mod7: mRNAlow/miRNAhigh/IncRNAlow (n=55); mod8: mRNAlow/miRNAlow/IncRNAlow (n=44). KM, Kaplan-

Meier.

branches, the hepatic vein or its branches, or the inferior
vena cava within the liver, HCC patients enter the phase
of macrovascular invasion (MVI) (23). MVI serves as a
strong indicator of poor prognosis and advanced-stage
HCC (24,25). Among the various forms of MVI, PVTT
is the most prevalent and severe type (26). The formation
of PVTT in HCC primary tumor cells typically involves
multiple stages, including cellular invasion acquisition,
anti-apoptosis within the extracellular matrix (ECM),
remodeling and migration, infiltration, and growth along
the portal vein (27). Transcriptomic alterations in HCC
cells play a critical role in the entire process of PVTT
formation, particularly during the initial stage. It is evident
that changes in cancer-related genes associated with
PVTT, such as RMP and CXCR4 (9,28), as well as non-
coding RNAs like MiR-135a and ICAM-1-related non-
coding RNA (29,30), directly facilitate PVT'T development.
Moreover, interactions between external factors like the
immunosuppressive microenvironment, hypoxia, hepatitis
virus infection (31-33), and the tumor’s interactions with
normal cells/components (e.g., endothelial cells, platelets,
neutrophils, etc.) (34-36), can also contribute to genetic
alterations in HCC cells. Therefore, further exploration
of the transcriptomic differences between PVTT cells and
primary tumor cells holds great significance in elucidating
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the mechanism of PVTT formation, improving clinical
treatments, and enhancing the prognosis for HCC patients.

hdWGCNA is a versatile R package developed by
Morabito ez al. (21) from the Swarup laboratory, specifically
designed for conducting WGCNA on high-dimensional
transcriptomic data, including single-cell RNA-seq or
spatial transcriptomics. In the module screening process,
in addition to the correlation-based method proposed
by Morabito et al., we also employed the RF method to
validate the module screening results. The modules that
demonstrate consistency between the two analysis methods
are considered the most reliable modules in the process
of PVTT formation. Since PVTT formation significantly
impacts the prognosis of HCC patients, it is essential for
each RNA in the mRNA/miRNA/IncRNA regulatory axis
to be associated with HCC survival. Therefore, whether
through hdWGCNA, subsequent WGCNA, or machine
learning-based variable selection, the results should align
with COX regression or KM analysis. To ensure rigor in the
screening process, the identification of miRNA and IncRNA
cannot solely rely on their correlation with TMEM165 or
the presence of binding sites with TMEM]I165 in online
databases. Both conditions must be met to establish them as
upstream regulatory RNAs of TMEM]165.

TMEMI165 is a transmembrane protein localized in
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the Golgi apparatus, where it contributes to maintaining
Golgi ion homeostasis and vesicle trafficking. Initially,
TMEM165 mutations were identified in individuals with a
congenital glycosylation disorder. Subsequent investigations
have suggested a potential association between TMEMI165
expression and aggressive behavior in certain tumors (37,38).
In a study by Lee er al. conducted in 2018 (39), reverse
transcription polymerase chain reaction (RT-PCR) analysis
was performed on tumor and normal tissues obtained from
88 patients with HCC. The results confirmed the high
expression of TMEM165 in HCC tissues. Furthermore,
statistical analysis revealed a correlation between TMEM165
overexpression and macroscopic vascular invasion as well
as serosal invasion in HCC patients. Through experiments
conducted on HCC cell lines, the researchers demonstrated
that the depletion of TMEM165 reduced the invasive
activity of cancer cells by inhibiting the expression of
matrix metalloproteinase 2 (MMP-2). Our study not only
validated their findings but also identified TMEMI165 as a
key gene involved in the formation of PVTT. Additionally,
we identified upstream regulatory non-coding RNAs for
TMEMI65. Previous research has indicated that hsa-miR-
148a is associated with the development and progression
of various tumors (40,41), as well as non-neoplastic
diseases (42,43). In the context of liver diseases, hsa-miR-
148a has been specifically linked to alcohol-induced liver
injury (44). On the other hand, LINC00909 is a recently
discovered IncRNA with an unknown mechanism of
action. Nonetheless, evidence suggests that LINC00909
is implicated in the progression of several neoplastic
diseases, including colon cancer (45), ovarian cancer (46),
and glioma (47).

In order to elucidate the signaling pathways associated
with TMEM165, we performed a comprehensive analysis
utilizing three methods and two types of datasets. To
ensure result comparability, we utilized reference datasets
based on previous literature and the KEGG database for
enrichment analysis following Mfuzz clustering, GSVA, and
cell communication analysis. By employing Mfuzz cluster
analysis based on the enrichment analysis of DEGs, we
were able to identify the most relevant subgroup closely
associated with TMEM165 from multiple subgroups. The
Notch signaling pathway is an evolutionarily conserved
cascade that plays a crucial role in normal biological
processes such as cell differentiation, development, and
homeostasis. Dysregulation of the Notch pathway has
been associated with tumor progression and represents
a promising target for cancer therapy (48,49). Notably,
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the Notch pathway is significant in liver tissue cell fate
determination from embryonic to adult stages and can
regulate liver repair and regeneration (50). However,
aberrant activation of the Notch pathway can contribute to
HCC development and promote HCC cell migration (51).
Our findings once again demonstrate that Notch pathway
activation is not only involved in the initiation and
progression of HCC but also serves as a critical mediator
for TMEMI65 in promoting PVTT formation. This not
only confirms previous research findings but also provides
important evidence for understanding the mechanisms
underlying PVTT formation in HCC patients in the future.

Both systemic drug therapy and TACE play significant
roles in the treatment of HCC. In this study, we selected
eight candidate drugs based on previous RCTs. The
patients in the TCGA cohort were stratified into two
groups according to their risk of developing PVTT in
HCC. Through a sensitivity analysis of these eight drugs in
treating both groups of patients, we aimed to predict their
efficacy in managing PVTT. In comparison to the low-
risk group, sorafenib, which is commonly recommended
by the Barcelona Clinic Liver Cancer (BCLC) guidelines
for PVTT patients, did not demonstrate a significant
advantage in treating the high-risk patients. Similar
results were observed for brivanib (52) and sunitinib (53).
Other drugs such as gemcitabine (54), cisplatin (55) and
camptothecin (56) were found to be less effective in the high-
risk group compared to the low-risk group. Interestingly,
erlotinib (57) exhibited greater sensitivity in the high-risk
group than in the low-risk group. Based on these findings, we
believe that erlotinib shows promise as a potential treatment
option for PVT'T and warrants further investigation.

The tumor microenvironment encompasses non-
cancerous cells and components present within tumors,
along with the molecules they produce and release. The
dynamic interaction between tumor cells and the tumor
microenvironment plays a pivotal role in tumorigenesis,
tumor development, metastasis, and response to
treatment (58). Immune cells represent a crucial component
of the tumor microenvironment, given their diverse
functions (59). Single-cell sequencing has emerged as a
vital tool for investigating the immune microenvironment.
However, due to the limited number of PVTT samples
included in this study, there were insufficient tumor
cells from other tumor microenvironments, aside from
HCC cells, for comprehensive analysis. Nonetheless, our
CIBERSORT method revealed the infiltration of immune
cells in different risk groups. Notably, activated CD4"
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memory T cells, MO macrophages, resting dendritic cells,
and neutrophils exhibited high infiltration levels in the
high-risk group, suggesting their potential unique roles in
PVTT formaton.

Finally, our study still has certain limitations. Due to
the loss of surgical indications once portal vein tumor
thrombosis occurs in HCC patients, collecting PVTT
tissues in clinical settings is extremely challenging.
Furthermore, progress in animal modeling of PVTT is
slow, and currently, it is difficult to establish animal models
with significant effects. These factors contribute to the
lack of validation of our study results at the tissue level.
However, our research provides a methodology for future
investigations into the association between TMEMI65 and
portal vein tumor thrombosis in HCC. We anticipate that
more in-depth studies will be conducted to further explore
the relationship between TMEM]I165 and the formation of
portal vein tumor thrombosis in liver cancer.

Conclusions

The regulatory axis consisting of TMEM]165, bsa-miR-148a,
and LINC00909 exhibits a strong correlation with immune
infiltration within the HCC tumor microenvironment,
contributing to immune dysfunction and potential failures
in immunotherapy. Hence, targeting TMEM]I165 holds
promise in ameliorating immune dysregulation in HCC
patients and potentially mitigating the occurrence of portal
vein thrombosis.
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