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Abstract: The conventional blind source separation independent component analysis method has the
problem of low-separation performance. In addition, the basic butterfly optimization algorithm has
the problem of insufficient search capability. In order to solve the above problems, an independent
component analysis method based on the double-mutant butterfly optimization algorithm (DMBOA)
is proposed in this paper. The proposed method employs the kurtosis of the signal as the objective
function. By optimizing the objective function, blind source separation of the signals is realized.
Based on the original butterfly optimization algorithm, DMBOA introduces dynamic transformation
probability and population reconstruction mechanisms to coordinate global and local search, and
when the optimization stagnates, the population is reconstructed to increase diversity and avoid
falling into local optimization. The differential evolution operator is introduced to mutate at the
global position update, and the sine cosine operator is introduced to mutate at the local position
update, hence, enhancing the local search capability of the algorithm. To begin, 12 classical bench-
mark test problems were selected to evaluate the effectiveness of DMBOA. The results reveal that
DMBOA outperformed the other benchmark algorithms. Following that, DMBOA was utilized for
the blind source separation of mixed image and speech signals. The simulation results show that
the DMBOA can realize the blind source separation of an observed signal successfully and achieve
higher separation performance than the compared algorithms.

Keywords: blind source separation; independent component analysis; butterfly optimization
algorithm; dynamic transformation probability; population reconstruction mechanism; differential
evolution operator; sine cosine operator

1. Introduction

Blind source separation (BSS), sometimes referred to as blind signal processing, is
capable of recovering a source signal from an observed signal in the absence of critical
information, such as source and channel [1-3]. Due to its high adaptability and other advan-
tages, BSS has been employed in a variety of research fields in recent years, such as image
processing, medical evaluation, radar analysis, speech recognition, and machinery [4-8].

Independent component analysis (ICA) is an important BSS method [9]. However, the
conventional natural gradient algorithm (NGA) is too reliant on gradient information [10],
whereas the fast fixed-point algorithm for ICA (FastICA) is sensitive to the initial solu-
tion [11]. Thus, improving the speed and precision with which the separation matrix is
solved and obtaining higher-quality separated signals have significant practical implications.

To address the aforementioned issues, a swarm intelligence algorithm with a solid
coevolution mechanism is gradually applied to ICA. Preliminary research indicates that
BSS based on a swarm intelligence algorithm outperforms traditional BSS methods in
terms of separation performance [12]. Li et al. [13] utilized the improved particle swarm
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optimization (PSO) for ICA. The disadvantage is the poor search capability of PSO in the
later stages of iteration. Wang et al. [14] employed the improved artificial bee colony (ABC)
optimization as the optimization algorithm for ICA, despite the fact that this optimization
algorithm is very parameter dependent. Luo et al. [15,16] applied the improved fireworks
algorithm (FA) to the radar signal processing, while the fireworks algorithm is prone to
local extremum. Wen et al. [17] used a genetic algorithm (GA) to ICA, although the local
search capability of GA is limited.

The butterfly optimization algorithm (BOA) was developed in 2018. It was inspired
by the behavior of butterflies looking for food and demonstrated high robustness and
global convergence while addressing complex optimization problems [18]. According to
preliminary studies, BOA is very competitive in function optimization when compared
to other metaheuristic algorithms, such as ABC, cuckoo search algorithm (CSA), firefly
algorithm (FA), GA, and PSO [19]. It does, however, face several difficulties. For instance,
it is possible to fall into local optimization when dealing with high-dimensional complexity
prior to optimization operation. Additionally, inappropriate parameters result in a slow
convergence speed of BOA. Therefore, scholars have proposed a series of improved al-
gorithms to improve the performance of BOA. Arora et al. [20] combined BOA and ABC,
enhancing the algorithm’s exploitation capacity. Long et al. [21] provided a pinhole image
learning strategy based on the optical principle that can help avoid premature convergence
in the algorithm. Fan et al. [22] introduced a new fragrance coefficient and a different
iteration and update strategy. Mortazavi et al. [23] proposed a novel fuzzy decision strategy
and introduced a notion of “virtual butterfly” to enhance the search capability of BOA.
Zhang et al. [24] proposed a heuristic initialization strategy combined with greedy strategy,
which improved the diversity of the initial population. Li et al. [25] introduced weight factor
and Cauchy mutation to BOA, enhancing the ability of the algorithm to jump out of local
optimization. The above references are some improvement methods of BOA. Although
they can improve the search performance of the algorithm to some extent and reduce the
premature convergence phenomenon in the algorithm, most improved algorithms only
focus on the improvement of single search performance and ignore the balance between
global search ability and local search ability.

Based on the foregoing research, and in response to the limitations of the low sepa-
ration performance of conventional ICA methods and the lack of search ability in basic
BOA, this paper presents an ICA method based on the double-mutant butterfly algorithm
(DMBOA). Firstly, the dynamic transformation probability and population reconstruction
mechanisms are introduced to assist the algorithm in maintaining its search balance and
increasing its capacity to avoid the local optimum. The differential evolution operator is
then introduced in the global position update to allow for mutation, while the sine cosine
operator is introduced in the local position update to allow for mutation, hence, enhancing
the algorithm’s exploitation capacity. Finally, the superiority of DMBOA is verified in
benchmark function and BSS problem.

To summarize, the major contributions of this paper are given as follows:

(1) AnICA method based on DMBOA is designed to address the low-separation perfor-
mance of conventional ICA. DMBOA is used to optimize the separation matrix W,
maximize the kurtosis, and finally, complete the separation of observation signals.

(2) Three improved strategies are designed for the insufficient search capability of the
basic BOA, which coordinate the global search and local search of the algorithm while
improving BOA searching ability.

(3) Simulation results show that DMBOA outperforms the other nine algorithms when
optimizing 12 benchmark functions. In the BSS problem, DMBOA is capable of
successfully separating mixed signals and achieving higher separation performance
than the compared algorithms.

The remainder of this paper is organized as follows: Section 2 introduces the basic
theory of BSS. Section 3 discusses the details of the BOA. Section 4 addresses the DMBOA im-
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plementation. Section 5 provides simulation analysis, which verifies the effectiveness of the
proposed algorithm. Section 6 concludes the paper and summarizes the major contributions.
The main literature contributions in the introduction are introduced in Table 1.

Table 1. The main literature contributions.

Algorithm Type Name Method Conclusion Reference
NGA di Bas'ecfl on . The separation performance of Amari [10]
. gradient information conventional algorithms is low
Conventional ICA Based on fixed and need to be further improved
FastICA ased on hixe P ' Barros et al. [11]
point iteration
PSO-ICA Introduce PSO into ICA Introducing swarm intelligence Lietal. [13]
] algorithms into ICA improves the
Intelligent ABC-ICA Introduce ABC into ICA separation performance compared Wang et al. [14]
optimization ICA FA-ICA Introduce FA into ICA ~ With conventional ICA. Butthere 1, ot a1 [15,16]
are problems with these swarm
GA-ICA Introduce GA into ICA intelligence algorithms. Wen et al. [17]
BOA/ABC Combines BOA and ABC Arora et al. [20]
Provides a pinhole image
PIL-BOA learning strategy based Long et al. [21]
on the optical principle
Introduces a new
sapoa  mgrance coeficientand Fan etal. [22]
iteration strategy qut improved a'lgorithms only
Improved improve the single search
algorit}f)ms of BOA PTOR0§95 anovel fuzzy performance of BOA, but ignore
FBOA .dec1s1on strategy and the b.a'lance between global sgarch Mortazavi et al. [23]
introduces a notion of ability and local search ability.
“virtual butterfly”
Proposes a heuristic
initialization strategy
OEbBOA combined with Zhang et al. [24]
greedy strategy
IBOA Introduces weight factor Lietal. [25]

and Cauchy mutation

2. Basic Theory of Blind Source Separation
2.1. Linear Mixed Blind Source Separation Model

The linear mixed BSS model is described below:
X(t) = AS(t) + N(¢t) €))

where ¢ is the sampling moment, A is a mixed matrix of order m x n (m > n), X(f) is a vector
of the m-dimensional observed signals, X(t) = [X;(t), Xa(t), ..., Xm ()], S(t) is a vector
of the n-dimensional source signals, S(t) = [S1(t), S2(t), ..., Su(t)], N(t) is a vector of the
m-dimensional noise signals. BSS represents the cases in which an optimization algorithm
determines the separation matrix, W, when only the observed signals, X(t), are known. In
such instances, the separated signals, Y(t), are obtained using Equation (2).

Y(t) = WX(t) 2

where Y (t) = [Y1(t), Ya(t),..., Yu(t)].
To ensure the feasibility of BSS, the following assumptions are required:

(1) The mixing matrix, A, should be reversible or full rank, and the number of observed
signals should be larger than or equal to the number of source signals (i.e.,).
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(2) From a statistical standpoint, each source signal is independent of the others, and at
most, one signal follows a Gaussian distribution, because multiple Gaussian processes
remain a Gaussian process after mixing and, hence, cannot be separated.

Due to the lack of source signal and channel information, it is difficult to discern the
signal’s amplitude and order following BSS, a phenomenon known as fuzziness. Although
BSS is fuzzy, its fuzziness has a negligible effect on the results in the majority of scientific
research and production practices.

Figure 1 shows the linear mixed blind source separation model.

Si(t)

Sa(t)

Su(t)

X(t) - yi(t)

Hybrid System Separation System > ¥t
Amxn anm :

——»  ys(t)

N(t)
Figure 1. Linear mixed blind source separation model.

2.2. Signal Preprocesing

Prior to performing BSS on observed signals, it is usually essential to preprocess the
signals in order to simplify the separation process. De-averaging and whitening are two
widely used preprocessing techniques.

The de-averaging processing method is shown in Equation (3).

X =X - E(X) 3)

The purpose of whitening is to eliminate the signals’ correlation. The whitening
operation in BSS is used to remove the second-order correlations between signals in space,
ensuring that the observed signals received by the sensor remain uncorrelated in space
and simplifying the algorithm complexity. The signal, V, after whitening is expressed
as follows:

V=0X=EY2Uurx (4)

where Q is a whitening matrix, U is a characteristic matrix composed of eigenvectors corre-
sponding to the n maximum eigenvalues of the autocorrelation matrix, Rxx = E[XX!],
of the observed matrix, X, and E = diag(dy,da,...dy) is a diagonal matrix composed of
these eigenvalues.

The separation matrix, W, is an orthogonal matrix, which can be expressed as the
product of a series of rotation matrices [26]. Taking three source signals as an example, the
separation matrix, W, is defined as follows:

1 0 0 cosfy 0 —sinb, cosf3 —sinf; 0
W= 1] 0 cosf; sinf; |e 0 1 0 eo| sinf3 cosf; O 5)
0 sinf; cosf sinf, 0 cosb, 0 0 1

2.3. Separation Principle

When performing BSS on mixed signals using ICA, it is necessary to first select an
appropriate criterion for determining the statistical independence of the separated signals.
Afterwards, the objective function is established and optimized using the appropriate
algorithm. This leads to the separation matrix with the strongest independence of the
separated signals.

The commonly used independence criterion of signals includes mutual information,
kurtosis, and negative entropy. Kurtosis is calculated using Equation (6) as follows:

K(yi) = kurt(y;) = E{y}} — 3(E{y?}") ©)
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where y; is a gaussian random variable.
The sum of absolute values of kurtosis is used as a criterion of signal independence in
this paper, and the objective function is specified as follows:

fiti= L @)
LIk +¢

where ¢ is an extremely small amount that prevents division by zero. According to the
information theory, for a gaussian random vector y;, when E[yy’] = I, the larger the
kurtosis of the signals, the greater their independence. The above-mentioned DMBOA
will be used to optimize the separation matrix W, to maximize the kurtosis, and finally
complete the separation of the observed signals.

3. Butterfly Optimization Algorithm (BOA)

BOA is an optimization technique inspired by the foraging behavior of butterflies.
Each butterfly in BOA serves as a search operator and performs the optimization process in
the search space. Butterflies are capable of perceiving and distinguishing between different
fragrance intensities, and each butterfly emits a fragrance of a certain intensity. Assume that
the intensity of the fragrance produced by butterflies is proportional to their fitness; that
is, as butterflies move from one location to another, their fitness will change accordingly.
When a butterfly detects the fragrance of another, it will move toward the butterfly with
the strongest fragrance. This stage is referred to as “global search.” On the contrary, if the
butterfly is unable to perceive the fragrance of other butterflies, it will move randomly. This
stage is referred to as “local search.” The global and local searches are switched during the
search process by switching the probability p.

The fragrance can be formulated as follows:

f=cl ®)

where f is the perceived intensity of the fragrance, i.e., the fragrance’s intensity as perceived
by other butterflies, c is the sensory modality, I is the stimulus intensity, depending on
fitness, and a is the mode-dependent power exponent, which accounts for the various
degrees of absorption, a € [0,1]. The value of ¢ is updated by Equation (9) as follows:

=t 4+0.025/(ct x T) )

where t and T represent the current and maximum number of iterations, respectively.
When butterflies sense the stronger fragrance in the area, they move towards the
strongest one. This stage is calculated as follows:

Al =xl 4 (P xg—xl) x f (10)

When a butterfly is unable to perceive the surrounding fragrance, it moves randomly.
This stage is calculated as follows:

it =xl 4 (r x x]t —xb)x f (11)

where x! represents the position of butterfly individual i in generation ¢, x]t denotes the

position of butterfly individual j in generation ¢, x| indicates the position of butterfly
individual k in generation ¢, r shows a random number between 0 and 1, and g stands for
the gl obal optimal position.

The pseudo code of BOA is provided in Algorithm 1.
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Algorithm 1: BOA

Input: Objective function f(x), butterfly population size N, stimulation concentration I, sensory
modality ¢ = 0.01, power exponent a = 0.1, conversion probability p = 0.8, Maximum number of
iterations T.

1. Initialize population

2. Whilet < T

3. fori=1:N

4 Calculate fragrance using Equation (8)

5. Generate a random number rand in [0, 1]
6. if rand<p

7 Update position using Equation (10)
8. else

9. Update position using Equation (11)
10. end if

1 i () > f(g)

12. 8§ =x;, f(g) = f(x})

13. end if

14. Update the value of c using Equation (9)
15. end for

16. end while
17. Output the global optimal solution

4. Double-Mutant Butterfly Optimization Algorithm (DMBOA)
4.1. Dynamic Transition Probability

Local and global searches are controlled in the basic BOA by the constant switching
probability p, which implies that during the iterative process of the algorithm, BOA will
allocate 80% of its search capability to global search and 20% to local search. In this search
mode, about 80% of the butterflies in the population will be attracted to the best butterfly, g.
Therefore, if the best butterfly, g, falls into the local optimum, it will strongly guide other
butterflies to this unpopular position in the search space, making it more difficult for the
algorithm to avoid the local extreme value, so it converges prematurely.

A reasonable search process should begin with a strong global search in the early
stages of the algorithm, quickly locate the scope of the global optimal solution in the search
space, and appropriately enhance the local development capability in the latter stages of
the exploration, all of which contribute to the optimization accuracy of the algorithm. The
dynamic switching probability, p;, is proposed in this paper to balance the proportions
of local and global search to achieve a more effective optimization strategy. The dynamic
conversion probability, p,, is shown in Equation (12).

2
pr=0.8— 03 x sin(%(%) ) (12)

where yu takes constant 2.

As seen in Figure 2, the dynamic conversion probability, p,, proposed in this paper,
gradually converges to 0.5 as iteration progresses. It can strike a balance between global
search in the early stages and local development in the latter stages.

4.2. Improvement in Update Function

When some butterflies move completely at will or when a large number of butterflies
congregate at non-global extreme points, the convergence speed of BOA is significantly
slowed and falls into local extreme values. Two mutation operators, the differential evolu-
tion [27,28] and sine cosine operator [29], are used in this paper to improve BOA.

The differential evolution operator utilizes three-parameter variables for global search,
which results in a faster convergence rate and simplifies the process of obtaining the global
optimal value, which is why it is used for global search. The sine cosine operator possesses
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the periodicity and oscillation of the sine cosine function, which enables it to avoid falling
into the local extremum, accelerate the convergence speed of the algorithm, and be applied
to local search.

1 T T T T T T T

p1 in the basic BOA
09 p2 in this paper

0.8 —

0.7 r J

<)
o
T
1

value of the p
o o
iN 3}

o
w
T
1

o
)
T
1

0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Iteration

Figure 2. Iterative curve of transformation probability p.
The global search variation is expressed as follows:

= af xr + Fx A x (g—xf) = (1-2) x (g — x})] (13)

i

The local search variation is determined as follows:

xf“z{ xtxsinry 4+ (1—r1) X |rg x g —xt[ry <05 (14)

xtxcosry+(1—r1) x |[r3 x g — xt|ry > 0.5

where the mutation operator, F € [0,2], is a real constant factor, r; is a random number
with a value range between 0 and 27, and A and r3 are random numbers with a value range
between 0 and 1. The parameter r; is calculated as follows:

rlzé—tx% (15)

where J takes constant 2.

4.3. Population Reconstruction Mechanism

The counter count is introduced, with an initial value of 0. If the global optimal
solution, g, remains constant, the count increases by 1. If the global optimal solution, g,
changes, the counter is reset. When the count is greater than or equal to 0.1 * T, the default
optimization stops. To preserve previous optimization results and increase the population
diversity to avoid local optimums, 20% of the individuals, including the optimal solution,
are randomly selected from the original population, while the remaining 80% of individuals
are discarded and replaced with new randomly generated individuals.

Algorithm 2 gives the pseudo code of DMBOA, and Figure 3 shows the flow chart
of DMBOA-ICA.
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Algorithm 2: DMBOA

Input: Objective function f(x), butterfly population size N, stimulation concentration I, sensory
modality ¢ = 0.01, power exponent 4 = 0.1, maximum number of iterations T.

counter count = 0.

1. Initialize population

2. Whilet < T

3. fori=1:N

4 Calculate fragrance using Equation (8)

5 Calculate conversion probability p using Equation (8)
6. Generate a random numbers rand in [0, 1]

7 if rand <p

8 Update position using Equation (13)

9. else

10. Update position using Equation (14)

11. end if

2. i) > f(g)

13. g =xl, f(g) = f(x}), count =0

14. else

15. count = count + 1

16. end if

17. if count > 0.1 T

18. Execute population reconstruction strategy
19. end if

20. Update the value of ¢ using Equation (9)

21. end for

22. end while
23. Output the global optimal solution

START

Signal preprocessing and
initialization parameters

| Update position using | Update position using
Equahon (13) Equation (14)
v i v
8 =x, f(g) =f(x), count = count = count + 1

Execute population
reconstruction strategy

NO

NO X

YES

Output separation matrix W
and estimate source signal

Figure 3. The flow chart of DMBOA-ICA.
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The DMBOA proposed in this paper enhances the basic BOA in three aspects. Firstly,
the dynamic transformation probability coordination algorithm is implemented using
both local and global search. The double-mutant operator is then incorporated into the
algorithm update function to enhance the local search capability of the algorithm. Finally, a
population reconstruction mechanism is introduced to avoid falling into local optimums
in the event of optimization stagnation. Through the above three improvement methods,
DMBOA can effectively overcome the poor search capability of the basic BOA, which
makes it easy to fall into local optimums. However, when compared to the basic BOA,
DMBOA has a higher computational complexity, as each iteration of DMBOA requires
calculating the value of the calculator count and reconstructing the population when it
falls into optimization stagnation, which, in turn, increases the calculations required by
this algorithm.

5. Simulation and Result Analysis
5.1. Evalution of DMBOA on Benchmark Function

To more accurately and comprehensively verify the efficacy of DMBOA, 12 test func-
tions were used with varying characteristics for experiments. The detailed characteristics
of each test function are listed in Table 2. It features four single-mode test functions (F1—F4),
as well as eight multi-mode test functions (F5—Fj3). In Table 2, Dim denotes the function
dimension, Scope represents the value range of x, and f i indicates the ideal value of each
function. There is only one global optimal solution for single-mode test functions and no
local optimal solution. They are suitable for evaluating the local development capability
of the algorithm. On the contrary, there are many local optimal solutions for multimodal
test functions. Numerous algorithms that perform well with low modal functions perform
poorly with high modal functions and are prone to local optimization or oscillation between
local extrema. The high-modal test function is usually used to evaluate the global search
capability of the algorithm [30].

DMBOA is compared against nine algorithms in the experiment, namely GWO [31],
WOA [32], CE-AW-PSO [33], HPSOBOA [34], FPSBOA [35], BOA [18], BOA_1 (dynamic
conversion probability), BOA_2 (introduce double-mutant operator), and BOA_3 (introduce
population reconstruction mechanism). For all ten algorithms, the population size N = 30
and the total number of iterations T = 500. The parameters of DMBOA are shown in
Algorithm 2, while the parameters of other algorithms are shown in references [31-35].
Table 2 shows the optimal fitness value (BEST), the average fitness value (MEAN), the
standard deviation (STD), and the running time (TIME), tested by 10 algorithms, such as
DMBOA under 12 test functions in Table 2, in which the time unit is seconds. The test
results of DMBOA have been bold in Table 3. Each algorithm was performed separately
30 times to minimize the error, and all experiments were conducted on a laptop equipped
with an Intel (R) Core (TM) i7-6500 CPU at 2.50 GHz and 8 GB of RAM.

As shown in Table 3, DMBOA is capable of obtaining the optimal values for these
12 test functions, and the optimal values for each function are closer to fn in Table 2. The
search accuracy of BOA_1, BOA_2, and BOA_3 proposed in this paper is also better than
the original BOA, demonstrating the efficacy of the three improvement strategies utilized in
this paper. DMBOA has a higher search accuracy than the improved algorithm with a single
strategy, indicating that under the joint influence of different strategies, the optimization
ability and stability of the algorithm are improved to the greatest extent. Overall, the test
results of BOA_2 are closer to those of DMBOA. The STD of data can reflect the degree of
dispersion. According to the test results in Table 3, DMBOA has the smallest STD for each
test function, indicating that it is more robust and stable than the compared algorithms
when dealing with both low- and high-modal problems. As for the calculation time in
Table 3, DMBOA has a medium execution time. According to the data in the table, the test
time for DMBOA under the five test functions of F,, F4, F5, F11, and Fy5 is less than that of
the original BOA. This indicates that, although the time complexity of DMBOA is higher in
theory than that of the original BOA, the high convergence accuracy of DMBOA enables it
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to find the global optimal solution more quickly, particularly for the two test functions, Fq;
and F 12-

Figure 4 depicts the iteration history of the ten algorithms tested on the 12 test functions
in Table 2. As seen in Figure 4, the DMBOA developed in this study has the fastest iteration
speed and maximum convergence accuracy among all the convergence history graphs. This
demonstrates that, when compared to other algorithms, DMBOA is capable of obtaining
the optimal solution in the shortest amount of time. BOA-1, BOA-2, and BOA-3, which are
improved by a single strategy, improved convergence speed and optimization accuracy
to a certain extent when compared to basic BOA, indicating that each strategy performed
satisfactorily and effectively, but not as well as the DMBOA, which is improved by a hybrid
strategy. The feasibility of the three improved strategies is further verified. GWO can
be iterated until it reaches the theoretical optimal value under F5 and F;. The overall
convergence performance of WOA is general. The convergence speed of CF-AW-PSO is
slow in the early stages. The iteration results of HPSOBOA under Fy, Fy, F¢, and F; are poor.
FPSBOA outperforms Fs, Fg, and F7 in terms of convergence curve and search performance.

Table 2. Basic information of benchmark functions.

Function Dim Scope fmin
Fi(x) = iy x| + T [x] 30 [-10, 10] 0
B(x)=y", {100(;;,-+1 —22)? 4 (x; — 1)2} 30 [—30, 30] 0
B(x) =Y (Jx; +05])? 30  [—100,100] 0
Fy(x) = Y, ix* + random|0, 1) 30 [;;82]8’ 0
F5(x) = Y [x? — 10 cos(27x; + 10)] 30 [;?'21]2’ 0
Fg(x) = —20exp (—0.21 / %Z?:l xlz) —exp (%Z?:l cos(27‘[x1-)> +20+e 30 [-32,32] 0
Br(x) = g iy 7 — Ty cos (%) +1 30 [—600, 600] 0

Fa(x) = 2{10sin(y1) + £y (s — 1) [1+ 10sin® (7yi0)] + (o — 17 | +

K(x; —a)"x; > a 30 [—50, 50] 0
Y u(x;,10,100,4), y; = 1+ % u(x;, a,k,m) = 0—a<ux<a
k(—x; —a)"x; < —a
Fo(x) =
O.l{sin2(37'cxi) F Y (= 1?1+ sin?(3mx; +1)] + (30 — 1)%[1 +sin(271x,)] } + 30 [—50,50] 0

4 u(x;,5,100,4)
xl(bi2+bix2)} 4 [-5, 5] 0.00030

11 .
Fo(x) = Y2 {ﬂl ~ PRTbi3 Ak
-1
Fu(e) = —57., { (X —a)(X —a)T + Cl} 4 [0, 10] ~10.4028

F(x) = ~XI [(X —a) (X —a)" 4]

'S

[0, 10] —10.5363

5.2. Speech Signal Separation

Three speech signals are used as the source signals, which are then mixed to obtain
the observed signals. To acquire the separated signals, DMBOA, BOA, HPSOBOA, and
FPSBOA are used to blindly separate the observed signals. The simulation diagram is
depicted in Figure 5. The sampling frequency and sampling point of voice signals are
40,964 and 1000, respectively.

In order to quantitatively analyze and compare the separation performance of the
four algorithms, the time, similarity coefficient, performance index (PI), and PESQ [36] are
employed in this study. The data are shown in Table 4 with a time unit of seconds.
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Table 3. Comparative analysis of performance of 10 swarm intelligence algorithms.

Function Index DMBOA BOA BOA_1 BOA 2 BOA_3 HPSOBOA FPSBOA GWO WOA CF_AW_PSO
BEST 128 x 107119 275 x 1071 242 x 107  113x107%2 301 x1078  319x 101! 973 x 107! 120x 107! 940 x 107> 0.12256
- MEAN 2.04 x 105 9.01 x 107 3.51 x 107 8.52 x 10° 471 x 107 458 x 1013 243 x 108 7.29 x 108 8.05 x 10° 1.40 x 1012
STD 2.47 x 10° 2.01 x 107 7.47 x 107 7.85 x 107 7.85 x 108 1.61 x 101 1.68 x 10° 1.63 x 10° 8.84 x 10° 2.04 x 1012
TIME 0.1610 0.1527 0.1543 0.1771 0.1732 0.1757 0.1375 0.1927 0.0901 1.0270
BEST 1.06 x 10~2 28.9471 28.8818 0.1786 28.0715 241 x 108 2.89 x 10! 26.8769 27.6766 2.03 x 102
- MEAN 1.24 X 10° 2.91 x 10° 251 x 10° 1.39 x 106 2.47 % 10° 2.44 x 108 1.32 x 106 1.89 x 106 1.97 x 106 1.62 x 106
STD 1.63 x 10° 2.67 x 107 1.68 x 107 1.68 x 107 2.04 x 107 9.84 x 100 1.58 x 107 1.80 x 107 1.93 x 107 1.32 x 107
TIME 0.1941 0.2077 0.1844 0.1844 0.2290 0.1947 0.1884 0.2050 0.0794 0.9862
BEST 1.28 x 1073 5.1259 4738 0.0098 4.9992 6.3584 48811 0.6259 0.4128 0.3316
3 MEAN 2.87 x 102 2.32 x 103 2.01 x 103 3.30 x 102 2.04 x 103 2.66 x 10% 291 x 103 6.50 x 102 6.24 x 10% 1.94 x 10°
STD 4.02 x 103 8.84 x 103 7.43 x 10° 448 x 103 9.00 x 103 3.46 x 103 7.78 x 103 468 x 103 5.10 x 103 442 x 103
TIME 0.1356 0.1241 0.1316 0.1478 0.1524 0.1369 0.1279 0.1774 0.0631 0.9525
BEST 7.93 x 1075 0.0020 833 x107%*  6.09x10* 130x 103 1.09 x 107% 531 x107* 144 x 1073 0.0049 0.0485
- MEAN 0.4327 3.4488 2.3577 1.2125 1.4712 0.5487 3.6951 0.7935 1.0180 0.9897
STD 5.1646 14.7580 11.7394 10.0441 14.9266 5.9768 15.277 7.2482 8.1546 7.1023
TIME 0.3257 0.3312 0.3017 0.3247 0.3436 0.3058 0.3163 0.2940 0.1530 1.0780
BEST 0 2.85 x 10710 0 0 0 0 0 0.7624 0 475728
F5 MEAN 2.3163 1.04 x 102 33.2498 45992 90.2747 10.9330 1.87 x 102 26.5955 27.2819 1.59 x 102
STD 27.8726 1.20 x 102 88.8153 38.8205 1.21 x 102 52.0126 8.82 x 101 67.5291 72.5040 75.2091
TIME 0.1925 0.1992 0.1797 0.1795 0.2186 0.1676 0.1645 0.1920 0.0734 0.9903
BEST 888 x 10716 474 x107° 324x1077 888x10716 121x107°® 888x10716 888x1071° 122x10"1 657 x 10715 0.8873
F6 MEAN 0.1272 3.4204 2.2722 0.2123 3.4058 0.6122 0.1782 0.7996 0.6367 7.2342
STD 1.4421 6.1540 5.1366 1.6815 6.2388 2.8252 2.1388 3.1655 2.7333 4.3789
TIME 0.1650 0.1561 0.1485 0.2010 0.1724 0.1481 0.1467 0.1926 0.0730 1.0238
BEST 0 370 x 1077  8.08 x 1011 0 6.84 x 1077 0 0.3697 0.0033 0 0.5772
7 MEAN 2.9803 27.5437 17.7892 4.9745 22.8844 9.8251 3.2284 6.1030 6.1503 19.5304
STD 39.4556 97.3967 78.3987 45.4127 95.8473 51.8421 40.1433 44,5673 47.6451 40.2275
TIME 0.1864 0.1834 0.1744 0.1475 0.1956 0.1674 0.1836 0.2231 0.0904 0.9302
BEST 6.45 X 1075 0.5278 0.6101 3.39 x 1074 0.5155 1.42 x 108 557 x 10° 0.0438 0.0262 0.1533
vs MEAN 7.93 x 10° 4.05 x 10° 1.86 x 10° 1.81 x 10° 3.66 x 10° 2.22 x 108 9.69 x 107 3.38 x 10° 3.84 x 100 1.65 x 10°
STD 2.26 x 107 3.96 x 107 2.83 x 107 2.96 x 107 2.83 x 107 1.32 x 108 1.24 x 108 3.55 x 107 3.99 x 107 2.58 x 107
TIME 0.6626 0.6407 0.6175 0.6476 0.6813 0.6804 0.6465 0.4189 0.3076 1.1649
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Table 3. Cont.
Function Index DMBOA BOA BOA_1 BOA 2 BOA 3 HPSOBOA FPSBOA GWO WOA CF_AW _PSO

BEST 3.00 X 10~ 2.8907 2.8577 6.88 x 1074 2.9815 6.61 x 108 2.5389 0.6075 0.3928 0.8492

F9 MEAN 4.84 x 10° 8.96 x 10° 497 x 100 492 x 10° 8.55 x 10° 7.11 x 108 3.09 x 107 7.28 x 106 8.05 x 10° 5.20 x 10°
STD 4.01 x 107 8.44 x 107 6.45 x 107 6.45 x 107 7.98 x 107 1.35 x 108 1.40 x 108 7.66 x 107 8.25 x 107 542 x 107
TIME 0.6237 0.6170 0.6374 0.6372 0.6380 0.6234 0.6133 0.4383 0.3051 1.1549
BEST 3.29 x 104 463 x107% 752 x 1074 0.0024 695 x107% 833 x10°° 121 x 1072  3.62 x 10~* 0.0011 3.31 x 1074

F10 MEAN 0.0014 0.0108 0.0087 0.0031 0.0075 0.0250 0.0139 0.0193 0.0125 0.0132
STD 0.0092 0.0440 0.0352 0.0174 0.0397 0.0266 0.0182 0.0130 0.0137 0.0149
TIME 0.1415 0.1331 0.1256 0.1441 0.1470 0.1204 0.1351 0.1030 0.0566 0.8962
BEST —10.4021 —3.7065 —4.2248 —10.3921 —43732 —2.7479 —6.4141 —10.3998 —7.2097 —7.8124

_ MEAN —10.0248 —3.0691 —3.9299 —9.8669 —3.2063 —2.5950 —4.5366 —7.6326 —5.9612 —6.9726
STD 1.1633 1.7467 1.4404 1.3712 1.4478 1.2843 1.1177 2.3504 1.7862 1.0625
TIME 0.2247 0.4710 0.4779 0.2023 0.5053 0.5345 0.1971 0.1303 0.0934 0.8702
BEST —10.5398 —4.2295 —4.5870 —10.4547 —4.4975 —2.6101 —5.1456 —10.5191 —5.2541 —7.3815

- MEAN —9.9728 —2.8359 —2.8770 —9.4217 —3.1161 —2.5639 —3.8055 —8.0916 —5.0373 —6.7461
STD 0.5395 1.3041 1.1196 1.9452 1.3458 1.2225 1.0012 2.1849 0.7045 1.3569
TIME 0.2381 0.5797 0.5812 0.2390 0.5975 0.6086 0.2210 0.1440 0.1157 0.8930
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Figure 4. Convergence curves of 10 algorithms on 12 test function in Table 2.

Table 4. Data of speech signal separation performance evaluation index.

Algorithm

BOA

HPSOBOA

FPSBOA

DMBOA

similarity
coefficient
PI
time
PESQ

0.8584
0.7951
0.8560
0.3054
35.78
2.06

0.9001
0.9274
0.9432
0.2041
26.14
2.23

0.9741
0.9526
0.9363
0.1687
25.41
2.30

0.9877
0.9927
0.9763
0.1329
22.48
244
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Figure 5. Effect drawing of speech signal separation. (a) The waveform of source signals; (b) The
waveform of observed signals; (c) The waveform of BOA separated signals; (d) The waveform of
HPSOBOA separated signals; (e) The waveform of FPSBOA separated signals; (f) The waveform of
DMBOA separated signals.

The PESQ metric is based on the wide-band version recommended in ITU-T [37], and
its range is extended from —0.5 to 4.5. The higher its value, the better the quality of the
speech signal. The similarity coefficient and PI are expressed in Equations (16) and (17)

as follows:
\zzl yi(®)|
(16)
\/Zz IEAOMEVAD)
1YY |G o 1G]
Pl= —— /| B S | 17
N(N—l)l;{(g max;|Gj| )+(];(maxj|Gil‘ ) 17)

In Equation (16), p;; is a similarity index used to compare the source signal with the
separated signal. The greater the p;;, the more effective the separation. In this section, p;; is
a 3 x 3 matrix. The maximum value of each channel is taken as the experimental data, and
N is set to 3. Additionally, in Equation (17),

; the closer the PI is to 0, the more similar the separated signal is to the source signal.

In comparison to Figure 5, the separated signals have a different amplitude and order
than the source signals, indicating the fuzziness of BSS. The signals separated by BOA
are partially distorted. The signals separated by HPSOBOA and FPSBOA are partially
deformed. The signals separated by DMBOA are highly consistent with the waveform of
the source signal and have a strong separation effect.

As shown in Table 4, DMBOA produces not only the highest similarity coefficient
and PESQ but also the smallest PI of the separated signal, allowing for a more accurate
restoration of the source signal. Moreover, the operation time of DMBOA is shorter than
that of the examined algorithms.
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5.3. Image Signal Separation

Three gray-scale images and one random noise image are used as source signals,
and they are combined to produce the observed signals. To acquire the separated signals,
DMBOA, BOA, HPSOBOA, and FPSBOA are used to blindly separate the observed signals.
In this section, N is assumed to be 4, and the pixels of the image are 256 x 256; p;; is a
4 x 4 matrix. Figure 6 illustrates the simulation result and Table 5 compares the similarity
coefficient, PI, and duration of separated signals, as well as the SSIM [38] of the output
image. The SSIM proves to be a better error metric for comparing the image quality with
better structure preservation. They are in the range of [0, 1], which is a value closer to one
indicating better structure preservation:

(usepx + C1) (20, + C3)
(M3 + 13 +C1)(0F + 02+ C2)

SSIM = (18)

where C; and C; are constant, o, represents the covariance of image, ¢ and i, represent
the mean value of the two images, respectively, 03 and oy represent the variance in the two
images, respectively.

- s
(b) The observed signals
>t -

P

2o

(c) The separate

d signals (BOA) (d) The separated signals (HPSOBOA)

(e) The separated signals (FPSBOA) (f) The separated signals (DMBOA)

Figure 6. Effect drawing of image signal separation. (a) The image of source signals; (b) The image of
observed signals; (c¢) The image of BOA separated signals; (d) The image of HPSOBOA separated
signals; (e) The image of FPSBOA separated signals; (f) The image of DMBOA separated signals.

Table 5. Data of image signal separation performance evaluation index.

Algorithm BOA HPSOBOA FPSBOA DMBOA

0.81190 0.88780 0.97840 0.99820

similarity 85460 90210 95520 99070
coefficient 87570 90740 93010 98740
8378 9253 9222 9833

PI 0.2601 0.1986 0.1524 0.1163
time 37.91 34.25 30.51 26.74
SSIM 0.8340 0.9015 0.9282 0.9647

As seen in Figure 6, the images separated by DMBOA are similar to the source
images, but the images separated by other algorithms have varying degrees of ambiguity.
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Additionally, as demonstrated by the data in Table 5, the separation performance of DMBOA
is superior to that of the examined algorithms.

6. Conclusions

This paper proposed a novel double-mutant butterfly optimization algorithm (DM-
BOA), which is a major improvement on the butterfly optimization algorithm (BOA) and
applied to blind source separation (BSS). The algorithm incorporates a double-mutant oper-
ator and a population reconstruction mechanism, which enhances the capability of local
development and avoids local optimization. The proposed technique was initially explored
and further developed through the use of a dynamic conversion probability balancing
method. The following conclusions are drawn from the simulation results:

(1) When optimizing 12 benchmark functions (four low-modal and eight high-modal),
DMBOA outperforms the other nine algorithms. The three improvement methods
proposed in this study increased the performance of BOA to varying degrees in the
algorithm ablation experiment. All of this demonstrates that DMBOA has a high level
of search performance and strong robustness.

(2) DMBOA outperforms the other algorithms in the BSS and is capable of successfully
separating the mixed speech and image signals.
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