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Introduction

Perfluoroalkyl substances, or PFAS, are a class of highly 
fluorinated chemicals that have a wide range of uses and 
functional groups. PFAS are used in manufacturing many 
products that feature waterproofing, lubricating, non-stick 
and fire-suppression properties. They are absorbed in the 
ground from water and can also be absorbed by humans 
through drinking and contact with contaminated sources 
such as carpet, clothing, leather products, paper and pack-
aging, coating additives, cleaning agents and firefighting 
foams.1–3 Because PFAS are persistent in the environment 
and are known to bio-accumulate in humans, the potential 
health effects of these compounds have received consider-
able attention.4

Notably, PFAS have been linked to a number of adverse 
health effects,4,5 including increased risk for various 

cancers and birth defects.6,7 In previous studies looking at 
risk factors for vascular diseases, PFAS have both been 
linked with higher cholesterol levels8,9 as well as dyslipi-
demia.10 High concentrations of PFAS have been both 
positively and inversely linked with diabetes, with both 
significant and non-significant associations observed for 
the inverse relationships.11–14 Mixed results have been 
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observed for the relationship of PFAS with ischemic heart 
disease, with null8,15 to inverse relationships observed.16 
For cerebrovascular disease, specifically stroke, two stud-
ies have examined the relationship of the PFAS perfluo-
rooctanoic acid (PFOA) in worker populations, with one 
study observing an apparent protective relationship for 
stroke mortality17 and the other suggesting a positive rela-
tionship.18 A third study examined the relationship of 
PFOA with stroke in a combined population-based and 
worker cohort and also found mixed results, with prospec-
tive data suggesting a non-significant inverse relationship, 
but retrospective data suggesting a positive relationship 
with stroke incidence.19 Thus, the relationship of PFAS to 
stroke, an event that accounts for one out of every 20 
deaths in the United States each year,20 remains unclear. 
Moreover, the association of PFAS other than PFOA with 
stroke has been little explored, and no studies have yet 
examined the potential modifying effect of diabetes, a 
major risk factor for stroke.21,22

We have recently observed inverse relationships 
between PFAS and coronary heart disease that was more 
pronounced among those with diabetes16 and between 
PFAS and kidney function and chronic kidney disease 
that was significantly stronger in those with diabetes.23 
Using the C8 Health Project population, we examined 
the relationship of serum PFAS with stroke and the 
potential modifying influence of diabetes in a large sam-
ple of Appalachian adults, a population with among the 
highest rates of both diabetes and stroke in the United 
States.20,24

Methods

The C8 Health Project25,26 was started as part of a legal set-
tlement after PFOA (C8) had been found in the drinking 
water of residents of the mid-Ohio Valley in West Virginia 
and Ohio.27 Starting in August 2005 and ending in August 
2006, baseline data were gathered on 69,030 people living 
and working in the six water districts, whose drinking water 
supplies had been contaminated with PFOA. As part of the 
project, blood samples were collected, and information was 
gathered on demographics, lifestyle characteristics, medi-
cal history, height, weight and other factors. Details on the 
project including consent, enrolment, data collection and 
reporting have been published26 and are reported online 
at (http://www.hsc.wvu.edu/resoff/research/c8/). In 2008, 
West Virginia University was granted access to the de- 
identified data from the C8 Health Project by Brookmar 
Inc, the organization in charge of the C8 Health Project. 
The study was approved by the West Virginia University 
Institutional Review Board.

Participation rates among eligible adults residing in the 
six affected water districts included in the C8 Health 
Project was 81%.25 For this current study, eligible partici-
pants included those at least 20 years of age at the time 
of clinical assessment, resulting in 54,099 eligible adults. 

A history of diabetes and a history of stroke were based on 
self-report of a physician diagnosis. Of the 54,457 adult 
participants, 5270 self-reported a physician diagnosis of 
diabetes and 1075 self-reported a history of stroke. 
Exclusion of participants with missing data on PFAS, 
stroke, diabetes and covariate data yielded a final analytic 
sample size of 48,206, including 3921 cases of diabetes 
and 881 cases of stroke.

Assay methods, blood processing and quality assurance 
measures have been previously described.25,26,28 In short, 
blood samples were taken from each participant; red blood 
cells and serum were immediately separated and refriger-
ated at the time of collection and were then transported to 
a laboratory for analyses on dry ice. PFAS assays were 
conducted using a protein precipitation extraction method 
which employed reverse-phase high-performance liquid 
chromatography and tandem mass spectrometry. A triple-
quadrupole mass spectrometer in pre-selected reaction 
monitoring mode, monitoring for the M/Z transitions of 
PFAS species with an internal 13C PFAS standard corre-
sponding to the target compound, was utilized for detec-
tion of each PFAS. Of the PFAS that were tested, four 
PFAS, including PFOA, PFOS (perfluoroctane sulfonate), 
PFHxS (perfluorohexane sulphate) and PFNA (perfluoron-
onaoic acid), were found in over 97% of serum samples 
and were thus selected for investigation in this study. For 
these compounds, serum values that fell under the limit of 
detection were set at 0.25 ng/mL.

Estimated glomerular filtration rate was calculated 
based on the Chronic Kidney Disease – Epidemiology 
Collaboration (CKD-EPI) formula.29 Chronic kidney dis-
ease was defined as an estimated glomerular filtration rate 
(eGFR) of at least 60 mL/min/1.73 m2.

Univariate continuous data were analysed using the 
t-test or general linear models, while categorical data were 
analysed using the chi-square test. Logistic regression was 
used to determine the multivariable adjusted independent 
associations of serum PFAS levels to stroke. Multivariable 
models included race, sex, diabetes duration, body mass 
index (BMI), high-density lipoprotein (HDL) cholesterol, 
low-density lipoprotein (LDL) cholesterol, C-reactive pro-
tein, eGFR (mL/min/1.73 m2) and a history of smoking. To 
evaluate the potential modifying effect of diabetes on the 
association between each of the four PFAS and a history of 
stroke, we conducted multivariate analyses stratified by 
diabetes status. The interaction between diabetes and each 
PFAS was subsequently tested by including the respective 
multiplicative interaction term in the adjusted statistical 
model in the full population of those with and without dia-
betes. Data were analysed using SAS, version 9.4 (Cary, 
North Carolina).

Results

Characteristics of the study population stratified by diabe-
tes status are presented in Table 1. Persons with diabetes 
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tended to be older and non-white. They tended to have a 
higher BMI but lower cholesterol levels and kidney func-
tion. They were also more likely to have a history of stroke, 
chronic kidney disease and a history of smoking. PFOA, 
PFOS and PFHxS concentrations were significantly higher 
in those with versus without diabetes. PFNA concentra-
tions were similar in the two groups.

A history of stroke was reported in 1.8% (n = 881) of the 
population as a whole, in 6.1% (n = 238) of those with dia-
betes and 1.5% (n = 643) of those without diabetes. As 
older individuals would have a greater prevalence of stroke 
and would also have a higher lifetime exposure to PFAS,15 
we thus first tested for confounding by age in the associa-
tion of PFAS with stroke. Figure 1 depicts the unadjusted 
and age-adjusted association of each PFAS with stroke. 
These data suggest substantial confounding by age as the 
relationship between PFAS and stroke generally became 
stronger, and for two of the PFAS (PFOA and PFOS), the 
relationship went from being positively associated to neg-
atively associated with stroke. Hereafter, all analyses were 
age adjusted in our base models.

Table 2 presents the multivariable adjusted association 
of stroke with the four PFAS. As also depicted in Figure 1, 
in analyses adjusted only for age, all four PFAS were sig-
nificantly and inversely associated with stroke, with odds 
ratios (ORs) ranging from 0.85 (0.74–0.97) for PFNA to 
0.93 (0.88–0.98) for PFOA. Additional adjustment for sex, 
diabetes duration, BMI, HDL cholesterol, LDL choles-
terol, C-reactive protein, eGFR and a history of smoking 

modestly attenuated these inverse associations, with only 
those of PFHxS [OR = 90, 95% confidence interval 
(CI) = 0.83–0.98] and PFOS (OR = 0.90, 95% CI = 0.82–
0.98) remaining significantly associated with stroke.

Table 3 depicts the relationship of the four PFAS with 
stroke stratified, by diabetes status. Significant effect modi-
fication by diabetes status with stroke was observed for the 
sulphur-containing PFAS. PFOS (OR = 0.81, 95% CI = 0.70–
0.90) and PFHxS (OR = 0.75, 95% CI = 0.64–0.88) both 
showed significant, inverse relationships with stroke 
among those with diabetes but no relationship among those 
without diabetes (p interaction = 0.006 for PFOS and 0.01 
for PFHxS). Conversely, PFOA was inversely associated 
with stroke among those without diabetes (OR = 0.94, 
95% CI = 0.88–1.00) but not among those with diabetes 
(OR = 1.04, 95% CI = 0.94–1.15), although the interaction 
was non-significant (p interaction = 0.69).

Discussion

In this study of nearly 50,000 Appalachian adults, we 
investigated the association of serum levels of four PFAS 
with stroke and evaluated the potential modifying influ-
ence of diabetes on these associations. We found that 
higher levels of each of the sulphur-containing PFAS 
were associated with a lower likelihood of stroke. 
Stratifying by diabetes status generally yielded similar 
inverse associations, though mainly significant only 
among those with diabetes. To our knowledge, this is the 

Table 1.  Characteristic of C8 Health Project adults age ⩾ 20 years of age, stratified by diabetes status.

Diabetes N = 3921 No diabetes N = 44,285 p value

Age, years 58.0 ± 13.6 45.0 ± 15.6 <0.0001
Sex, female 52.0 (2038) 54.2 (24,010) 0.007
Race, white 98.2 (3850) 98.9 (43,799) <0.0001
Diabetes duration, years 6.5 (3.2–13.3) – –
BMI, m/kg2 33.0 ± 9.5 28.2 ± 7.4 <0.0001
HDLc, mg/dL 46.8 ± 12.2 50.1 ± 14.5 <0.0001
LDLc, mg/dL 98.6 ± 36.5 114.0 ± 34.7 <0.0001
C-reactive protein, mg/dLa 2.6 (1.1–6.0) 1.8 (0.80–4.2) <0.0001
eGFR, mL/min/1.73 ma,b 77.1 ± 22.1 88.0 ± 19.0 <0.0001
Chronic kidney disease 21.6 (848) 7.2 (3171) <0.0001
A history of stroke/TIA 6.1 (238) 1.5 (643) <0.0001
A history of smoking 55.1 (2161) 52.3 (23,174) <0.0001
Perfluroakly acids – – –
  PFHxSa 2.8 (1.8–4.3) 3.0 (1.9–4.8) <0.0001
  PFOAa 28.7 (12.9–73.6) 27.6 (13.4–70.4) 0.97
  PFOSa 21.4 (13.8–31.9) 20.1 (13.5–29.0) 0.01
  PFNAa 1.3 (1.0–1.8) 1.4 (1.0–1.8) <0.0001

Data are presented as means ± SD, median (IQR) or percent (n).
BMI: body mass index; HDLc: high-density lipoprotein cholesterol; LDLc: low-density lipoprotein cholesterol; TIA: transient ischaemic attack; PFHxS: 
perfluorohexane sulphate; PFOA: perfluorooctanoic acid; PFOS: perfluoroctane sulfonate; PFNA: perfluorononaoic acid.
aNatural logarithmically transformed before analyses.
bCKD-EPI formula.
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first study to investigate the relationship of PFAS with 
stroke among persons with diabetes.

The few studies that have investigated the relationship 
of PFAS with stroke have been restricted to PFOA and 
largely to worker populations. Leonard and colleagues 
found a decreased risk of stroke death among workers at 
the Parkersburg, West Virginia DuPont polymer plant, a 
population of workers exposed to high levels of PFOA, 
compared to both the US general population and the West 

Virginia general population. They also observed non-
significant decreased risk compared to a DuPont worker 
population composed of eight states in the area surround-
ing West Virginia.17 By contrast, Lundin et al.18 found an 
increased risk of stroke death associated with PFOA 
exposure among a worker population at the 3M Company 
in Cottage Grove, MN. In an study composed of approxi-
mately two-thirds of the population reported on in our 
analyses, that is, the adult C8 Health Project population, 
plus an additional worker population of the Parkersburg, 
WV DuPont plant, Simpson et  al.19 observed inconclu-
sive relationships between PFOA exposure and stroke 
risk. In their analyses, PFOA exhibited a modest positive 
association with stroke risk when examined retrospec-
tively but a non-significant inverse relationship when 
examined prospectively. In their analyses, diabetes was 
not examined specifically. Our study, by stratifying by 
diabetes status and examining additional PFAS, expands 
upon their findings. In agreement with Simpson et al.’s 
prospective analyses, we observed a weak and non-sig-
nificantly inverse relationship between PFAS and stroke 
in the population as whole after adjustment for potential 
confounders. We also observed this non-significant rela-
tionship in the population with diabetes for PFOA and 
PFNA. However, for the sulphur-containing PFAS, not 
examined in the Simpson et al. study,19 we observed sig-
nificant inverse associations in the diabetic population, 

Figure 1.  Univariate and age-adjusted association of PFAS with stroke in the C8 Health Population.
Solid lines represent univariate analyses. Dashed lines represent age-adjusted analyses. PFHxS: univariate OR = 0.99 (0.91–1.08), age-adjusted 
OR = 0.86 (0.79–0.93); PFOA: univariate OR = 1.08 (1.02–1.13), age-adjusted OR = 0.93 (0.88–0.98); PFOS: univariate OR = 1.17 (1.05–1.29),  
age-adjusted OR = 0.86 (0.79–0.94); PFNA: univariate OR = 0.75 (0.66–0.86), age-adjusted OR = 0.85 (0.74–0.97).

Table 2.  Association of the PFAS with stroke in the C8 
Health Population.

Model 1 Model 2

  OR (95% CI) p value OR (95% CI) p value

PFHxSa 0.86 (0.79–0.93) 0.0003 0.90 (0.83–0.98) 0.02
PFOAa 0.93 (0.88–0.98) 0.01 0.96 (0.91–1.01) 0.12
PFOSa 0.86 (0.79–0.94) 0.0009 0.90 (0.82–0.98) 0.02
PFNAa 0.85 (0.74–0.97) 0.02 0.90 (0.79–1.02) 0.10

PFAS: perfluoroalkyl substances; OR: odds ratio; CI: confidence 
interval; PFHxS: perfluorohexane sulphate; PFOA: perfluorooctanoic 
acid; PFOS: perfluoroctane sulfonate; PFNA: perfluorononaoic acid.
Model 1: Adjusted for age.
Model 2: Adjusted for age, sex, race, diabetes durationa, BMI, HDL 
cholesterol, LDL cholesterol, C-reactive proteina, eGFR and a history 
of smoking.
aNaturally logarithmically transformedd before analyses.
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while no relationship was observed in the non-diabetic 
population.

While underlying mechanisms remain speculative, 
pathways by which PFAS may decrease stroke risk are 
several. These include the potential reduction in BMI in 
those exposed to PFAS suggested in some,15,30,31 but not all 
studies;32 the high oxygen-carrying capacity of certain 
PFAS indicated in several prior studies;33–36 and their 
insulin-sensitizing and anti-inflammatory properties.37–39 
PFAS have also been shown to reduce vascular hypoxia, a 
trigger for vascular disease and atherosclerosis.33,34 In 
addition, PFAS has been inversely associated with hyper-
tension,15 an established risk factor for stroke.

PFAS are synthetic ‘hydrocarbon’ compounds in which 
the fluorine either partially or completely replaces the 
hydrogen atoms. This chemical structure gives PFAS both 
oleophobic and hydrophobic characteristics. PFAS are per-
sistent environmental contaminants due to their strong 
carbon-fluorine bonds which resist environmental degra-
dation. However, the fluorine replacement of carbon in 
PFAS makes PFAS very good oxygen carriers with an oxy-
gen solubility in perfluorocarbons that is 25 times higher 
than haemoglobin.33,34 They are also able to load and 
unload oxygen at twice the rate of haemoglobin, making 

them better oxygen transporters. Thus, PFAS could poten-
tially decrease the risk for stroke occurrence by limiting 
hypoxia-induced inflammation by reducing the oxidative 
stress caused by hypoxia. While we cannot explain the 
apparent stronger relationships of the sulphur-containing 
PFAS with stroke, or why this was more pronounced in 
those with diabetes, it is possible that PFHxS and PFOS 
exert a more potent anti-hypoxic effect due to their longer 
half-lives.40,41 This may be particularly beneficial among 
persons with diabetes, a condition often characterized by 
generalized hypoxia.42 However, no studies have yet deter-
mined if the common industrial PFAS included in this 
study are oxygen carriers or can be used to deliver oxygen 
to cells.

Strengths of our study include the large sample size and 
high participation rate. Our population of Appalachian 
adults included nearly 48,000 adults, and the participation 
rate among eligible adults exceeded 80%.25 In addition, 
information was available on a wide array of biomarkers, 
as well as on multiple potential confounders.

Our study also had several limitations. Since this was a 
cross-sectional study, no conclusions about causality can 
be drawn. This population also comprised a predominately 
white, Appalachian population, limiting generalizability to 

Table 3.  Association of PFAS with stroke, stratified by diabetes status, in the C8 health population.

Model 1

  Diabetes No diabetes

  OR (95% CI) p value OR (95% CI) p value

PFHxSa 0.70 (0.60–0.82) <0.0001 0.97 (0.88–1.08) 0.61
PFOAa 1.00 (0.90–1.11) 0.98 0.92 (0.87–0.98) 0.01
PFOSa 0.76 (0.66–0.88) 0.0002 0.94 (0.84–1.06) 0.31
PFNAa 0.81 (0.63–1.03) 0.08 0.88 (0.75–1.03) 0.10

Model 2

  Diabetes No diabetes

  OR (95% CI) p value OR (95% CI) p value

PFHxSa 0.75 (0.64–0.88) 0.0004 0.99 (0.90–1.10) 0.91
  p interactionb 0.006
PFOAa 1.04 (0.94–1.15) 0.47 0.94 (0.88–1.00) 0.04
  p interactionb 0.69
PFOSa 0.81 (0.70–0.90) 0.004 0.97 (0.86–1.08) 0.54
  p interactionb 0.01
PFNAa 0.89 (0.70–1.14) 0.37 0.91 (0.78–1.06) 0.22
  p interactionb 0.83

PFAS: perfluoroalkyl substances; OR: odds ratio; CI: confidence interval; PFHxS: perfluorohexane sulphate; PFOA: perfluorooctanoic acid; PFOS: 
perfluoroctane sulfonate; PFNA: perfluorononaoic acid.
Model 1: Adjusted for age.
Model 2: Adjusted for age, sex, race, diabetes durationa, BMI, HDL cholesterol, LDL cholesterol, C-reactive proteina, eGFR and a history of smoking.
aNaturally logarithmically transformedd before analyses.
bp value for interaction between the specific PFAS and diabetes status in Model 2.
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other racial and ethnic groups. Another limitation is that 
diabetes and stroke status were determined via-self report 
of a physician diagnosis; thus, misclassification of both 
diabetes and stroke status is possible. However, any mis-
classification was likely due to under-ascertainment of dia-
betes or stroke, which would have resulted in biasing our 
results towards the null, that is, our observed results being 
an underestimation of the relationship between PFAS and 
stroke. Survival bias, in which participants with especially 
high or low levels of PFAS could have died before the start 
of the study, must also be considered, as the drinking water 
had been contaminated for more than 50 years. Thus, 
sicker people with high serum PFAS levels resulting in 
stroke, particularly those with both diabetes and stroke, 
may have already died before entering the study, and thus 
a harmful prospective relationship between PFAS and 
stroke is not being observed. Our findings comparing 
crude analyses with age-adjusted analyses, in which older 
individuals would most likely have had a longer lifetime 
exposure to PFAS, suggest that survival bias is not a strong 
explanation for our results, since the relationships became 
more strongly inverse upon adjustment for age.

In light of both the limitations of our study and the 
potential protective relationship between certain PFAS and 
stroke risk among persons with diabetes, rigorous prospec-
tive research among persons with diabetes is clearly war-
ranted to confirm our findings. If our findings are confirmed, 
future studies should investigate mechanistic pathways in 
which PFAS may protect against stroke. These studies may 
be animal models evaluating the degree to which PFAS 
protect against hypoxia, as well as whether the PFAS exam-
ined in our study can serve as an oxygen-carrying replace-
ment for haemoglobin, function as an anti-glycaemic agent 
(by stimulating insulin production or by serving as an 
insulin sensitizer) and/or whether the potential protective 
property of PFAS is through other mechanisms. Moreover, 
human studies could examine whether the association of 
PFAS with stroke reduction is primarily through prevention 
of hemorrhagic versus ischemic stroke; if the putative 
protective effects of PFAS are predominantly related to 
ischemic stroke prevention, this would provide further evi-
dence of PFAS acting via hypoxia inhibition.

Conclusion

In conclusion, in this large cross-sectional study of nearly 
50,000 adults, serum levels of PFHxS and PFOS were sig-
nificantly and inversely associated with stroke; these asso-
ciations were significantly more pronounced among those 
with diabetes. Mechanisms and implications for this diabe-
tes-specific inverse relationship need to be further 
explored. While our results should not be interpreted as 
suggesting that exposure to PFAS is beneficial, our data do 
suggest that PFAS do not increase the risk of stroke among 

persons with or without diabetes. Moreover, PFAS may 
offer protection from stroke in individuals with diabetes, 
and this is an area that warrants further investigation
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