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Abstract
DNA metabarcoding from the ethanol used to store macroinvertebrate bulk samples 
is a convenient methodological option in molecular biodiversity assessment and bio-
monitoring of aquatic ecosystems, as it preserves specimens and reduces problems 
associated with sample sorting. However, this method may be affected by errors and 
biases, which need to be thoroughly quantified before it can be mainstreamed into 
biomonitoring programmes. Here, we used 80 unsorted macroinvertebrate samples 
collected in Portugal under a Water Framework Directive monitoring programme, 
to compare community diversity and taxonomic composition metrics estimated 
through morphotaxonomy versus metabarcoding from storage ethanol using three 
markers (COI-M19BR2, 16S-Inse01 and 18S-Euka02) and a multimarker approach. 
A preliminary in silico analysis showed that the three markers were adequate for 
the target taxa, with detection failures related primarily to the lack of adequate bar-
codes in public databases. Metabarcoding of ethanol samples retrieved far less taxa 
per site (alpha diversity) than morphotaxonomy, albeit with smaller differences for 
COI-M19BR2 and the multimarker approach, while estimates of taxa turnover (beta 
diversity) among sites were similar across methods. Using generalized linear mixed 
models, we found that after controlling for differences in read coverage across sam-
ples, the probability of detection of a taxon was positively related to its proportional 
abundance, and negatively so to the presence of heavily sclerotized exoskeleton (e.g., 
Coleoptera). Overall, using our experimental protocol with different template dilu-
tions, the COI marker showed the best performance, but we recommend the use of 
a multimarker approach to detect a wider range of taxa in freshwater macroinver-
tebrate samples. Further methodological development and optimization efforts are 
needed to reduce biases associated with body armouring and rarity in some macroin-
vertebrate taxa.
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1  | INTRODUC TION

Biological monitoring (i.e., biomonitoring) is a key element of inte-
grated freshwater management (Jackson et al., 2016), which is man-
datory under regulations such as the European Water Framework 
Directive (WFD; Directive 2000/60/EC) and the 1972 US Clean 
Water Act. Biomonitoring provides information on spatial and tem-
poral trends in the ecological state of ecosystems, allowing recogni-
tion of current or forthcoming threats and enacting early corrective 
measures where needed (Jackson et al., 2016). To meet these goals, 
biomonitoring commonly requires a taxonomical characterization 
(e.g., species richness, composition, and relative or absolute abun-
dances) of the communities of target organisms such diatoms, mac-
rophytes, benthic macroinvertebrates or fish. These community 
parameters are then used to compute biological indices reflecting 
the degree of stressor impacts at sampling sites (Jackson et al., 2016; 
Pawlowski et al., 2018). Traditionally, such characterization involves 
expensive, laborious and time-consuming morphological identifica-
tion of organisms, which requires high taxonomic expertise, provides 
limited taxonomic resolution for early life stages, and strongly con-
strains the spatial and temporal coverage of sites that can be sampled 
(Baird & Hajibabaei, 2012; Leese et al., 2016). During the past de-
cade, it was demonstrated that these constraints can at least partly 
be offset by molecular techniques such as DNA metabarcoding, 
which allows the identification of multiple taxa from environmental 
samples using standard genetic markers (Baird & Hajibabaei, 2012; 
Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012). 
Consequently, efforts have been undertaken to integrate metabar-
coding in freshwater monitoring (Elbrecht & Steinke, 2019; Feio 
et al., 2020; Leese et al., 2016; Pawlowski et al., 2018), which for or-
ganisms such as diatoms have succeeded in producing methods that 
are virtually ready for practical application (Apothéloz-Perret-Gentil 
et al., 2017; Cordier, Lanzén, Apothéloz-Perret-Gentil, Stoeck, & 
Pawlowski, 2019; Mortágua et al., 2019; Visco et al., 2015), whereas 
for others, a great deal of optimization and standardization is still 
needed (Pawlowski et al., 2018).

Benthic macroinvertebrates are a group of organisms widely 
used in freshwater monitoring (Jackson et al., 2016), for which there 
are still uncertainties on the best molecular approaches to replace 
morphological methods (Blackman et al., 2019; Bush et al., 2019). 
One approach involves the metabarcoding of environmental DNA 
(eDNA) extracted from water samples, but recent studies suggest 
that this may be largely unsuitable to characterize local communities 
of macroinvertebrate indicator taxa (Macher et al., 2018; Pereira-da-
Conceicoa et al., 2019). More frequently, the proposed approaches 
aim at replicating as closely as possible the traditional methods, and 
they involve collecting macroinvertebrate bulk samples in the field, 
separating individuals from stones, twigs, algae and other materials, 

grinding each sorted sample to produce a tissue homogenate, and 
DNA metabarcoding of a subsample of the homogenate (Elbrecht & 
Steinke, 2019). This approach has proved successful at retrieving the 
taxa identified morphologically (Elbrecht, Vamos, Meissner, Aroviita, 
& Leese, 2017; Emilson et al., 2017; Serrana, Miyake, Gamboa, & 
Watanabe, 2019), but (a) it involves the destruction of samples, 
which is incompatible with the sample preservation requirements of 
national regulatory agencies (e.g., under WFD), and (b) it maintains 
the sorting step that is time consuming and may increase the chances 
of cross-contamination (Elbrecht, Peinert, & Leese, 2017). Sorting 
can potentially be reduced by grinding unsorted bulks after remov-
ing only the very coarse materials (Hajibabaei et al., 2019; Majaneva, 
Diserud, Eagle, Hajibabaei, & Ekrem, 2018), making the approach 
more expeditious, yet it does not avoid sample destruction. To offset 
these problems, metabarcoding can be performed using DNA ex-
tracted from the solution used to preserve the invertebrate samples, 
usually ethanol, as organisms release cells and free DNA into the 
preservative medium (Shokralla, Singer, & Hajibabaei, 2010). Studies 
have shown that DNA extracted from preservative solution can in-
deed detect the organisms present in mock communities (Carew, 
Coleman, & Hoffmann, 2018; Gauthier et al., 2020; Hajibabaei, 
Spall, Shokralla, & van Konynenburg, 2012; Nielsen, Gilbert, Pape, & 
Bohmann, 2019; Shokralla et al., 2010), with a few additional stud-
ies also showing promising results using coarse and unsorted field 
samples, that contain potential PCR inhibitors from river substrate 
and organic matter (Martins et al., 2019; Zizka, Leese, Peinert, & 
Geiger, 2019). However, further research is needed on potential lim-
itations and shortcomings associated with this approach (Blackman 
et al., 2019; Bush et al., 2019).

Previous studies have underlined that metabarcoding of pre-
servative solutions may have differential ability to detect different 
macroinvertebrate taxa, which may introduce biases in estimates of 
the taxonomic composition of bulk samples (reviewed in Table 1). 
Some of these biases are transversal to metabarcoding workflows 
and include (a) the lack of complete barcoding reference database, 
limiting sequence identification at lower taxonomic ranks in less rep-
resented groups (Elbrecht et al., 2017; Erdozain et al., 2019; Weigand 
et al., 2019), and (b) primer specificity causing some taxonomic 
groups to be rarely amplified or missed altogether under certain 
conditions (Carew et al., 2018; Elbrecht & Leese, 2017b; Elbrecht 
et al., 2017). Other biases are related to (c) the amount of DNA of 
the target organisms in samples that, albeit observed in tissue-based 
metabarcoding approaches, may have a greater impact in preserva-
tive solutions driven by DNA release behaviours of organisms to the 
medium. When concentration of its DNA is very low, a taxon may 
be missed during preservative subsampling for DNA extraction or 
during the PCR amplification step, and so its detection probability 
would be low. Therefore, detection probabilities from preservative 
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should be higher for taxa that are abundant and/or have high biomass 
than for taxa that are rare and/or have low biomass, since the DNA 
in solution will be more concentrated for the former than the latter 
(Carew et al., 2018; Erdozain et al., 2019; Hajibabaei et al., 2012). 
The amount of DNA in solution for a given taxon may also be condi-
tioned by the body characteristics of individuals (Carew et al., 2018). 
Organisms that are soft bodied (e.g., Oligochaeta) may readily re-
lease cells or free DNA to the surrounding solution, and thus have 
higher probability of detection than organisms possessing a heavy 
chitinous exoskeleton (e.g., adults of Coleoptera), or with soft tissues 
protected by a shell (e.g., Mollusca) or a case (e.g., some Trichoptera; 
Carew et al., 2018; Zizka et al., 2019). The detection probabilities may 
also be lower for small-bodied organisms since they have a smaller 
body surface in contact with solution compared to larger-bodied 
organisms, though this has not been detected in previous studies 
(Carew et al., 2018; Erdozain et al., 2019; Zizka et al., 2019). Although 
these problems have been previously identified, their impacts on the 

results of metabarcoding from preservative solutions still need to be 
quantified in detail.

In this study, we assessed biases in the taxonomic recovery of 
freshwater macroinvertebrates from the metabarcoding of ethanol 
used to preserve unsorted bulk samples, and we evaluated how 
they may affect the practical application of this approach in mon-
itoring programmes. First, we assessed the adequacy of different 
markers to recover targeted taxa using both in silico analysis and a 
mock community sample (positive control), and then, we quantified 
metabarcoding biases using a realistic setting, involving 80 samples 
collected across Central Portugal in the scope of a national WFD 
monitoring programme. In the latter analysis, we compared detec-
tions of each taxon using metabarcoding and morphological identi-
fication, and applied a modelling approach to (a) estimate variation 
in probabilities of detection of each taxon in relation to per-sample 
sequencing depth, and (b) relate probabilities of detection to ab-
solute and relative abundances, sample richness, and to the body 

TA B L E  1   Review of potential errors and biases in taxonomic recovery from metabarcoding of solutions preserving freshwater 
macroinvertebrate bulk samples, identified in this and previous studies

Method-
specific a  Description References

Technical biases

Marker adequacy

(i) Reference databases No Certain taxa are still missed because they are not well 
represented in reference databases

Erdozain et al. (2019); this 
study

(ii) Primer specificity No “Universal” COI markers tested so far often miss non-
Insecta taxa (Mollusca, Annelida and Platyhelminthes), 
even when more than one primer set is used

Carew et al. (2018), Hajibabaei 
et al. (2012) and Zizka 
et al. (2019); this study

(iii) Bioinformatics No Certain taxa are discarded during attribute filtering by 
size in COI (e.g., Platyhelminthes, Mollusca and Diptera)

this study

Time of bulk fixation Yes Shorter periods (e.g., 1–5 days) decrease DNA yields and 
reduce taxonomic recovery

Martins et al. (2019)

Preprocessing steps Yes Taxonomic recovery increases when applying whole 
sample freezing (liquid nitrogen) but decreases when 
using the first ethanol phase in which specimens were 
preserved after sampling

Zizka et al. (2019)

DNA extraction Yes Mechanical lysis is less efficient in recovering taxa than 
enzymatic lysis, and DNA is likely to be captured more 
efficiently by magnetic beads than by column-based 
methods

Martins et al. (2019)

Biological biases

Abundance/biomass no Rare taxa or taxa with low biomass (e.g., Ephemeroptera, 
Trichoptera) are often missed

Erdozain et al. (2019) and 
Hajibabaei et al. (2012); this 
study

Body size no Small taxa (e.g., Hydrophilidae, Trombidiformes) are less 
likely to be detected

Carew et al. (2018) and Zizka 
et al. (2019)

Body structure

(i) Sclerotization Yes More sclerotized taxa (e.g., Hemiptera, Coleoptera, 
Amphipoda) are often missed likely because they 
release less DNA to the medium

Carew et al. (2018) and Zizka 
et al. (2019); this study

(ii) Protective cases Yes Cased and shelled forms (e.g., certain Trichoptera 
families, Mollusca) are often missed compared to 
noncased sister groups

Carew et al. (2018) and Zizka 
et al. (2019); this study

 aIndicates which biases are mainly associated with metabarcoding of preservative samples. 
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characteristics of each taxon, while controlling for variations in se-
quencing depth. To further test whether biases were conditional on 
metabarcoding markers, analyses were carried out in three genomic 
regions commonly used in the study of benthic macroinvertebrates: 
the mitochondrial cytochrome oxidase I (namely 5′-COI region), the 
mitochondrial 16S rRNA and the nuclear 18S rRNA genes. Finally, we 
produced a multimarker data set by combining information from the 
three markers, which is expected to overcome some of the limitations 
of each individual marker (Cowart et al., 2015; Stefanni et al., 2018; 
Wangensteen, Palacín, Guardiola, & Turon, 2018). Our results show 
that metabarcoding of preservative ethanol produces strong bias 
against rare and hard-bodied taxa, which needs to be overcome if 
this approach is to be adopted in monitoring programmes.

2  | METHODS

2.1 | Macroinvertebrate sampling

The study was carried out in central Portugal, over an area of 
about 11,215 km2 encompassing the watersheds of the Vouga, 
Mondego and Lis rivers (details in Mendes, Calapez, Elias, Almeida, 
& Feio, 2014; Mortágua et al., 2019). Bulk samples were obtained in 
the spring of 2017 at 80 river sites, following the Portuguese official 
protocols for collection of benthic macroinvertebrates in lotic sys-
tems (INAG, 2008). Briefly, a 50-m sector of stream was selected at 
each sampling site, and six macroinvertebrate subsamples were col-
lected by kick-sampling using a kick-net with 0.25-m2 opening and 
500-µm mesh size, and covering the most representative habitats 
proportionally to their area in the sector. Each subsample involved 
kick/sweep sampling of 1-m stream length in the upstream direction. 
All subsamples within a site were pooled into a single bulk sample, 
preserved in nondenatured 96% ethanol (UN1170) with an approxi-
mate ethanol:bulk ratio of 3:1 and stored at room temperature.

2.2 | Laboratory procedures

2.2.1 | Morphotaxonomy

Macroinvertebrate samples were sorted and identified taxonomi-
cally at family level by an experienced researcher habilitated to pro-
cess samples collected under the WFD. The number of individuals of 
each taxon in each sample was recorded. Identification was carried 
out at the family level because this is the resolution used in Portugal 
to estimate WFD-based Ecological Quality Indices for freshwater 
benthic macroinvertebrates (INAG, 2008).

2.2.2 | Metabarcoding

For metabarcoding, we used the 80 samples collected in the field 
and a positive control with a mix of DNA extracted from specimens 

representing 55 macroinvertebrate families commonly recorded 
in our study area (Table S1). After careful manual shaking, 10 ml 
of preservative ethanol was taken from each macroinvertebrate 
bulk sample around 20 days after field sampling and transferred to 
an individual 15-ml falcon tube where they were stored at −20ºC 
until DNA extraction. Prior to DNA extraction, a 2 ml subsam-
ple was taken from each falcon tube and ethanol was completely 
evaporated using an Eppendorf vacuum concentrator. Genomic 
DNA was then extracted with the column-based E.Z.N.A.® Tissue 
DNA Kit protocol (Omega BioTek, Inc.), using the InhibitEX® Buffer 
(QIAGEN) instead of the manufacturer's lysis buffer, as described in 
Martins et al. (2019). At the final elution step, DNA was recovered 
from the spin column using 70 μl Elution Buffer incubated for 5 min 
at room temperature before the final centrifuge, diluted 1:2 (DNA 
extract:total volume) with ultrapure water and transferred to a mi-
croplate. Although E.Z.N.A.® was not the best extraction method 
identified by Martins et al. (2019), we used it because it performed 
close to the best in ethanol samples taken >10 days after field sam-
pling, and it was easier to implement for processing a large number 
of samples. Extractions were performed in batches of 24, including 
one extraction negative control, on a vacuum manifold (QIAGEN) to 
minimize cross-contamination. Extraction replication was not per-
formed due to the low variability in taxa composition among repli-
cates found by Martins et al. (2019).

For PCR amplification, we used one marker per each of three 
genomic regions, which together were expected to detect most mac-
roinvertebrate taxa: COI, 16S and 18S (Table 2). A COI marker (COI-
M19BR2) was used because this gene is commonly recommended 
for metazoans due to its high taxonomic resolution, lower taxo-
nomic inflation and comprehensive reference databases (Andújar, 
Arribas, Yu, Vogler, & Emerson, 2018; Clarke, Beard, Swadling, & 
Deagle, 2017; Flynn, Brown, Chain, Macisaac, & Cristescu, 2015), al-
though it contains poor conserved regions for suitable primer design, 
which may contribute to strong amplification biases (Deagle, Jarman, 
Coissac, Pompanon, & Taberlet, 2014; Elbrecht & Leese, 2017b). 
COI-M19BR2 was found previously to consistently amplify 
Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO) taxa 
(Martins et al., 2019), which are widely considered the best mac-
roinvertebrate indicators of freshwater biological quality (Bonada, 
Rieradevall, Prat, & Resh, 2006). Although we also tested the widely 
used COI-BF1BR1 (Elbrecht & Leese, 2017b) to enhance compara-
bility with other studies, it was later discarded due to amplification 
problems. A 16S marker (16S-Inse01) was used because this gene 
comprises more conserved regions than COI, reducing the chance 
of primer-template mismatches and is thus expected to exhibit 
lower taxonomic bias (Clarke, Soubrier, Weyrich, & Cooper, 2014; 
Deagle et al., 2014), though it provides lower taxonomic resolution 
and in many geographic regions it is less represented in reference 
databases (Clarke et al., 2014; Elbrecht et al., 2016). 16S-Inse01 
was expected to provide high detection ability for a wide range of 
insect taxa (Taberlet, Bonin, Zinger, & Coissac, 2018), which usu-
ally dominate freshwater macroinvertebrate samples. Finally, we 
used an 18S marker (18S-Euka02) due to the ability of this gene to 
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screen a wide range of metazoan groups (Chain, Brown, Macisaac, 
& Cristescu, 2016; Zhan, Bailey, Heath, & Macisaac, 2014), although 
it may have relatively low taxonomic resolution for certain groups. 
18S-Euka02 marker was expected to allow the detection of non-Ar-
thropoda phyla (e.g., Platyhelminthes, Annelida, Mollusca; Taberlet 
et al., 2018), which are also common in freshwater macroinverte-
brate samples.

PCR amplifications of 16S-Inse01 and 18S-Euka02 were made 
at the Laboratoire d’Ecologie Alpine (LECA, France). Each 20-μl PCR 
contained 10 μl of AmpliTaq Gold Master Mix (Applied Biosystems™), 
0.2 μM of each indexed primer, 5.84 μl ultrapure water, 0.04 μg of 
bovine serum albumin (Roche Diagnostic and 2 μl of DNA diluted 
1:20 in total. After an initial denaturation cycle at 95°C for 10 min, 
45 cycles (16S-Inse01) or 50 cycles (18S-Euka02) of 30 s at 95°C, 
30-s annealing at 52°C (16S-Inse01) or 45°C (18S-Euka02) and 60-s 
extension at 72°C were performed, followed by a final elongation 
at 72°C for 7 min. Number of cycles and the dilution ratio were de-
termined through qPCR beforehand to improve amplification suc-
cess in these two markers. All PCR amplifications were performed 
in quadruplicate, including the positive control (i.e., mock sample) 
and three types of negative controls (tag, extraction and PCR; plate 
scheme: Figure S1). PCR products were pooled and sent to Fasteris 
SA for library preparation using the MetaFast protocol (www.
faste ris.com/metafast; Taberlet et al., 2018). PCR amplification 
of COI-M19BR2 was performed at CIBIO Laboratories following 
the two-step protocol described in Martins et al. (2019) with few 
modifications. For the first-round PCR, each 10-μl PCR contained 
5 μl of Hotstart Master Mix (Multiplex PCR Kit, QIAGEN), 0.4 μM 
of each primer, 2.2 μl ultrapure water and 2 μl of DNA diluted 1:2 
in total. After an initial denaturation cycle at 95°C for 15 min, 40 
cycles of 30 s at 95°C, 60-s annealing at 50°C and 30-s extension 
at 72°C were performed, followed by a final elongation at 60°C for 

10 min. In the second-round PCR, unique dual indexes (Gansauge 
& Meyer, 2013) were selected for each replicate and each 10-μl in-
dexing PCR contained 5 μl 2× KAPA HiFi HotStart ReadyMix (Kapa 
Biosystems), 5 μM of mixed indexing primer, 2 μl ultrapure water 
and 2 μl of 10× diluted first-round PCR product. Indexing thermal 
cycling conditions were 95°C, for 3 min; followed by 10 cycles of 
95°C for 30 s, 55°C for 30 s, 72°C for 30 s, with an extension of 72°C 
for 5 min. PCR products were validated through electrophoresis and 
pooled without normalization, similarly to the other two markers. 
Paired-end (PE) sequencing was carried out in two separate Illumina 
(Illumina) runs: COI-M19BR2 library was sequenced in a single run 
on an Illumina MiSeq system (2 × 250 bp), while the 18S-Euka02 and 
16S-Inse01 libraries were sequenced in a single run on a HiSeq 2500 
sequencing platform (2 × 125 bp) in Fasteris SA.

2.3 | Bioinformatic Analysis

2.3.1 | Evaluation of marker adequacy

We conducted in silico analyses to assess the adequacy of each 
marker to amplify each of 98 macroinvertebrate families expected 
to occur in our study area. These analyses were undertaken using a 
script (Figure S2a) that combines custom-built databases extracted 
from GenBank, in silico amplification using ecoPCR and informative 
outputs, enabling the user to test metabarcoding markers, evalu-
ate their coverage in the database and measure their adequacy to 
target taxa. Databases for each marker consisted of sequences that 
met the following criteria: (a) they corresponded to the target ampli-
con region; (b) they contained the anticipated primer binding sites; 
and (c) they extended beyond primer binding sites. Criteria (a) and 
(b) were implemented to reduce bias in results, since running an in 

TA B L E  2   Description of metabarcoding markers used

Gene-marker Length range (bp)b  Primer name Primer sequence (5′−3′) Reference

COI-M19BR2 305–322 Martins-2019-COI_Fw GGNTGAACHGTHTAYCCHCC Martins 
et al. (2019)

BR2 TCDGGRTGNCCRAARAAYCA Elbrecht and Leese 
(2017b)

COI-BF1BR1a  — BF1 ACWGGWTGRACWGTNTAYCC Elbrecht and Leese 
(2017b)

BR1 ARYATDGTRATDGCHCCDGC Elbrecht and Leese 
(2017b)

16S-Inse01 70–197 Inse01_F RGACGAGAAGACCCTATARA Taberlet et al. 
(2018)

Inse01_R ACGCTGTTATCCCTAARGTA Taberlet et al. 
(2018)

18S-Euka02 68–202 Euka02_F TTTGTCTGSTTAATTSCG Guardiola 
et al. (2015)

Euka02_R CACAGACCTGTTATTGC Guardiola 
et al. (2015)

 aThe COI-BF1BR1 marker was initially used, but it was later discarded due to low amplification success. 
 bAmplicon length range given by in silico amplification (see Section 2) for target families and incorporated into the bioinformatic pipeline. 

http://www.fasteris.com/metafast
http://www.fasteris.com/metafast
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silico PCR without first confirming that all sequences correspond 
to the target amplicon region can produce false negatives (as noted 
by Egeter et al., 2019). The purpose of requirement (c) was to avoid 
having sequences that may not have had primers removed prior to 
being made public, which is a known issue with public barcoding 
sequences (Elbrecht & Leese, 2017a). The foundation for each da-
tabase was created by downloading the entire GenBank database 
(October 2019) in GenBank format and extracting sequences match-
ing the target genes (COI, 16S or 18S) according to the provided an-
notations. Taxonomy was added to sequences using taxonkit (Shen 
& Xiong, 2019), and those that did not have at least family-level in-
formation, or did not belong to Metazoa, were removed. Sequences 
that did not correspond to the target amplicon region were removed 
as follows: (a) primer binding sites were located using ecopcr (Ficetola 
et al., 2010) with the maximum number of base mismatches set to 3 
and the output set to include 5 bp either side of the amplicon; (b) am-
plicons with Ns or ambiguities were removed, to avoid complications 
in subsequent steps; (c) sequences for which primer binding sites 
were not found were mapped against sequences in which primer 
binding sites were found using the megablast algorithm (Zhang, 
Schwartz, Wagner, & Miller, 2000); (d) if the best alignment for a 
query sequence did not fully overlap the target amplicon region of 
the subject sequence, it was removed. Once the final databases had 
been created, ecoPCR was run again with the maximum number of 
base mismatches set to 5 and constraining maximum insert length 
per marker, accordingly to the Illumina sequencing chemistry used 
in the preservative samples (Figure S2). The ecoPCR results were 
compared against the final databases to identify which families were 
in silico-amplified and which were not. To assess the informative-
ness of the target barcodes, the proportion of unique barcodes that 
could disambiguate at family level was calculated for each family by 
grouping any identical barcodes by their lowest common ancestor 
and checking the rank of that ancestor. Finally, the minimum and 
maximum amplicon lengths were retrieved per family to support 
read attribute processing.

2.3.2 | Sequence data processing

Sequence reads were processed using the obitools program suite 
(Boyer et al., 2016) (workflow in Figure S2b). After removing sin-
gletons, unique sequences of each marker were filtered by length. 
The amplicon length ranges, assessed using the in silico analyses, 
were used to maximize the detection of targeted families from read 
data (Table 2; Figure S3). Clustering was performed using sumaclust 
algorithm (Mercier, Boyer, Bonin, & Coissac, 2013) at 99% similar-
ity for all markers. To remove potential false positives due to cross-
contamination, additional sequence filtering was performed using 
an integrated workflow adapted from Corse et al. (2017; LFN fil-
tering). The filtering was based on the sequence variants found in 
each set of experimental controls, and LFN thresholds were calcu-
lated for each amplicon library. Specifically, based on the sumaclust 
output table, we filtered the sequence variants found in (a) the tag 

negative controls (LFNtag), discarding variants with counts lower 
than 0.003% per-sample replicate; (b) extraction and PCR-negative 
controls (LFNneg), subtracting the maximum absolute abundance 
of each variants found across negatives from each sample replicate 
count; and (c) positive controls (LFNpos), discarding variants from 
samples if (a) total abundance in positives was higher than 10% of 
total abundance across sample replicates and (b) maximum abun-
dance in positives was higher than 10% of maximum abundance 
across sample replicates. Thresholds in (c) were estimated by visu-
ally checking expected contamination in wells containing nearby 
positive controls. We only kept sequence variants that passed all 
three LFN filters (one-out all-out strategy). Head clusters (cluster_
center = True) were then retrieved, and sequence counts of vari-
ants were summed to respective heads. Simultaneously, to assess 
amplification bias among markers across the 55 known families 
pooled, we retrieved the sequence count of head clusters observed 
in the positive controls. Since PCR products were pooled without 
normalization before sequencing and the sequence counts varied 
substantially within samples (a.k.a. sampling sites), the four technical 
replicates were combined prior to analysis.

2.3.3 | Taxonomic assignment

The taxonomic assignment procedure followed Martins et al. (2019), 
using public and in-house reference databases: COI-M19BR2 
(BOLD, GenBank, CIBIO-IBI and aquaDNA), 16S-Inse01 (GenBank, 
CIBIO-IBI and aquaDNA) and 18S-Euka02 (GenBank and aquaDNA). 
CIBIO-IBI is an in-house database containing mainly species from 
the Iberian Peninsula (Ferreira et al., 2018), which will be published 
in due course (e.g., Ferreira et al., 2020). AquaDNA is an in-house da-
tabase including mainly French species Ficetola et al., 2020, though 
it covers many families occurring in Iberia. After manual cross-valida-
tion, only clusters assigned to macroinvertebrate taxa at ≥92% iden-
tity in at least one database were kept and clusters associated with 
multiple hits were assigned back to the taxonomic rank of the com-
mon ancestor. All assignments were manually curated to account for 
species ranges, with species not recorded in the study area being 
(a) replaced by those known to occur, in the case of single-species 
genera, (b) kept if assigned with a high percentage of identity to spe-
cies of less-studied groups (e.g., Chironomidae, Platyhelminthes, 
Oligochaeta) or (c) assigned to genus in case of diverse genera. A 
final taxon table was created by merging sequence counts by fam-
ily, removing rare occurrences (<0.01%) within each sampling site by 
marker and converting counts into presence/absence values. The fil-
tering of rare taxa was applied at the family level to avoid discarding 
families represented by several rare cluster sequences. Families be-
longing to Oligochaeta and Hydracarina were merged into these two 
groups, respectively, since this was the level of identification that is 
generally achieved through morphotaxonomy. A “multimarker” data 
set was created by combining information of the three markers in 
each sampling site, that is, a family was detected by multimarker if 
recovered by at least one marker. A single phyloseq object (r phyloseq 
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package, McMurdie & Holmes, 2013) combining the three matrices 
(taxa, sample and taxonomy) of each individual marker, multimarker 
and morphotaxonomy was created to facilitate further analysis.

2.4 | Statistical analyses

As in Martins et al. (2019), we used morphotaxonomy as the bench-
mark for molecular data instead of metabarcoding the bulk sample 
itself because (a) our bulk samples were collected under the national 
WFD monitoring programme and thus could not be destroyed; (b) we 
wanted to evaluate how abundance (i.e., number of individuals) in the 
bulk sample affected the probabilities of detection of each family, and 
this information could not be obtained by metabarcoding the bulk sam-
ple; and (c) we wanted to compare metabarcoding with the standard 
morphological approaches used in WFD monitoring. In all analyses, 
we considered for each marker and sampling site the families recorded 
by both molecular and morphotaxonomic methods (coded as 1), and 
families that were detected through morphotaxonomy but not by the 
molecular method (coded as 0). The analyses thus concentrated on 
“true” positives (1) versus “false” negatives (0), ignoring families that 
were only detected through molecular methods (i.e., “false” positives). 
This approach assumes that there were no errors in the identification 
of taxa through morphotaxonomy, which is a reasonable assumption 
because identifications were made at the family level, which are readily 
identifiable by experienced taxonomists. We did not address false pos-
itives because this would require different experimental procedures, 
controlling for various sources of error including contamination, regur-
gitation of digested material by individuals in the bulk sample and/or 
taxonomic misidentifications (Martins et al., 2019; Zizka et al., 2019).

We first assessed variation between methods in the diversity and 
taxonomic composition of macroinvertebrate communities retrieved 
through individual markers, the multimarker approach and morpho-
taxonomy. Local (i.e., alpha) diversity was estimated using the esti-
mate_richness function (r phyloseq package), as the number of families 
observed per sampling site using each method. To help interpret dif-
ferences in richness, we also estimated the percentage of matching 
families recorded at each sampling site between each pair of methods, 
by computing the quotient between the number of families shared by 
both methods in relation to the total family richness detected by those 
methods at the sampling site. The extent of change in community 
composition among sampling sites (i.e., beta diversity) was computed 
for each method using the pairwise Jaccard coefficient of dissimilar-
ity in the vegan r package (Oksanen et al., 2019). We also evaluated 
whether beta diversity estimates were consistent across methods, 
using Procrustes analysis (vegan r package) to compare the Jaccard dis-
similarity matrices for each pair of methods. Additionally, we estimated 
variation in the taxonomic composition retrieved by the different 
methods using differential heat trees, produced with the metacoder r 
package (Foster, Sharpton, & Grünwald, 2017). To build the heat trees, 
we considered that the representation of each family was proportional 
to the number of sequences in the case of molecular methods and the 
number of individuals for morphotaxonomy. Although the number of 

sequences does not necessarily equate to the relative abundance or 
biomass of each family (Elbrecht & Leese, 2015), this approach was 
taken to obtain a visualization of how broad taxonomic branches were 
missed or retrieved by the different methods.

To model detection biases, we first used binomial logit general-
ized linear models (i.e., logistic regression) to relate the probability 
of detection of each family using a given marker in relation to read 
abundance per sample (i.e., read counts after demultiplexing step). 
This data set was used instead of the clean data set described above 
(i.e., filtering sequences assigned to families detected by morpho-
taxonomy), because per-sample sequencing depth is a parameter 
that researchers can control when setting up sequencing assays, 
whereas final sequence abundance depends on data processing. 
However, results were largely similar irrespective of the data set 
used (not shown). In the case of the multimarker, we simulated read 
abundance by summing reads across markers. Because the detec-
tion is necessarily zero when sequencing depth is zero, we forced 
in all cases the logistic model intercept at nearly zero by including a 
suitable offset term. This preliminary analysis was needed because 
sequencing depth varied widely across sampling sites and markers, 
and so the proportion of true positives computed directly from the 
data would not be comparable across markers and families. To over-
come this problem, we thus used the logistic models to normalize 
the probability of detection to a sequencing read count of 50,000 
for each family and marker.

We further analysed factors affecting detection probabilities 
across families and sampling sites using binomial logit generalized 
linear mixed models (GLMM) for each marker data set and multi-
marker. In the fixed component of the model, we included for each 
family (a) the total number of individuals and (b) the proportion of 
individuals at each sampling site (i.e., number of individuals of the 
family divided by the total number of individuals of all families ob-
served in the sample), and (c) the “body armouring” trait as described 
by Poff et al. (2006). Families were categorized into one of the 
three described armouring categories (Table S3): soft-bodied (e.g., 
Annelida, Ephemeroptera), heavily sclerotized (e.g., Coleoptera) 
and cased forms (e.g., Mollusca and some Trichoptera families). 
For each sampling site, we also included (d) the total number of re-
corded families and (e) the sequencing depth (log10-transformed). 
Sampling site and family were incorporated in the models as random 
effects. Count and proportional data were scaled prior to analyses, 
and sampling sites without families detected were removed for each 
marker. Taxonomic groups not detected in silico or not amplified by 
the 16S-Inse01 marker (Platyhelminthes and cased families) were 
excluded from the analysis to allow model convergence.

3  | RESULTS

3.1 | Morphotaxonomy

Overall, the 80 macroinvertebrate bulk samples yielded 74,335 indi-
viduals of 94 families belonging to four phyla, with an average (±SD) 
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of 929.2 ± 998.3 (55–7,908) individuals and 23.8 ± 9.5 (4–41) families 
per sample (Tables S2 and S3). The most widespread families (occur-
rence in ≥50% of samples) were Chironomidae (100.0%), Baetidae 
(93.8%), Oligochaeta (91.3%), Simuliidae (90.0%), Elmidae (80.0%), 
Hydropsychidae (77.5%), Ephemerellidae (75.0%), Caenidae (68.8%), 
Ceratopogonidae (65.0%), Leptophlebiidae (57.5%), Rhyacophilidae 
(53.8%), Hydrobiidae (52.5%) and Ancylidae (51.3%), while 31 fami-
lies occurred in <10% of samples. The most abundant families (>5% 
of individuals) were Hydrobiidae (17.7%), Chironomidae (17.6%), 
Simuliidae (12.2%), Ephemerellidae (10.7%), Baetidae (9.3%) and 
Elmidae (5.3%). Most families (N = 80) had less than 1% of individu-
als, of which 43 had each <0.1% of individuals.

3.2 | Marker adequacy

The in silico analysis revealed higher marker adequacy for 16S-Inse01 
(87.8% of families amplified; n = 98) than COI-M19BR2 (82.7%) 
or 18S-Euka02 (71.4%; Table 3; Table S4). The majority of failures 
in COI-M19BR2 was due to the lack of primer binding sites in the 
existing barcodes, whereas in 16S-Inse01, it was due to complete 
lack of barcodes (i.e., target insert). Regarding 18S-Euka02, there 
were families failing due to lack of primer binding sites in barcodes 
(13.3%), but also due to lack of amplification (11.2%) and resolution 
(4.1%). The main taxonomic groups with failures (<80% families am-
plified) for COI-M19BR2 were from the orders Coleoptera, Diptera, 
Heteroptera, Ephemeroptera and Trichoptera, for 16S-Inse01 it 
was Trichoptera, and for 18S-Euka02 were noninsect arthropods, 
Diptera, Trichoptera and Odonata (Table 3).

In contrast to in silico results, analysis of the positive control un-
derlined a much better marker adequacy for COI-M19BR2 (89.1% 
of families amplified; n = 55) than for either 16S-Inse01(43.6%) or 
18S-Euka02 (45.5%; Table 3). COI-M19BR2 successfully detected 
most families (>80%) except Coleoptera, while 16S-Inse01 and 
18S-Euka02 had low detection rates (<80%) except for Megaloptera 
and Plecoptera, and Heteroptera and Ephemeroptera, respectively. 
Considering taxa that were tested both in silico and in vitro, the dif-
ferences for the latter two markers were due to a large proportion of 
families that amplified in silico but not in vitro (16S-Inse01 = 38.2%; 
18S-Euka02 = 30.9%), while there were only a few families failing in 
silico but amplifying in vitro (16S-Inse01 = 0.0%; 18S-Euka02 = 5.5%) 
due to the lack of barcodes in the database. For COI-M19BR2, the 
two types of errors were similar (9.1% vs. 10.9%).

3.3 | Sequencing data

Sequencing of libraries generated 25,232,044 PE reads for 
COI-M19BR2, 50,185,936 PE reads for 16S-Inse01 and 
39,544,628 PE reads for 18S-Euka02 (Table S5). Sequencing 
depth varied greatly across sampling sites within markers: COI-
M19BR2—10,620–662,342 reads; 16S-Inse01—50,331–605,502 
reads; and 18S-Euka02—6,374–529,412 reads. After data processing, 

about half of the original read count was kept for 16S-Inse01 (rep-
resenting 26,262 clusters) and COI-M19BR2 (10,146 clusters), and 
about 60% for 18S-Euka02 (33,318 clusters; Table S5). More than 
80%–90% of clusters generated by the three markers were identi-
fied with a percentage of identity ≥92%, mostly assigned at genus 
and family ranks (Table S5 and Figure S4). Rarefaction curves sug-
gest that sample depth was enough for recovering all families in 
most preservative samples (Figure S5). The final data set, including 
only targeted macroinvertebrate families detected by morphotax-
onomy, showed similar magnitudes of sequence abundance among 
markers (Table S5).

3.4 | Variation in community diversity and 
composition across methods

The average number of macroinvertebrate families per sampling 
site (alpha diversity) detected using each individual marker or the 
multimarker was always much lower than those detected using mor-
photaxonomy (Figure 1a). There was also a low match in family com-
position across molecular methods (Figure 1b), albeit much higher 
between multimarker and COI-M19BR2 (79.3% ± 16.9). The match 
with morphotaxonomy was only low for 16S-Inse01 (14.1% ± 7.6) 
and 18S-Euka (27.6% ± 11.0). The distribution of Jaccard dissimilari-
ties among sampling sites (pairwise beta diversity) was comparable 
across methods (Figure 1c), with Procrustes analysis revealing that 
the matrices of Jaccard dissimilarity among sampling sites were fairly 
consistent across methods (r > .70; Figure 1d), except for 16S-Inse01. 
Therefore, sampling sites with high dissimilarity estimated through 
morphotaxonomy also tended to be estimated as highly dissimilar 
with metabarcoding, especially for multimarker (r > .80).

The differential heat trees revealed major differences in taxo-
nomic composition of macroinvertebrate communities retrieved 
through the different methods (Figure S6). As expected, the pro-
portions of reads assigned to Insecta (except for the Ephemerellidae 
family) were higher for COI-M19BR2 and 16S-Inse01 comparatively 
to 18S-Euka02, whereas the latter recovered phyla hardly detected 
by the former such as Mollusca. There were also differences be-
tween the two mitochondrial markers, with 16S-Inse01 recovering 
fewer Diptera, Trichoptera and Oligochaeta than COI-M19BR2. 
There was low congruence on the proportion of abundance between 
markers (sequence counts) and morphotaxonomy (individuals), with 
higher ratios towards Mollusca and Insecta families in morphotaxon-
omy than in molecular methods.

3.5 | Factors affecting variation in detection 
probability

As expected, sequencing depth per sample greatly affected the proba-
bilities of detection of each macroinvertebrate family across sampling 
sites (Figure S7). After normalizing sequencing read count to 50,000, 
there were still major variations in detection probabilities across 
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markers and taxonomic groups (Figure 2; Figure S8). Differences 
between markers are illustrated, for instance, by the detection prob-
abilities of Trichoptera families, which were low (<20%) to moderate 
(20%–60%) for COI-M19BR2, while they were not detected at all or 
were detected at low probabilities in 16S-Inse01 and 18S-Euka02. 
In contrast, the probabilities of detection were high (>80%) for 
Tricladida families using 18S-Euka02, while they were not detected 
by the other two markers. Regarding taxonomic differences, it is 
noteworthy for instance that most families in the orders Coleoptera, 
Diptera, Hemiptera and Odonata were not detected or had very low 
detection probabilities for all markers, whereas Ephemeroptera and, 
to a lesser extent, Plecoptera families were generally detected with 
low to very high probabilities. There was also substantial variation in 
detection probabilities among different families of the same order, 
with for instance Chironomidae and Simuliidae detected with high 

probabilities by COI-M19BR2, while other families were either not 
detected or detected at low probabilities irrespective of the marker. 
Likewise, in the order Ephemeroptera, the detection of Baetidae 
and Heptageniidae families was always high, irrespective of marker, 
while for instance Caenidae and Ephemeridae showed in general low 
detection probabilities.

When combining detections from the three markers in the 
multimarker data set, there were increases in detection proba-
bilities for most taxonomic groups, though they were still low for 
Coleoptera and most Diptera, Odonata and Hemiptera families, 
among others. Only three families were always detected, namely 
Neritidae (Mollusca), Planariidae (Platyhelminthes) and Baetidae 
(Ephemeroptera) by 18S-Euka02, Siphlonuridae (Ephemeroptera) by 
COI-M19BR2, and Heptageniidae (Ephemeroptera) when the three 
markers were combined (multimarker).

F I G U R E  1   Comparisons of diversity metrics and taxonomic composition of freshwater macroinvertebrate samples, estimated using 
either morphotaxonomy, one of three molecular markers (COI-M19BR2, 16S-Inse01 or 18S-Euka02), or a multimarker approach: (a) 
observed richness (alpha diversity), (b) taxonomic overlap, (c) Jaccard dissimilarity distributions between all pairs of sampling sites (beta 
diversity) and (d) taxonomic congruence in community composition (using Procrustes analysis). Only families detected by morphotaxonomy 
(sample-wise) were considered. Boxplots represent median, 1st and 3rd quartiles, and extremes (1.5× interquartile range). Plots on panels b 
and d denote pairwise comparisons between methods
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After controlling for per-sample sequencing depth, there were 
significant effects of body armouring and relative abundance on de-
tection probabilities for all markers and the multimarker (Figure 3; 
Table S6). Probabilities of detection were consistently higher for 
soft-bodied than heavily sclerotized families, while cased forms had 
intermediate values varying within markers. Detection probabilities 
of a family also increased markedly with its relative abundance in 
the sample, but there were no highly significant effects of its total 
abundance or family richness per sample.

4  | DISCUSSION

This study highlighted important biases in taxonomic recovery when 
using metabarcoding from the ethanol used to preserve macroin-
vertebrate bulk samples. While the in silico analysis suggested that 
the markers used were adequate to detect our target macroinverte-
brate taxa, the analysis of both the positive control (mock sample) 
and the 80 samples collected under a WFD monitoring programme 
showed that many taxa represented in the bulk were often missed 

F I G U R E  2   Detection probabilities of macroinvertebrate taxa recovered from the metabarcoding of ethanol preserving unsorted bulk 
samples (N = 80), using either one of three markers (COI-M19BR2, 16S-Inse01 or 18S-Euka02) or a multimarker approach. Detection 
probabilities were normalized at a sequencing read count of 50,000, based on predictions from logistic regression models relating the 
presence–absence of each family with per-sample sequencing depth (see Figure S8). Only families detected by morphotaxonomy (sample-
wise) were considered [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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in metabarcoding and that the probability of detection of each taxon 
often varied greatly among samples. Notwithstanding, the multima-
rker approach performed consistently better than any single marker, 
and the COI marker performed better than the two rRNA markers. 
In line with expectations (Table 1), our results suggest that detection 
problems were largely related to biases against the recovery of rare 
and sclerotized taxa, irrespective of the marker used. Specifically, 
our modelling approach showed that after controlling for variation 
in read coverage among samples, the probability of detection of any 
given taxon was positively related to its proportional abundance in 
the sample, and that the probability of detection was on average 
lower for heavily sclerotized taxa (e.g., Coleoptera) than for soft-
bodied taxa (e.g., Oligochaeta). Overall, these results suggest that 
further methodological development and optimization is needed 
before metabarcoding from ethanol can be used in biomonitoring 
programmes.

The in silico analysis provided important information to optimize 
the subsequent bioinformatic procedures and to evaluate marker ad-
equacy. In particular, this analysis was used to calculate suitable am-
plicon length ranges for the target groups considering taxon-specific 
amplicon variation (including primer slippage for degenerated prim-
ers; Elbrecht, Hebert, & Steinke, 2018), which provides a more ro-
bust approach than the usual practice of retrieving such information 
from similar published studies (e.g., Elbrecht et al., 2017; Taberlet 
et al., 2018; Wangensteen et al., 2018). We found this to be very 
important, especially for the COI-M19BR2 marker, because certain 
families of Platyhelminthes, Mollusca and Diptera were missed when 
applying existing thresholds (e.g., 310–316 bp). Regarding adequacy, 
we found that the markers chosen were largely adequate for the 

macroinvertebrate communities targeted in our study, with >80% of 
taxa recovered for 16S-Inse01 and COI-M19BR2, though adequacy 
was lower (≈70% of taxa) for 18S-Euka02. Detection failures in COI-
M19BR2 were due exclusively to either the lack of barcodes or bar-
codes with primer binding sites for some target taxa in the GenBank 
database, while detection failures in 16S-Inse01 were only due to 
the lack of barcodes, which emphasizes the importance of compre-
hensive barcode reference databases for molecular biomonitoring 
(Weigand et al., 2019). In the case of 18S-Euka02, besides failures 
due to barcode unavailability, there were also detection problems 
due to lack of amplification and, to a lesser extent, lack of resolution. 
This suggests that the 18S marker used in our study may be more 
prone to miss taxa than the other two, despite its expected ability to 
detect a wider taxonomic range of macroinvertebrate taxa (Taberlet 
et al., 2018).

In contrast to the in silico results, the analysis of the mock sam-
ple and of the samples collected under the WFD monitoring pro-
gramme showed that many taxa detected in each sample through 
morphotaxonomy were often missed with metabarcoding, as re-
ported elsewhere (Elbrecht et al., 2017; Erdozain et al., 2019). The 
detection ability was much higher for COI-M19BR2 than for either 
16S-Inse01 and 18S-Euka02, which emphasizes that despite codon 
degeneracy this marker may be very powerful (Clarke et al., 2017; 
Elbrecht et al., 2016). However, this result may not be a consequence 
of a superior performance by the COI marker in itself, but instead 
it may reflect differences between laboratories in the conditions 
used to amplify each individual marker to overcome PCR inhibition. 
While for COI-M19BR2, the procedure involved a 1:2 dilution of 
the extract and using a polymerase (Qiagen Master Mix) that is less 

F I G U R E  3   Summary results of 
generalized linear mixed models (GLMM) 
relating the probability of detection of 
freshwater macroinvertebrate taxa from 
metabarcoding of ethanol to variables 
describing its body armouring (Poff 
et al., 2006), total abundance (i.e., number 
of individuals in the bulk) and relative 
abundance (i.e., proportion of individuals) 
and to variables describing the taxa 
richness and the sequencing depth of 
the bulk sample. GLMMs were estimated 
separately for each marker (COI-M19BR2, 
16S-Inse01 or 18S-Euka02) and the 
multimarker approach. Values represented 
are estimated model coefficients 
(mean ± 95% confidence interval) and 
respective significance (***p < .001; 
**p < .01; *p < .05; Table S6). Only families 
detected by morphotaxonomy (sample-
wise) at least in five sampling sites were 
considered [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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prone to inhibition and works well on ethanol samples at this dilu-
tion ratio, following previous optimization (Martins et al., 2019), for 
16S-Inse01 and 18S-Euka02 the protocol involved a 1:20 dilution 
to enhance polymerase activity. These results clearly suggest that 
relatively small changes in protocols can have major consequences 
on metabarcoding results, though these dilutions were required to 
improve amplification success in each protocol. Despite these differ-
ences, all markers consistently underestimated the richness of taxa 
represented in the bulk, and there were incongruences across mark-
ers in the taxonomic composition of the community. As suggested in 
previous metabarcoding studies, these problems were minimized to 
some extent by combining information from the three markers (da 
Silva et al., 2019), though the multimarker approach still detected 
less taxa than morphotaxonomy. Interestingly, however, estimates 
of beta diversity were similar for morphotaxonomy, the three single 
markers and multimarker approach, which is consistent with results 
of a study by Clarke et al. (2017) comparing the performance of COI, 
16S and 18S markers for zooplankton metabarcoding. This suggests 
that while metabarcoding may underestimate alpha diversity in re-
lation to morphotaxonomy, it may still provide comparable results 
regarding the turnover of taxa across sites.

Irrespective of the marker used, the probability of detection 
of any given taxon in a sample was strongly affected by the read 
coverage of the sample, though there were still major differences 
in detection probability across taxa and samples after statistically 
controlling for the effect of read coverage. Our modelling results 
suggest that part of this variation was related to taxa abundance, 
with higher detection probability for more abundant taxa in the bulk. 
This effect was consistent across markers and for the multimarker 
approach. Comparable results have been found elsewhere (Table 1), 
though to the best of our knowledge this is the first time the effect 
of abundance is modelled in detail using large sample sizes. Usually, 
this result is interpreted assuming that abundance (or biomass) of an 
organism in the bulk is related to the concentration of its DNA in the 
preservative solution and that the probability of detection is directly 
related to its DNA concentration. This is because at low DNA con-
centrations a taxon may be missed during the subsampling of preser-
vative ethanol or it may not be amplified during the PCR step due to 
“primer competition” with DNA of more abundant taxa. The later hy-
pothesis is supported by our results, which showed a strongly signifi-
cant effect of proportional abundance (i.e., the number of individuals 
of a taxa divided by the total number of individuals in the sample) on 
probability of detection, but not of total abundance (i.e., the total 
number of individuals). Other studies have also reported a lower 
detection for taxa represented in the bulk by a low proportion of 
individuals (Hajibabaei et al., 2012) or biomass (Erdozain et al., 2019). 
Similar problems have also been described in tissue-based metabar-
coding protocols (Elbrecht & Leese, 2015; Hajibabaei et al., 2012).

Besides abundance, our results also showed that body traits 
drive variations in probability of detection across macroinverte-
brate taxa. Although we did not find the hypothesized effects of 
body size (Carew et al., 2018; Zizka et al., 2019), we did confirm that 
body sclerotization reduces the probability of detection, which had 

previously been observed in freshwater benthic macroinvertebrates 
(Carew et al., 2018; Zizka et al., 2019) and terrestrial invertebrates 
(Marquina, Esparza-Salas, Roslin, & Ronquist, 2019). Specifically, we 
found that the detection probability was very low for heavily scle-
rotized arthropod taxa such as Coleoptera, possibly because body 
armouring reduced the release of DNA to the preservative solution, 
thereby causing problems of detection similar to those of taxa with 
low proportional abundance. Taxa with cased forms, which includes 
soft-bodied organisms with a shell (Mollusca) or a case (caddisflies), 
showed intermediate recovery rates between soft-bodied and scle-
rotized organisms. This suggests that the presence of a case also 
reduces the release of DNA, though not as much as in the case of 
heavily sclerotized organisms. It should also be noted that at least in 
some Trichoptera families the individuals leave the case after collec-
tion, which probably reduced the effect of this body trait on detec-
tion probabilities.

It is unlikely that these general results and key conclusions of our 
study were influenced to any significant extent by methodological 
artefacts or biases, though we recognize that the consequences of 
some options taken still need further research. One potential prob-
lem is the low volume of ethanol analysed, which may have contrib-
uted to missing rare taxa due simply to sampling effects. However, 
in a previous study using the same approach we found little variation 
in community composition across small ethanol subsamples, proba-
bly because they were consistently retrieving the commonest taxa 
(Martins et al., 2019). This suggests that adding small subsamples 
to obtain a larger volume analysed would have had only a modest 
effect on the number of taxa retrieved, though the effects of the 
volume of ethanol used on metabarcoding performance require 
further investigation. Moreover, our key results relating the prob-
ability of detection to body armouring and relative abundances are 
unlikely to be affected by the volume analysed, and they were con-
sistent with the results of a study using much larger volumes (Zizka 
et al., 2019). Another potential problem is that we used a similar as-
signment threshold of 92% identity for the three markers, though 
this may be overly strict for markers in genomic regions with high 
substitution rate such as COI, and eventually too liberal for more 
conserved regions such as 18S rRNA gene. However, we believe the 
use of this common threshold is reasonable because: (a) there is a 
good evidence that the rates vary between taxa for the same marker 
(especially for ribosomal genes); (b) reducing the threshold below 
92% might produce an unacceptable level of false positives, even 
for COI; (c) identifications for all markers were most often made at 
identity levels well above 92% (Figure S4), further supporting the 
view that small changes in threshold have limited effect on reducing 
false negatives, and (d) small reductions in the threshold (say, from 
92% to 90% in COI) to limit false negatives would result in a small 
proportion of additional reads identified, most of which to taxa with 
high detection probabilities. It is possible, however, that decreasing 
the threshold would further improve the performance of the COI 
markers, though changes would likely be small.

The results of our study have consequences for the applica-
tion of metabarcoding of preservative ethanol to the molecular 
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biomonitoring of aquatic systems. First, the lower number of taxa 
detected per site (alpha diversity) with metabarcoding highlights 
that morphotaxonomy and metabarcoding results cannot be directly 
compared, though this can probably be solved through intercalibra-
tion exercises (Pawlowski et al., 2018). Second, the observation that 
morphotaxonomy and metabarcoding estimated similar turnover of 
taxa (beta diversity) across sampling sites is promising, suggesting 
that meaningful ecological gradients can be retrieved using either 
approach, which can provide a basis to detect anthropogenic stress-
ors (e.g., Santana et al., 2017). Third, care should be taken to account 
for biases associated with the strong dependence of detection prob-
ability on proportional abundance, which implies that the probability 
of detection of a species depends not only on its abundance but also 
on the abundance of other species in the community (Erdozain et al., 
2019; Hajibabaei et al., 2012), and thus that errors may be inconsis-
tent across sampling sites and over time. Consequently, spatial and 
temporal variations detected through metabarcoding in the occur-
rence of rare indicator organisms may be unreliable, which can com-
promise their use in biomonitoring. Finally, there may be systematic 
problems in the detection of potentially good biodiversity indicators 
such as Coleoptera (Sánchez-Fernández, Abellán, Mellado, Velasco, 
& Millán, 2006), given the low detection probability of heavily scle-
rotized arthropods.

In summary, our results suggest that, apart from barcode refer-
ence databases, the main biases associated with metabarcoding of 
preservative solutions are largely related to the differential availabil-
ity of DNA from different organisms, which in turn is affected mainly 
by their body armouring and proportional abundance. These prob-
lems suggest that, depending on the application, it should be duly 
considered whether to use metabarcoding from the preservative 
solution or from the homogenate of the bulk itself, as the latter may 
be less prone to the biases identified here (Marquina et al., 2019; 
Zizka et al., 2019). However, while using tissue homogenates may 
eliminate the problem of detecting hard-bodied organisms, it may 
still have biases associated with reduced detection of taxa with 
low proportional abundance (Elbrecht & Leese, 2015; Hajibabaei 
et al., 2012). When metabarcoding from the preservative solution 
is required to preserve the bulk or to reduce the problems associ-
ated with the sorting of specimens, then efforts should be made to 
enhance DNA recovery through optimized procedures considering, 
for example, the timing of preservative collection after field sam-
pling (Martins et al., 2019), preprocessing measures such as whole 
sample freezing prior to filtering ethanol (Zizka et al., 2019), higher 
sampling volumes or bait capture enrichment (Gauthier et al., 2020). 
Also, the use of multiple markers is highly recommended, as it pro-
vides a much more comprehensive representation of the taxonomic 
composition of bulk samples, as found for instance in dietary studies 
(da Silva et al., 2019). The number and exact mix of markers to be 
used still needs further research, but our results suggest that a com-
bination of COI-M19BR2 and 18S-Euka02 would detect most taxa, 
though adding 16S-Inse01 would provide a more complete picture 
of community composition. To facilitate multimarker approaches, 
efforts are needed to greatly expand the existing barcode reference 

databases, particularly in less-studied geographic regions. Using this 
and other refinements, it is likely that biases of metabarcoding from 
preservative ethanol will be considerably reduced, thereby facilitat-
ing the use of this approach in molecular biomonitoring (Elbrecht 
et al., 2017; Emilson et al., 2017; Serrana et al., 2019).
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