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Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus reported to be associated with human prostate
cancer and chronic fatigue syndrome. Since retroviruses cause various cancers, and XMRV replication might be facilitated by HIV-
1 co-infection, we asked whether certain patients with HIV-associated lymphomas are infected with XMRV. Analysis of PMBCs
and plasma from 26 patients failed to detect XMRV by PCR, ELISA, or Western blot, suggesting a lack of association between
XMRV and AIDS-associated lymphomas.

1. Introduction

A gammaretrovirus, xenotropic murine leukemia virus-
related virus (XMRV), was recently discovered and reported
to be associated with human prostate cancer (PC) [1]. In the
initial report in PC patients, there was a strong correlation
between detection of XMRV and a genetic defect in the
innate immunity gene RNASEL [1]. However, subsequent
studies in PC patients showed either no such association
[2] or little or no evidence of XMRV infection (reviewed
in [3]). Interest in XMRV was increased by the finding
that a high percentage of patients with chronic fatigue
syndrome (CFS) as well as some asymptomatic patients
were infected with XMRV [4]. However, other studies have
failed to find such an association (reviewed in [3]). XMRV
has been shown to infect peripheral blood mononuclear
cells (PBMCs) and CD4+ T cells in vitro, indicating that
XMRV can infect the same target cells as HIV-1 ([4] and
data not shown). However, our recent studies showed that
productive replication of XMRV in PBMC and spread in

culture are severely restricted by APOBEC3 proteins and
perhaps other host defense mechanisms [5]. It remained
possible, however, that target cells infected with HIV-
1 might provide a favorable environment for XMRV to
replicate by depleting cellular host restriction factors such
as APOBEC3G, known to inhibit XMRV infection [6, 7].
Several factors led us to explore the possibility that certain
patients with HIV-associated lymphoma might be infected
with XMRV. Gammaretroviruses can cause lymphomas in
other species (reviewed in [8]), and it has been postulated
that a number of cases of HIV-associated lymphomas might
be caused by an as-yet-unidentified virus [9]. It is also
important to note that patients with HIV infection have a
higher prevalence of infection with other viruses, and their
immunocompromised state might permit more efficient
replication of other viruses, including XMRV [9]. Because
of the high degree of concern regarding potential XMRV
infection and spread in the human population, we sought to
investigate whether XMRV might be present in a subset of
patients with HIV-associated lymphomas.
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Table 1: HIV-1 Lymphoma Patient Cohort Characteristics.

No. of patients 26

Sex, male/female 24/2

Age, median years (range) 38 (21–58)

CD4 count, cells/mm3,
median (range)

76 (0–713)

HIV viremica, No.
postitive/No. tested

12/21

On anti-HIV drugs 24/26

On AZT 14/26

Lymphomas studied (No.
of patients):

PCNSLb (11)

Diffuse large B cell
lymphoma (8)

Burkitts (1)

Plasmablastic (1)

Primary effusion
lymphoma (1)

Primary intraocular (1)

Hodgkin lymphoma (2)

Head mass- presumptive
PCNSL (1)

a
Detectable p24 Ag or HIV RNA.

bPrimary Central Nervous System Lymphoma.

2. Analysis and Results

Total nucleic acids from PBMCs were isolated (Qiagen DNA
Blood Mini Kit) from 26 HIV-1 infected patients previously
diagnosed with AIDS-associated lymphomas (Table 1). The
study was approved by the National Cancer Institutional
Review Board, and all patients and donors gave written
informed consent. Using a real-time quantitative PCR
(qPCR) assay that employed primers specific for a unique 24-
nucleotide gap in XMRV gag (primer and probe sequences
as reported in, [10]), 500 ng of patient DNA was tested
in each reaction using the Roche LightCycler 480 Probes
Master mix. Cycling conditions using the LightCycler 480
Roche instrument (Roche Diagnostics) were 95◦C for 30 sec
followed by 50 cycles at 95◦C for 15 sec and 60◦C for
60 sec. Genomic DNA from the XMRV-expressing cell line
22Rv1 (ATCC) was used to generate a standard curve for
XMRV (∼20 proviral copies/cell). The standard curve was
spiked with 500 ng 293T DNA to ensure similar amplification
efficiencies as the patient samples. The qPCR had detection
sensitivity of <5 XMRV copies/75,757 cells. The quality
and quantity of input DNA were confirmed by detection
of human GAPDH by qPCR. Using this assay, all 26 HIV-
1 lymphoma patients tested were negative for XMRV gag
sequences (Figure 1).

Patient plasma was also screened by ELISA (Bagni,
Protein Expression Laboratory, SAIC-Frederick Inc., NCI-
Frederick, unpublished results) for antibodies against XMRV
capsid (CA) and envelope (transmembrane, TM) proteins
(Figure 2). Due to the absence of definitive XMRV positive
patient control samples, sera from macaques before and after
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Figure 1: Real-time PCR analysis of HIV-1 lymphoma positive
patients for XMRV. XMRV gag qPCR failed to detect XMRV from
DNA isolated from PBMCs for the 26 HIV-1 lymphoma patients
(green lines). Inset shows single-copy sensitivity of the assay.

experimental XMRV infection served as controls for baseline
and positive reactivity (Lifson and Del Prete, AIDS and
Cancer Virus Program, SAIC-Frederick, Inc., unpublished
results). Briefly, plasma samples were collected before and
after-inoculation (119 days) from two pigtail macaques inoc-
ulated with 4.8 × 109 XMRV RNA equivalents derived from
22Rv1 cell supernatants (Lot SP1592, Biological Products
Core, AIDS and Cancer Virus Program, SAIC Frederick, Inc.,
NCI-Frederick). Samples were considered reactive if they
were at least 50% reactive relative to the macaque samples
following XMRV infection (positive control sera). None of
the 26 HIV-1 lymphoma patient, nor the 10 healthy donors,
tested positive for the CA (Figure 2(a)) or TM protein
(Figure 2(b)), although 2/26 patients had slight reactivity
to TM (asterisk, Figure 2(b)). To evaluate these 2 patients,
Western blot analysis was performed to assess whether the
TM-reactive ELISA test reflected an immune response to
XMRV. Endpoint dilution analysis indicated that a 1 : 2000
dilution of the positive macaque sera produced reproducible
positive bands on the western blot with a high signal to
noise ratio (Lifson and Del Prete, AIDS and Cancer Virus
Program, SAIC-Frederick, Inc., unpublished results). Sera
from patients (diluted 1 : 50 or 1 : 200) and positive sera from
macaques (diluted 1 : 2000) were tested against XMRV viral
lysates obtained from the 22Rv1 cell line. The sera from
both TM-reactive patients (10- to 40-fold more concentrated
than the macaque) failed to detect capsid, TM, or other
XMRV proteins (data not shown), indicating that the TM-
positive ELISA test was most likely due to the presence of
crossreactive nonspecific antibodies.

3. Discussion

Our studies show a lack of association between XMRV
and AIDS-associated lymphomas and complement other
studies that have failed to detect XMRV in the PBMCs,
plasma, or seminal plasma from HIV-1 infected patients
[11–16]. A potential link between XMRV and cancer is
hypothesized in that gammaretroviruses can cause sarcomas
and leukemias in rodents, felines, and primates (reviewed
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Figure 2: Patient reactivity to XMRV proteins CA and TM. Plasma from the 26 HIV-1 lymphoma positive patients (green diamonds) were
assayed by ELISA versus plasma from ten healthy donor controls (light blue diamonds) and two Macaques infected with XMRV pre- (dark
blue diamonds) and post- (red diamonds) infection. ∗indicates two patients with minimal TM reactivity.

in [8]). However, it is unclear whether XMRV infection is
associated with prostate or other human cancers. A survey
of 800 and 539 PC samples from the United States and
Germany, respectively, showed no association with XMRV
[17, 18]. A survey of 134 prostate cancer patient plasma
samples by us and our collaborators also failed to detect any
evidence of XMRV (Kearney et al., under review for this
issue of Advances in Virology). Several recent studies have
reported that contamination of human samples with mouse
DNA may have contributed to XMRV’s reported association
with human disease [19–22]. Garson et al. [23] also reported
that two integration site sequences, previously shown to
demonstrate XMRV integration into patient DNA, likely
were the result of contamination of identical integration
sites from infected DU145 cells reported by the same
lab. Furthermore, our recent studies provide compelling
evidence that XMRV was generated through recombination
of two endogenous murine leukemia viruses during the
passage of a PC xenograft in nude mice, and therefore all
detection of XMRV from human samples are likely to be due
to contamination that originated from this recombination
event [24]. It has been hypothesized that this lab-derived
virus may have escaped from the lab and is now circulating
in the human population. However, our failure to detect
XMRV in HIV-1-associated lymphoma patients, along with
>10 other studies of different patient cohorts performed by
independent investigators, argues against this possibility.

In Summary, we were unable to detect XMRV DNA or
XMRV-specific antibodies in the PBMCs or plasma from
HIV-1-associated lymphoma patients, further supporting
the absence of a link between XMRV and human cancer.
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