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Abstract
Cancer stem cells (CSCs) possess capacity to both self-renew and generate all cells within

a tumor, and are thought to drive tumor recurrence. Targeting the stem cell niche to eradi-

cate CSCs represents an important area of therapeutic development. The complex nature

of many interacting elements of the stem cell niche, including both intracellular signals and

microenvironmental growth factors and cytokines, creates a challenge in choosing which

elements to target, alone or in combination. Stochastic stimulation techniques allow for the

careful study of complex systems in biology and medicine and are ideal for the investigation

of strategies aimed at CSC eradication. We present a mathematical model of the breast

cancer stem cell (BCSC) niche to predict population dynamics during carcinogenesis and in

response to treatment. Using data from cell line and mouse xenograft experiments, we esti-

mate rates of interconversion between mesenchymal and epithelial states in BCSCs and

find that EMT/MET transitions occur frequently. We examine bulk tumor growth dynamics in

response to alterations in the rate of symmetric self-renewal of BCSCs and find that small

changes in BCSC behavior can give rise to the Gompertzian growth pattern observed in

breast tumors. Finally, we examine stochastic reaction kinetic simulations in which ele-

ments of the breast cancer stem cell niche are inhibited individually and in combination. We

find that slowing self-renewal and disrupting the positive feedback loop between IL-6, Stat3

activation, and NF-κB signaling by simultaneous inhibition of IL-6 and HER2 is the most

effective combination to eliminate both mesenchymal and epithelial populations of BCSCs.

Predictions from our model and simulations show excellent agreement with experimental

data showing the efficacy of combined HER2 and Il-6 blockade in reducing BCSC popula-

tions. Our findings will be directly examined in a planned clinical trial of combined HER2 and

IL-6 targeted therapy in HER2-positive breast cancer.
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Introduction
Breast cancer is the most common type of cancer in women, with over 230,000 new cases diag-
nosed and nearly 40,000 deaths in the United States every year [1]. The majority of deaths are
caused by distant recurrence [1]. Stem cell-targeted therapies offer new hope in eradicating
breast cancer stem-like cells that lead to recurrence after standard therapies fail [2–4]. Mathe-
matical models have proven useful in studying the population dynamics of cancer stem cells
under targeted therapy [5, 6]. Models are also informative in assessing safety and duration of
therapy [7]. However, the complexities of the stem cell microenvironment limit the predictive
ability of analytic models and suggest the necessity of more detailed models pursued through
simulation.

Stochastic reaction kinetics allows simulation of complex biological systems with inherent
stochasticity and multiple overlapping feedback and feedforward loops [8, 9]. The goal of sto-
chastic simulation in medicine is to integrate knowledge of biological complexity, to unravel
the functional properties of organisms in health, and to interface models of disease states with
treatments that might restore health [10–14]. In stochastic simulation, a set of reactant species
proceeds through a specified set of reactions. Molecular populations are whole numbers that
change by discrete amounts. Each reaction occurs with a reaction propensity that is propor-
tional to the reaction rate constant and the numbers of reactant species at the beginning of the
reaction. Current algorithms follow the time evolution of a well-stirred chemically reacting sys-
tem subject to molecular noise. These algorithms are able to successfully tackle the complexities
of several dynamic systems in oncology, including gene regulatory networks and tumor sup-
pressor pathways [11–14].

The breast cancer stem cell niche represents a complex system where multiple pathways reg-
ulate the behavior of the breast cancer stem cell, including whether it undergoes self-renewal,
quiescence, differentiation, or apoptosis. Discoveries in recent years suggest that differentiated
epithelial cells in normal breast and breast cancer tissues may have the ability to dedifferentiate
into stem-like cells, and this plasticity has important implications for targeting cancer stem
cells [15–17]. Existing stochastic models that quantify rates of conversion of differentiated cells
to a stem-like state [18] do not take into consideration the effects of the stem cell environment
or the existence of different cancer stem cell states. We have recently reported that BCSCs dis-
play phenotypic plasticity enabling them to interconvert between a rapidly proliferative state
(epithelial or MET-like state) marked by ALDH expression and an invasive quiescent state
(mesenchymal or EMT-like state) marked by CD44+/CD24- expression [19]. Furthermore,
CSC state transitions are regulated by components in the tumor microenvironment which in
turn regulate intracellular signaling pathways and microRNAs in the CSC population [19–22].
Stochastic simulation is ideal for examining the rates and regulators of EMT/MET transitions
and predicting response to therapy.

Stochastic models have proven useful in the study of population dynamics in cancer stem
cells, where the cancer stem cell population is small relative to the total tumor cell population,
and the events of interest, such as extinction and mutation, are rare events [5, 7]. Using sto-
chastic models, we can estimate full distributions of cancer stem cell counts over time through-
out the duration of different therapeutic combinations, and quantify the variance in these cell
counts when they drop to critically small numbers. Quantifying the frequency of the event that
the cancer stem cell population goes extinct using stochastic simulation allows us to examine
the conditions under which we would expect the cancer stem cell population to be eradicated
with therapy.

We construct a model that incorporates intracellular signals and microenvironmental factors
to describe population dynamics of breast cancer stem cells during carcinogenesis and in
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response to treatment. Compelling questions we address with modeling include: (1) What is the
rate of transition between the epithelial and mesenchymal states? (2) How does a rarely dividing
cancer stem cell eventually lead to rapid tumor growth? (3) What are the key components of
niche regulation, and what are the effects of blocking each component individually and in combi-
nation?We examine whether our predictions from our modeling match experimental data on
breast tumor growth. Finally, we describe combinations of therapy that optimally exploit breast
cancer stem cell properties. We find that blocking the inflammatory positive feedback loop
between IL-6 and NF-κB involved in β-catenin signaling and BCSC self-renewal is required to
effectively target both mesenchyaml and epithelial BCSCs, and our predictions match experimen-
tal findings showing the combined efficacy of IL-6 and HER2 blockade [19].

Materials and Methods

Estimation of transition rates
Breast cancer stem cells exist in two freely interconvertible states: the mesenchymal state, and
the epithelial state. In this section, we adopt a simple model for the purposes of estimating rates
of transition between these two states. To estimate the transition probabilities for the EMT and
MET, we model the breast cancer stem cell population as a continuous-time Markov chain
with two states. A two-state continuous-time Markov chain always satisfies the detailed balance
condition π1 λ12 = π2 λ21, where π = (π1, π2) is the equilibirum distribution for the chain, and
λ12 and λ21 are transition rates between the two states [23]. Based on experimental observations
that in the triple negative breast cancer SUM159 cell line the ALDH+ cell population as
assessed by the Aldefluor assay constitutes roughly 4% of breast cancer cell populations, 1% of
cells are tumor-initiating, and nearly all cells are CD44+CD24- [20], we estimate the equilib-
rium distribution of the mesenchymal state (πEMT) to be 0.2, and that of the epithelial state
(πMET) to be 0.8. In contrast, in MCF-7 cell line experiments, where cells are derived from a
more indolent luminal breast cancer, 0.3% of cells are ALDH+ and 0.8% of cells are CD44
+CD24-, and pEMT ¼ 0:008

0:008þ0:003
¼ 0:73. The theoretical formula:

pMET ¼ lMET

lEMT þ lMET

;

expresses πMET in terms of λMET, the rate of conversion from a mesenchymal to an epithelial
state, and λEMT, the rate of conversion from an epithelial to a mesenchymal state. In the first
scenario we accordingly estimate λMET to be 4 × λEMT.

Regulators of transition
The BCSC niche governs whether BCSC remain in a quiescent state (mesenchymal) or enter
into a proliferative state (epithelial), where they can undergo self-renewal and differentiation.
Fig 1 depicts key regulators that modulate the interconversion between these two states. Cyto-
kines, including IL-6 and TGF-β, have been shown to drive EMT [19]. Inflammation activates
NF-κB, which in turn drives IL-6 production, generating a positive feedback loop [19]. Loss of
PTEN is associated with HER2-targeted therapy resistance, and this association is mediated by
Akt with subsequent activation of NF-κB sustaining an IL-6 inflammatory loop [19]. Micro-
RNAs, including mir-93, regulate the mesenchymal to epithelial transition as well as prolifera-
tion and differentiation of BCSCs [20].

We can examine values of λEMT and λMET in response to regulators, including intracellular sig-
nals such as miRNAs and microenvironmental cytokines such as IL-6. We use data on changing
patterns of mRNA expression of vimentin and E-cadeherin in pTRIPZ-SUM159-mir-93 cells
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plated with doxycycline to induce mir-93 expression [20]. Because induced mir-93 expression
drives MET [20], we fit a declining exponential curve to the level of vimentin expression to esti-
mate an upper bound to the rate of MET conversion. Based on these calculations, we estimate
the rate of transition from a mesenchmal to epithelial state to be 0.08 cell−1 day−1, and therefore
the rate of transition from an epithelial to a mesenchymal state to be 0.02 cell−1 day−1.

Loss of PTEN is associated with activation of an IL-6 inflammatory feedback loop with 10-
to 20-fold increases in cytokine levels [19]. Fitting an exponential curve to the increasing level
of vimentin expression in BT474PTEN− cells, we estimate the rate of conversion from an epi-
thelial to a mesenchymal state to be 0.46 cell−1 day−1 when IL-6 levels are very high.

Our estimated rates of EMT/MET interconversions are much faster than the rate of dedif-
ferentiation estimated from human iPS cell experiments [24]. In that setting, fibroblasts are
reprogrammed and cultured for 28 days, and approximately 1% of cells are successfully

Fig 1. Players in the breast cancer stem cell niche. Breast cancer stem cells (BCSCs) readily interconvert between two states: a highly proliferative MET-
like state marked by ALDH+ expression and expression of epithelial markers, and an EMT-like state which is CD44+, quiescent, expresses mesenchymal
markers, and is capable of tissue invasion and metastasis. Conversion to a mesenchymal state is promoted by IL-6 and TGF-β, while conversion back to an
epithelial state is enhanced by BMPs, HER2, and mir-93 expression. BCSC self-renewal is enhanced by β-catenin signaling, which is activated by HER2 and
Lin-28. Both Lin-28 and IL-6 are inhibited by Let-7. Akt is activated by HER2 and IL-8, while Stat3 is activated by IL-6 and IL-8 receptor binding. Activation of
Akt and Stat3 both lead to activation of NF-κB signaling, increasing expression of Lin-28 and IL-6, leading to a positive feedback loop.

doi:10.1371/journal.pone.0135797.g001
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transformed � 0.0036 cell−1 day−1. These results suggest that stem cell state transitions are far
more frequent than the event of dedifferentiation.

Step anticipation τ-leaping
Stochastic simulation was introduced in 1976 by Daniel Gillespie to generate exact trajectories
of a stochastic equation in order to accurately simulate chemical or biochemical systems with
small numbers of molecules [25]. In the stochastic simulation framework, the process is formu-
lated as a continuous-time Markov chain, where the state vector X(t) = (X1(t), . . ., XN(t)) pro-
viding the number of molecules of each species at time t, evolves stochastically. Random
collisions driven by the inherent randomness of thermal molecular motion give rise to random
state transitions specified by a set of reaction channels, and the waiting times before transitions
between states follow an exponential distribution [25]. In the algorithm, reactant species and a
set of events or ‘reactions’ are specified. For each reaction j, a propensity rj(Xt) is defined,
which is dependent on the current counts of each species involved in the reaction, as well as the
reaction rate constant aj. A stoichiometric matrix denotes the discrete amount each reaction
species changes with each reaction. This algorithm has been successfully applied to many prob-
lems in computational systems biology. However, because the algorithm involves simulation of
every reaction that occurs, it can be slow for large and increasingly complex systems.

Tau-leaping algorithms allow for increased speed by leaping over a set of reactions within a
small time interval, but can reduce accuracy if the reaction propensities change considerably
during the leap [26]. In tau-leaping, we move through the continuous-time Markov chain by
leaping over a time period (t, t+τ), where we make the assumption that the number of reactions
of type j that occur during the interval (t, t+τ) is Poisson distributed with mean set to the reac-
tion propensity [26]. Provided that the size of the leap is small enough so that the propensity
function does not change more than a certain amount that depends on a pre-specified error
control parameter, the probability for an event to occur in the next infinitesimal time dt is
a � dt where a is constant, and we can estimate the state change during the leap by Poisson sam-
pling [26]. We run an independent Poisson process for each reaction channel and sum the
results.

We employ the step anticipation τ-leaping (SAL) algorithm in our simulations because of
its increased accuracy without compromising speed [27]. In SAL, we expand each intensity
using a Taylor’s series around time t with base value rj(Xt). Let c denote the number of reaction
channels and d denote the number of reactant species. The number of reactions of type j is
sampled from a Poisson distribution with mean

ojðt; t þ tÞ ¼
Z t

0

rjðXtÞ þ
d
dt

rjðXtÞs
� �

ds

¼ rjðXtÞtþ
d
dt

rjðXtÞ
1

2
t2:

We start with the reaction rate equation (RRE) that models the mean behavior μ(t) = E(Xt) of
the system using a system of ordinary differential equations:

d
dt

mðtÞ ¼
Xc

j¼1

rj½mðtÞ�nj;

where νj is the increment vector for reaction j. In order to obtain the time derivative of rj(Xt),
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we use the chain rule:

d
dt

rjðxÞ ¼
Xd
k¼1

@

@xk
rjðxÞ

d
dt

xk;

and set

d
dt

xk ¼
Xc

j¼1

rjðxÞnjk

using the mean behavior of the system as calculated using the RRE. SAL increases accuracy of
simulations without compromising speed, allowing the simulation to proceed with larger steps
[27]. The improved accuracy is more pronounced in systems in more complex models with
higher order kinetics that entail more rapidly changing intensities.

Stochastic simulation of the BCSC niche
While the intial model described above includes only two stem cell states, more sophisticated
models are required to study the effects of the microenvironment on breast cancer stem cell
behavior. We employ stochastic reaction kinetics techniques to study population dynamics of
breast cancer stem cells and their progeny. Our model is schematically depicted in Fig 1. Breast
cancer stem cells (BCSCs) readily interconvert between a quiescent, invasive, mesenchymal
state, and a proliferative epithelial state. While in the proliferative epithelial state, a BCSC can
undergo symmetric self-renewal giving rise to two identical epithelial BCSCs, or asymmetric
self-renewal, giving rise to one epithelial BCSC, and one bipotent progenitor (BPP). BCSCs in
the epithelial state can also undergo symmetric differentiation, giving rise to two BPPs. In addi-
tion the epithelial BCSCs are susceptible to apoptosis. Bipotent progenitors either symmetri-
cally divide, giving off two progenitors, or differentiate into luminal or basal cells. Cytokines,
including Il-6 and TGF-β promote the conversion from an epithelial state to a mesenchymal
state [19]. MicroRNAs, such as mir-93 promote the awakening of quiescent BCSCs from a
mesenchymal to an epithelial state, in part by inhibiting TGF-β signaling [20]. BMPs and
HER2 signaling also enhance the transition from a mesenchymal to an epithelial state [28, 29].
In addition, Il-6 promotes Stat3 activation, and Il-8 promotes Akt and Stat3 activation, both of
which activate NF-κB. Activated NFκB leads to expression of Lin28, which activates β-catenin
signaling, which drives self-renewal of epithelial BCSCs. In addition, activated NFκB increases
transcription of Il-6, leading to a positive feedback loop with increased Stat3 and NFκB activa-
tion. Lin28, an important stem regulatory gene, decreases cellular differentiation and increases
self-renewal, through downregulation of Let-7, a microRNA that limits capacity for self-
renewal [30]. Lin28 is associated with overexpression of HER2 and sustains the inflammatory
feedback involving IL-6 and NF-κB. In addition to promoting self-renewal, Lin28 increases
transcription of the Her2 receptor. Dimerization of the Her2 and EGFR leads to Akt activation.
Let-7 inhibits Lin28, thereby inhibiting self-renewal, and in addition inhibits Il-6. In the sto-
chastic reaction kinetics framework, we define our model by listing reactant species, reactions
(or events), and reaction propensities.

Parameters and initial conditions
Parameter values are drawn from the literature when possible and otherwise from reasonable
estimates based on the experimental evidence available. Rates of symmetric self-renewal are
taken from extrapolations from feline and murine experiments on hematopoietic stem cells
[31]. Asymmetric self-renewal is presumed to occur much more frequently than symmetric
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self-renewal, while symmetric differentiation occurs at the same infrequent rate as symmetric
self-renewal [32, 33]. Receptor binding and dissociation occur on similar time scales, while
transcriptional events are more rare [8]. S1 Table lists the rate constant for each reaction. We
explore sensitivity of our predictions to varying the death rate of epithelial BCSCs and the rate
of epithelial to mesenchymal transition (EMT).

At the beginning of each simulation, we set the particle count equal to 800 for epithelial
BCSCs, and 200 for mesenchymal BCSCs. These estimates are based on our calculations for rel-
ative frequencies of each particle type taken from xenograft experiments. Initial particle counts
for cytokines IL-8 and TGF-β were set equal to 100, while initial counts for IL-6 were set to
1000 to explore the scenario where the ratio of IL-6 to other cytokines is elevated in breast
tumors. While in reality we would expect the number of molecules of cytokines (� 108/ml) to
far outweigh the tumor cell count (� 103/ml), we made the simplifying assumption that all 37
reactions were occurring on similar time scales and with propensities of similar magnitudes.
We made this assumption in order to explore the impact of inhibiting cytokine and intracellu-
lar signals, both individually and in combination, by decreasing the rate constant of each reaci-
ton. Initial counts for receptors, including gp130, HER2, EGFR, CXCR1, and TGFβR2, and
signaling molecules, including Akt, IκB�p50�RelA, Let-7, β-catenin, mir-93, BMP, Stat3, HER2
mRNA, were set to 100. Counts for all signal-receptor dimers (e.g. Il-6 � gp130) and activated
signaling molecules (e.g. activated Stat3), as well as Lin-28, were initially set to 0.

In order to simulate a situation where a reaction is inhibited, we maintain the same initial
conditions, and change the reaction rate constant. The new reaction rate is obtained by multi-
plying the rate constant of the reaction by 10−10.

Results

Stem cell niche regulation and Gompertzian growth kinetics
The cancer stem cell hypothesis asserts that tumor growth and invasion are driven by the can-
cer stem cell population. This suggests that bulk tumor growth kinetics depend heavily on rela-
tively small changes in the behavior of cancer stem cells. We explore the effects of varying the
rate of symmetric self-renewal in BCSCs, while holding the rates of division, differentiation,
and death constant in the progenitor and differentiated cell populations.

Self-renewal can be symmetric, giving rise to two BCSCs, or asymmetric, giving rise to one
BCSC and one partially differentiated daughter cell. The fate of a BCSC is highly regulated by
microenvironmental signaling, including cytokines as well as intracellular signaling and miR-
NAs. The predominant mode of healthy stem cell self-renewal is asymmetric, but the propor-
tion of stem cells undergoing symmetric self-renewal may increase over time during
carcinogenesis. A recent study showed that asymmetric segregation of template DNA varies by
molecular breast cancer subtype and several factors can alter the frequency of asymmetric seg-
regation in breast cancer [33]. Studies tracking multiple cell divisions from initial single cells
show that symmetric division is the predominant (84.6%) mode of division in Oct4+ breast
cancer cells [34]. Further studies of mammary stem cells in mammospheres demonstrate that
p53 regulates polarity of cell division in mammary stem cells and suggest that loss of p53 favors
a shoft towards symmetric division of cancer stem cells [35]. We accordingly consider a model
in which the rate of symmetric self-renewal in breast cancer stem cells gradually increases dur-
ing carcinogenesis. Breast tumors have been shown to follow a Gompertzian curve [36–38], a
sigmoid function where growth is slowest at the start and end of a time period, and the future
value asymptote of the function is approached much more gradually than the lower valued
asymptote. We demonstrate here how Gompertzian growth kinetics can be explained by small
alterations in rates of symmetric versus asymmetric self-renewal.
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We explore tumor growth dynamics under a gradually increasing percentage of symmetri-
cally dividing stem cells. We make the assumption that the initial rate of symmetric self-
renewal is slow and upon transformation to a breast cancer stem cell the rate of symmetric self-
renewal steadily increases [34, 35, 39]. Asymmetric self-renewal is the predominant mode of
self-renewal in healthy stem cells, with observations of 80% of WT mammmary cells dividing
asymmetrically [35], and we make the assumption that the remainder of time is split evenly
between symmetric self-renewal and symmetric differentiation. Extrapolations from feline and
murine data for hematopoietic stem cells indicate that symmetric self-renewal occurs approxi-
mately once every 42 weeks (β = 0.0034 cell−1 day−1). We hypothesize that the rate of asymmet-
ric self-renewal is accordingly much faster (α = 0.027 cell−1 day−1). Symmetric differentiation is
occurring at the same slow rate of symmetric self-renewal (ρ = 0.0034 cell−1 day−1). Studies
tracking multiple cell divisions from initial single cells show that symmetric division is the pre-
dominant (84.6%) mode of division in Oct4+ breast cancer cells [34]. Further studies of mam-
mary stem cells in mammospheres demonstrate the p53 regulates polarity of cell division in
mammary stem cells and suggests that loss of p53 favors a shift towards symmetric division of
cancer stem cells [35]. Loss of p53 is associated with an increase in the frequency of symmetric
divisions among mammospheres, while pharmacological restoration of p53 leads to restoration
of asymmetric division as the predominant mode of division [35]. Upon malignant transfor-
mation, there is an observed increase in symmetric stem cell divisions to 78% [35]. Based on
these findings, we examine tumor growth dynamics in response to a gradual increase in breast
cancer stem cell symmetric division from 20% to 80% over several years.

We begin with a population of 25 BCSCs, 5 in the quiescent mesenchymal state and 20 in
the rapidly proliferating epithelial state, as well as 100 bipotent progenitors, and 500 differenti-
ated cells. In each scenario, we gradually increase the frequency of symmetric divisions in
BCSCs from 20% to 80% over a period of 6 years and follow population dynamics out to 9
years. We hold the rate of asymmetric self-renewal constant (0.027 cell−1 day−1) and increase
the rates of symmetric self-renewal (β) and symmetric differentiation (ρ). The frequency of
symmetric division is increased yearly (20% in year 1, 30% in year 2, 40% in year 3, 50% in year
4, 60% in year 5, 70% in year 6, 80% in years 7 through 12). The frequency of asymmetric divi-
sion accordingly decreased yearly (80% in year 1, . . ., 20% in years 7 through 9). We allow the
frequency of symmetric self-renewal to slightly exceed that of symmetric differentiation and
follow the predicted total tumor cell population.

Fig 2 shows the mean trajectory of the total cell population in response to a shift from asym-
metric to symmetric division. We used coarse variations for the ratio between β and ρ in differ-
ent time periods and used least squares to estimate the fit between our predicted total tumor
cell population trajectories and tumor growth data from breast tumors [37, 38]. We found that
letting β = 5 × ρ during years 1–4 and β = ρ during years 5–12 provided the best fit. We note
that the predicted total tumor cell population resembles closely the shape of Gompertzian
growth kinetics, where there is continuous deceleration of tumor growth [36]. We were able to
estimate fit between our simulation results and the Gompertz function N(t) = exp[(A0/c)(1
−exp(−ct)] while varying the initial specific growth rate A0 from 0.02 to 0.04, and the propor-
tional rate of decay c from 0.001 to 0.002. Parameter values previously estimated for the pro-
portional rate of decay using data from human breast tumors fall within this range [37]. For
the simulation shown in Fig 2, we find that the total tumor growth matches observed Gompert-
zian tumor growth kinetics, where a tumor takes 8 years to grow from a single cell to clinical
recognition at 109 cells [37, 38]. We obtained excellent fit (R2 = 0.99) between the Gompertz
curve and our simulation when c = 0.0013 and A0 = 0.027.

Next, we explore the effects of increasing the difference between symmetric self-renewal
rates and symmetric differentiation rates. In each case we allow the frequency of symmetric
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Fig 2. Stochastic simulation results for cell growth during carcinogenesis compared with analytic results for the Gompertzian growth curve.
Simulation results show total population counts in response to a gradual shift from predominantly asymmetric to symmetric division of BCSCs. Our simulation
showed excellent agreement with the Gompertz function with growth rate parameter c ranging between 0.001 and 0.002 cell−1 day−1, which match
previously estimated growth rate parameters obtained by fitting the Gompertz function to data from breast tumor growth [37, 38]. Here we demonstrate the fit
between our simulation results and the Gompertz function with parameters A0 = 0.0193 (95% confidence interval 0.0192—0.0194), c = 0.00133 (95%
confidence interval 0.00133-0.00134) and asymptote 1.2 × 109 (R2 = 0.989).

doi:10.1371/journal.pone.0135797.g002
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self-renewal to exceed that of symmetric differentiation in years 1 through 4. Panel A of Fig 3
shows the effect of varying this peak difference on the total cancer cell population size. As we
increase the difference between the frequencies of symmetric self-renewal and symmetric dif-
ferentiation (β = 4.5ρ to β = 5.5ρ), we note that the asymptotic population sizes are increased.

Finally, we show that varying the time period during which symmetric self-renewal exceeds
symmetric differentiation affects both the rate of continuous deceleration of tumor growth and
the asymptotic population size. Panel B of Fig 3 reveals that delaying the point at which β
exceeds ρ shifts the curve to the right, delaying bulk tumor growth, but increases the asymptotic
population size.

We find that the continuous deceleration that is characteristic of Gompertzian growth is
observed whenever both of the following two conditions are met: 1) there is a shift from asym-
metric to symmetric division in BCSCs, and 2) the rate of symmetric self-renewal initially
exceeds and then approaches the rate of symmetric differentiation. S1 Fig reveals the effects of
relaxing either of these requirements. In both cases, there is not appreciable expansion of the
stem cell compartment, and while slow tumor growth occurs, the continuous deceleration of
Gompertzian growth is not observed.

We conclude that small perturbations in breast cancer stem cell behavior can lead to Gom-
pertzian growth kinetics. In our model, progenitor division rates are held constant, and we do
not make assumptions about limited resources for cancer cell growth.

Fig 3. Average trajectories of total cancer cell populations in response to varying the difference between symmetric self-renewal (β) and
symmetric differentation (ρ) rates and the time period during which β diverges from ρ. Higher peak difference jβ−ρj leads to a higher asymptotic
population size (panel A). Allowing β to diverge from ρ later in the course of carcinogenesis translates the Gompertz curve to the right and delays the growth
of the tumor, while increasing its ultimate size (panel B).

doi:10.1371/journal.pone.0135797.g003
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Targeting the BCSCmicroenvironment
The behavior of cancer stem cells is highly regulated by signaling in the microenvironment,
and targeting the microenvironment may be an effective way of eradicating cancer stem cells.
We explore the population dynamics of BCSCs under therapy targeting microenvironmental
signaling. Specifically, we identify changes in cell population dynamics in response to inhibi-
tion of niche regulators, knocking them out individually and in combination.

Stochastic reaction kinetics is ideal for studying the complex regulatory dynamics of the
BCSC niche. Table 1 lists reactant species involved in our model system. These species include
the EMT-like and MET-like BCSC populations, as well as the levels of cytokines (IL-6, NF-κB,
TGF-β), and molecular regulators (HER2, mir93) of self-renewal and EMT/MET transitions.
Table 2 lists the events that occur in our system. An example of a positive feedback loop involv-
ing IL-6 and NF-κB is shown in bold.

Fig 4 reveals the trajectories of epithelial and mesenchymal BCSCs in the absence of therapy
(Panel A) and under the effects of introducing inhibitors of several elements of the BCSC
niche, including both intracellular signals and microenvironmental factors (Panels B-D). In
particular these panels depict trajectories of predicted total BCSC counts in reponse to individ-
ually inhibiting elements of the BCSC niche. Each population trajectory reports average parti-
cle counts over 100 simulations. Panel A shows the effects of allowing the rate of EMT
reactions (0.000225 cell−1 day−1) to exceed that of MET reactions (0.0001 cell−1 day−1). Shifting
BCSC populations toward quiescence slows the growth of both populations. Targeting single
elements of the BCSC niche reduces the rate of increase of BCSC populations, but the total
BCSC population continues to rise in each case.

Inhibiting IL-6 reduces the rate of conversion from an epithelial to a mesenchymal state,
leading to an increase in the number of cells in the epithelial state (see the top panel of Fig 5).
While inhibiting BMP and mir-93 expression leads to a decreased BCSC total count, it causes a
shift to a higher proportion of invasive quiescent mesenchymal BCSCs (see the bottom panel
of Fig 5), which may ultimately worsen prognosis.

Table 1. Reactant species in the BCSC niche model. Examples of reactants include cell populations,
microenvironmental regulators such as cytokines, and intracellular signals such as microRNAs.

Cells Cytokines Receptors

MET-like BCSC IL-6 gp130

EMT-like BCSC IL-8 CXCR1

TGF-β HER2

BMP EGFR

Complexes

IL-6 � gp130 dimer IL-8 � CXCR1 HER2 � EGFR

Lin-28 � HER2 mRNA IκB � p50 � RelA Let-7 � IL-6
Lin-28 � Let-7 mir93 � TGF-β BMP

Intracellular signals

Stat3 activated Stat3 HER2 mRNA

Akt activated Akt IκB

p50 � RelA Lin-28 Let-7

β-catenin activated β-catenin mir-93

doi:10.1371/journal.pone.0135797.t001
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When we examine the effects of combining inhibitors, we find that the most effective com-

bination is simultaneous inhibition of HER2 and Il-6 (see Fig 6). Out of
9

2

 !
¼ 36 combina-

tions tried, this combination most effectively stops BCSCs from propagating. This occurs
because of the effective blocking the inflammatory positive feedback loop between IL-6 and
NF-κB involved in β-catenin signaling and BCSC self-renewal. While other therapies, adminis-
tered alone or in combination, are able to slow the growth of the BCSC population, this combi-
nation drives the BCSC population towards elimination.

Stochastic simulation allows us to further examine how frequently our BCSC populations
are eradicated with therapy. Out of 1000 simulations, we plot the frequency distributions of
epithelial BCSC, mesenchmal BCSC, and total BCSC population counts at the end of 1000 days

Table 2. Reaction channels of the BCSC niche system. Events include self-renewal and death of BCSCs,
dimerization of ligand and receptor and their dissociation, activation and inhibition of signaling molecules, and
increased transcription in the presence of activating signals. Bolded reactions represent those involved in the
inflammatory feedback loop between IL-6 and NF-κB. IL-6 binds to its receptor gp130, leading to Stat3 activa-
tion, which causes NF-κB activation. Activated NF-κB increases expression of IL-6, leading to a positive feed-
back loop, as well as increased expression of Lin-28, which activates β-catenin signaling. Let-7 directly
inhibits both Lin-28 and IL-6.

Receptor binding and dissociation

IL-6 + gp130 ! IL-6 � gp130 IL-8 + CXCR1 ! IL-8 � CXCR1
IL-6 � gp130 ! IL-6 + gp130 IL-8 � CXCR1 ! IL-8 + CXCR1

TGF-β + TGF-βR2 ! TGF-β � TGF-βR2 TGF-β � TGF-βR2 ! TGF-β +TGF-βR2

HER2 + EGFR ! HER2 � EGFR HER2 � EGFR ! HER2 + EGFR

Activation of intracellular signaling
IL-6 � gp130 + Stat3 ! IL-6 � gp130 + act Stat3 IL-8 � CXCR1 + Akt ! IL-8 � CXCR1 + act

Akt

IL-8 � CXCR1 + Stat3 ! IL-8 � CXCR1 + act Stat3 HER2 � EGFR + Akt ! HER2 � EGFR
+ actAkt

actAkt + I κB � p50 � RelA ! act Akt + IκB + p50 � RelA actAkt ! Akt

act Stat3 + I κB � p50 � RelA ! act Stat3 + IκB + p50 �
RelA

act Stat3 ! Stat3

Lin-28 + HER2 mRNA ! Lin-28 � HER2 mRNA Lin-28 + β-catenin ! Lin-28 + act β-catenin

HER2 � EGFR+ β-catenin ! HER2 � EGFR+ act β-catenin act β-catenin ! β-catenin

Lin-28 + Let-7 ! Lin-28 � Let-7 Lin-28 � Let-7 ! Lin-28 + Let-7

Let-7 + Il-6 ! Let-7 � IL-6 Let-7 � IL-6 ! Let-7 + IL-6

mir93 + TGF-β ! mir93 � TGF-β mir93 � TGF-β ! mir93 + TGF-β

IκB + p50 � RelA ! IκB � p50 � RelA
EMT/MET transitions, self-renewal and cell death
MET + IL-6 � gp130 ! EMT + IL-6 � gp130 MET + TGF-β ! EMT + TGF-β

EMT + mir93 ! MET + mir93 EMT + BMP ! MET + BMP

EMT + HER2� EGFR ! MET + HER2 � EGFR MET ! 0

MET + act β-catenin ! MET + MET + activated β-catenin

Transcription events

Lin-28 � HER2 mRNA ! Lin-28 + HER2 + HER2 mRNA p50 � RelA ! IL-6 + p50 � RelA
p50 � RelA ! p50 � RelA + Lin-28

doi:10.1371/journal.pone.0135797.t002
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of combined HER and IL-6 inhibitor therapy. We find that the BCSC are frequently eradicated
by this optimal therapy.

In order to examine the sensitivity of our results on the parameter values we chose, we
examined the effects of varying our parameters both in the baseline niche and under the treat-
ment combination we identified as most effective. Fig 7 shows the total BCSC counts over 1000
days in response to varying the rate of epithelial to mesenchymal transition (EMT) (panels A

Fig 4. Predicted trajectories of BCSCs during carcinogenesis withoutout intervention (panel A) and in response to treatment (panels B-D).
Population trajectories obtained by running 100 simulations for each scenario. Panel A reveals the trajectories of EMT-like and MET-like populations over
time. In panels B-D, total BCSC counts are predicted after inhibiting elements of the BCSC niche one at a time. Inhibiting niche elements (IL-6 and TGF-β,
panel D) that facilitate the transition from an MET-like to an EMT-like state causes an increase in the total population by increasing the proportion of
proliferating cells, whereas inhibiting the reverse process (inhibiting HER2, mir-93, and BMP, panel B) causes an increase in the proportion of quiescent cells
and a reduction in total BCSC counts.

doi:10.1371/journal.pone.0135797.g004
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and C) and in response to varying the death rate of the proliferating epithelial BCSCs (panels B
and D). Under baseline conditions (panels A and B), we find that decreasing the rate of EMT
reduces the rate of growth of the total BCSC compartment, and smaller death rates of epithelial
BCSCs leads to more rapid growth of the BCSC compartment. When combined IL-6 and
HER2 inhibition are introduced (panels C and D), we find that the BCSC population is eradi-
cated faster with slower rates of EMT and higher epithelial BCSC death rates.

Discussion
We have developed a mathematical model to study key regulators of EMT and MET conver-
sions in BCSCs and to predict response to therapies targeting these regulators. We examine the
effects of therapies targeting the BCSC niche and conclude that the most effective combination
of therapies to reduce the BCSC population involves the simultaneous inhibition of HER2 and
the IL-6 inflammatory feedback loop. Our mathematical predictions show excellent agreement
with experimental data from cell line and mouse xenograft studies showing the combined effi-
cacy of HER2 and IL-6 blockade [19]. This is consistent with our previous studies supporting
that the remarkable clinical efficacy of HER2 targets in the adjuvant setting may be due to the
ability of these agents to effectively target CSCs [4]. These modeling results will be directly
examined in a planned clinical trial of HER2 and IL-6 targeted therapy for breast cancer
patients.

We find that the rate of interconversion between epithelial and mesenchymal BCSC states is
much more frequent than estimates of the rate of de-differentiation. Earlier models have esti-
mated more frequent rates of de-differentiation from in vitro and in vivo data [18]. However,
these models did not take into account ALDH expression as a marker of stem cells, or the

Fig 5. Trajectories of EMT-like and MET-like BCSC populations in response to niche targeted therapies.While blocking IL-6 leads to an increase in the
MET-like BCSC population (panel A), causing more proliferation and a rapid increase in the total population size, simultaneously reducing mir-93 expression
and inhibiting BMP causes a shift to the quiescent EMT-like state and a decrease in total BCSC counts (panel B).

doi:10.1371/journal.pone.0135797.g005
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effects of the microenvironment. We estimate that the interconversion of stem cells between
the EMT and MET-like states occurs frequently, and these transitions, rather than de-differen-
tiation of non-stem cells, may account for the rapid conversion of CD44- populations to a
CD44+ state. Our findings have important implications in assessing the degree of plasticity of
breast cancer stem cells.

Fig 6. Combinations of therapies targeting the BCSC niche lead to delayed growth of the BCSC population. Population trajectories obtained by
running 100 simulations for each scenario. The most effective combination of therapy is combined inhibition of HER2 and IL-6. By simultaneously reducing
conversion to the quiescent, invasive EMT state, reducing proliferation of MET-like BCSCs, and inhibiting the inflammatory feedback loop, this combination
leads to an effective elimination of both BCSC populations (panel A). Frequency distributions of species counts over 1000 simulations each run for 1000 days
allow us to quantify how often cell counts reach zero under dual blockade of IL-6 and HER2 receptors, for the epithelial BCSC (panel B), mesenchymal BCSC
(panel C), and total BCSC (panel D) populations.

doi:10.1371/journal.pone.0135797.g006
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Fig 7. Effects of varying model parameters on predicted total BCSC population count trajectories. Under baseline conditions, increasing EMT slows
growth of BCSC compartment (panel A) and smaller death rates of epithelial BCSC can lead to rapid growth of the BCSC compartment (panel B). When IL-6
and HER2 are simultaneously inhibited, the BCSC population is eradicated faster with slower rates of EMT (panel C) and higher epithelial BCSC death rates
(panel D).

doi:10.1371/journal.pone.0135797.g007
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Our model highlights the dependence of the bulk tumor population on relatively small vari-
ations in BCSC dynamics. We explore the possibility that the Gompertz growth kinetics
observed in most solid tumors can be explained by variations in the rate of symmetric self-
renewal of BCSCs. While traditional interpretations of observed tumor growth patterns have
attributed the deceleration to metabolic considerations, tumor-host interactions, and competi-
tion for resources as tumors grow larger [36], we propose that alterations in microenvironmen-
tal signaling of CSCs may account for the observed growth kinetics. This explanation is
plausible, as recent evidence suggests that stem cell behavior is regulated by niche signaling,
and that aberrant stem cell microenvironmental signaling contributes significantly to carcino-
genesis [40]. By simply varying the percentage of BCSCs undergoing symmetric self-renewal,
we predict bulk tumor growth patterns that match observed Gompertzian kinetics [38]. Micro-
environmental signals such as HER2, β-catenin, and Lin-28, regulate symmetric self-renewal in
breast cancer stem cells, and these signals are important during early stages of cancer growth.
As tumors progress, symmetric self-renewal may diminish in order to maintain homeostasis in
response to feedback from differentiated cells [41].

Interdisciplinary approaches combining theory and experiment and taking into account
tumor heterogeneity and resistance to therapy have recently been implemented to optimize
radiation dosing schedules [42]. Consideration of intratumoral heterogeneity and spatial effects
of the BCSC niche, as well as incorporation of information on invasiveness of tumors would
more accurately predict patient outcome. Future models should also include estimation of
EMT/MET rates using patient tumor data rather than high passage cell lines. While therapies
that promote the conversion to a quiescent state lead to diminished proliferation of BCSCs and
slow growth of the BCSC population, the increased proportion of invasive cells would cause
greater harm to the patient if metastatic foci deposits were more frequent. In addition, although
mesenchymal BCSCs might contribute to tumor dormancy, these cells remain capable of tran-
sitioning to epithelial BCSCs accounting for recurrence at metastatic sites. In addition, our sim-
ulation models would be augmented by examining the effects of adding a differentiating agent
such as retinoic acid (promoting asymmetric self-renewal and symmetric differentiation) to
the system to determine the effect on extinction of BCSCs.

We have demonstrated here how a series of important biologically and clinically relevant
questions in cancer stem cell research can be addressed successfully with mathematical model-
ing and simulations. Predictions from our simulations of niche target inhibitors match experi-
mental data demonstrating the efficacy of combined HER2 and IL-6 blockade in pre-clinical
models of HER2-positive breast cancer [19]. We anticipate that mathematical modeling in
combination with experimental validation will optimize the development of safe and effective
therapies that target the cancer stem cell and its niche. More broadly, our results suggest that
elimination of CSC populations may require simultaneous targeting of epithelial and mesen-
chymal BCSC populations.
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