
AnoniMME: bringing anonymity to the

Matchmaker Exchange platform for rare

disease gene discovery

Bristena Oprisanu* and Emiliano De Cristofaro

Department of Computer Science, University College London, London WC1E 6BT, UK

*To whom correspondence should be addressed.

Abstract

Summary: Advances in genome sequencing and genomics research are bringing us closer to a

new era of personalized medicine, where healthcare can be tailored to the individual’s genetic

makeup and to more effective diagnosis and treatment of rare genetic diseases. Much of this pro-

gress depends on collaborations and access to data, thus, a number of initiatives have been intro-

duced to support seamless data sharing. Among these, the Global Alliance for Genomics and

Health has developed and operates a platform, called Matchmaker Exchange (MME), which allows

researchers to perform queries for rare genetic disease discovery over multiple federated data-

bases. Queries include gene variations which are linked to rare diseases, and the ability to find

other researchers that have seen or have interest in those variations is extremely valuable.

Nonetheless, in some cases, researchers may be reluctant to use the platform since the queries

they make (thus, what they are working on) are revealed to other researchers, and this creates con-

cerns with respect to privacy and competitive advantage.

In this paper, we present AnoniMME, a framework geared to enable anonymous queries within the

MME platform. The framework, building on a cryptographic primitive called Reverse Private

Information Retrieval, let researchers anonymously query the federated platform, in a multi-server

setting—specifically, they write their query, along with a public encryption key, anonymously in a

public database. Responses are also supported, so that other researchers can respond to queries

by providing their encrypted contact details.

Availability and implementation: https://github.com/bristena-op/AnoniMME

Contact: bristena.oprisanu.10@ucl.ac.uk

1 Introduction

Advances in genome sequencing and genomics are enabling tremen-

dous progress in medicine and healthcare, paving the way to making

the prevention, diagnosis and treatment of diseases tailored to the

individual’s specific genetic makeup, thus becoming cheaper and

more effective. Researchers are also gaining a better understanding,

and developing more successful treatments of rare genetic diseases.

However, even though sequencing costs have plummeted from

billions to thousands of dollars over the past 15 years (https://www.

genome.gov/sequencingcosts/), it is still hard for researchers to

gain access to genomic data, especially those pertaining to rare

conditions.

Therefore, seamless progress in genomics research hinges on the

ability to collaborate and share data among different institutions.

Indeed, funding agencies often require that data sharing is consid-

ered in grant applications, and a number of initiatives have been

announced to gather and share genomic data. For instance, the All

Of Us Research Program (formerly known as the Precision Medicine

initiative) was launched in the US in 2015, aiming to collect health

and genetic data from one million citizens. Similar projects exist

elsewhere, e.g. in the UK, Genomics England is sequencing the

genomes of 100 000 patients, focusing on rare diseases and cancer.

There are also initiatives specifically targeting data sharing, such as

the NIH’s Genomic Data Commons (GDC), which provides the can-

cer research community with a unified data repository across cancer

genomic studies (https://gdc.cancer.gov/).

Aiming to foster collaborations, the Global Alliance for Genomics

and Health (GA4GH) [https://www.ga4gh.org] was established, with

core funding from NIH, Wellcome and Canada’s CanShare, with the

explicit goal of making data sharing between institutes simple and ef-

fective. The GA4GH has developed several platforms, e.g. the Beacon

Project (Global Alliance for Genomics and Health, 2016), allowing

VC The Author(s) 2018. Published by Oxford University Press. i160

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i160–i168

doi: 10.1093/bioinformatics/bty269

ISMB 2018

https://github.com/bristena-op/AnoniMME
Deleted Text: ,
Deleted Text: see 
https://www.genome.gov/sequencingcosts/
https://www.genome.gov/sequencingcosts/
Deleted Text: ,
Deleted Text: , 
Deleted Text: see 
https://gdc.cancer.gov/
https://www.ga4gh.org
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/


researchers to search if a certain allele exists in a database of genomic

data, as well as the Matchmaker Exchange (MME; Philippakis et al.,

2015), which facilitates rare disease discovery.

In this paper, we focus on the latter; The MME platform connects

multiple distributed databases through an Application Programming

Interface (API) and allows researchers to query for genetic variants in

other databases in the network. That is, MME acts as a portal sup-

porting simultaneous querying over multiple databases that are mem-

bers of the exchange. More specifically, MME allows a researcher to

query a specific gene, e.g. ‘AP3B2’ (a gene where rare mutations have

been linked to early-onset epileptic encephalopathy). If a match is

found, the researcher is notified of all matches within all databases in

the MME, and can get in touch with the user that submitted the case

on which a match is generated. Note that, querying a gene really

implies querying a known rare variation of that gene.

However, researchers might be reluctant to use the platform

since the queries they make are revealed to other researchers, and

this exposes what they are working on and what kinds of patients

they might have, ultimately resulting in loss of privacy and competi-

tive advantage. Indeed, MME currently requires researchers to sub-

mit a registration application to be given access to the platform,

with the goal of preventing misuse of the system, thus, queries made

on this platform are not anonymous and are revealed to all other

researchers with an interest in the same gene.

1.1 Problem statement
This motivates the need to support anonymous querying on MME,

so that a researcher’s interest a gene is not broadcast, but only com-

municated to relevant contacts, i.e. researchers with same interests

or willing to collaborate. To this end, we present AnoniMME, a

framework letting researchers anonymously query a gene within the

MME, without violating any of MME’s current functionalities and

requirements. We build AnoniMME using a cryptographic primitive

called Reverse Private Information Retrieval (Reverse PIR), using a

model similar to that presented by the anonymous messaging system

Riposte (Corrigan-Gibbs et al., 2015), while creating queries and

implementing the same functionalities as in MME. In other words,

researchers can perform anonymous queries to the federated

platform, in a multi-server setting, by writing their query, along

with a public encryption key, anonymously, in a public database.

AnoniMME also supports responses, so that other researchers can

respond to queries by providing their encrypted contact details.

1.2 Solution intuition
We build queries in regular epochs, where the length of each epoch

is based on the number of write requests. In order to anonymously

write to the database, the user selects a random row of the the data-

base and splits the query, containing the gene and her public key,

into shares, one for each server (which we denote as node servers).

This way, the node servers cannot learn anything about the write re-

quest, if at least one of them is honest. Then, a master server can

gather queries that have been collected during an epoch from the

node servers and collate them together to recover and publish the ac-

tual queries. The MME matching system can then be used in order

to generate matches for the queries, in the usual manner and contact

details of other researchers/clinicians can be exchanged, encrypted

using the public key, and published in the same row as the queried

gene, in an adjacent column.

To demonstrate the practicality of AnoniMME, we implement

and evaluate our prototype experimentally. We do so in two differ-

ent settings, one involving two node servers and a master server, and

another involving six node servers (and a master server). In both set-

tings, the nodes collect write requests during an epoch, and then for-

ward them to the master server which collates them and publishes

the final database.

1.3 Contributions
In summary, our paper makes several contributions:

i. We present AnoniMME, a framework enabling anonymous

queries within MME, without breaking any of its current secur-

ity and functionality requirements.

ii. We build AnoniMME from Reverse PIR (Corrigan-Gibbs et al.,

2015), using an information-theoretic approach, extending

queries to support public key encryption of contact details and

adding a response phase so that users can also anonymously

reply to queries.

iii. We show, experimentally, that AnoniMME is efficient and scal-

able, and can bring anonymity to MME with low overhead.

Therefore, we are confident that it can be deployed in the wild

and further encouraging researchers to share genomic data.

1.4 Paper organization
The rest of the paper is organized as follows. In the next section, we

introduce our approach; specifically, after reviewing the MME plat-

form, we define entities, operations and threat model of our system

and present a first attempt at designing a anonymous-query mechan-

ism for MME. In Section 3, we then describe the methods used for

collision handling and collision recovery, present the n-server proto-

col and evaluate the performance of the proposed protocol on the

client side. Next, in Section 4, we discuss the results from our experi-

mental evaluation and place our protocol in the context of related

work. Finally, the paper concludes in Section 5.

2 Approach

2.1 Matchmaker Exchange
As mentioned, GA4GH was established, in 2013, aiming to support

simple mechanisms for sharing data between institutes. The

GA4GH has developed and deployed various systems, including

MME (Philippakis et al., 2015), which facilitates rare disease gene

discovery and constitutes the main focus of our work. MME is a fed-

erated platform that facilitates the identification of cases with simi-

lar phenotypic and genotypic profiles through a standardized API.

Essentially, it enables searches in multiple databases, without having

to query all of them separately or deposit data in each of them. As of

March 2018, it involves seven organizations with full member status

(AGHA Patient Archive, DECIPHER, GeneMatcher, Matchbox,

Monarch Initiative, MyGene2 and PhenomeCentral) and eight add-

itional participant organizations.

The Matchmaker Exchange Application Programming Interface

(MME API; Buske et al., 2015) fully specifies the data format and

the protocol for querying databases to identify individuals with simi-

lar phenotypic profiles and genetic variations. To ensure the accur-

acy of the patient comparison, similar phenotypes are determined

by matching identical or ontologically similar with the Human

Phenotype Ontology (HPO). The MME API also specifies the for-

mat of both the query, which is sent to participating databases

(called ‘matchmaking service’) and the response, which contains in-

formation about matching individuals in the remote database. It is

implemented under a query-by-example methodology: a user can

query a specific gene, e.g. ‘AP3B2’, and she will be notified of all

AnoniMME: bringing anonymity to the Matchmaker Exchange platform for rare disease gene discovery i161

Deleted Text: )
Deleted Text: (
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: . 
Deleted Text: ,
Deleted Text: . 
Deleted Text: ,
Deleted Text: the 
Deleted Text: ,
Deleted Text: ,
Deleted Text: . 
Deleted Text: Matchmaker Exchange (
Deleted Text: )
Deleted Text: ,
Deleted Text: . 
Deleted Text: Matchmaker Exchange (
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
Deleted Text: Global Alliance for Genomics and Health (
Deleted Text: )
Deleted Text: Matchmaker Exchange (
Deleted Text: )
Deleted Text: Application Programming Interface (
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
Deleted Text: )
Deleted Text: (
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: ,
Deleted Text: &hx201D;


matches within all databases in the MME. Note that querying a

gene really implies querying a known rare variation of that gene. If a

match is found, the user receives a Case ID for the match, informa-

tion about the user that submitted the case on which a match is gen-

erated, such as name, institution and email address, as well as the

corresponding candidate gene or phenotype. In order to query the

platform, users must be registered with one of the member databases

and have a clinician/researcher account. Some of the member data-

bases allow for patient/family registrations as well, however, the

submissions made by these types of users are excluded from match-

ing via MME, due to the current MME rules.

The query protocol is illustrated in Figure 1. A user, Bob, sends

the metadata (i.e. Case ID, submitter information) as well as the pa-

tient data (gene and/or phenotype) to Database B. Another user,

Alice, submits a similar case to Database A; Database A then sends

an MME API match request to Database B, which performs the

match and returns a list of scored patients, along with relevant meta-

data, to Database A. After receiving the match results, Database A

informs Alice, providing contact information for Bob. The result of

querying MME yields a list of matches, where each match has a

patient object, i.e. the information on the matched patient, consist-

ing of the same information as described in the query and a score ob-

ject. The scoring of the patients is done according to how well the

results patient matches the query patient, i.e. it is a numerical value

in the range 0; 1½ �, where 0.0 is a poor match and 1.0 a perfect

match.

2.2 Entities and operations
As discussed in Section 1, this paper presents AnoniMME, a frame-

work geared to enable anonymous queries within the MME plat-

form, i.e. anonymously querying the federated platform to find

patients with similar gene mutations or phenotypes. It involves the

following entities:

Querying Users: Researchers/clinicians who query the system to find

other users that have patients with a rare mutation or an interest

in the same gene. As discussed later, they generate a write request

specifying the row at which their query, i.e. the gene of interest

and their public key, will be processed.

Responding Users: Researchers/clinicians replying to an existing

query. They use the public key of a querying user to encrypt their

contact details and generate a write request for the same row as

the gene of interest including their (encrypted) contact details.

Nodes: The servers collecting write requests from the users. These

are aggregated until the end of an epoch, based on the maximum

number of write requests. Each node server can be run by one of

the current MME members.

Master Server: A server that gathers the databases from each node at

the end of an epoch, and publishes the database with all the write

requests revealed. The master server role can also be assigned to

one of the existing MME members, and can be re-assigned to an-

other member at the end of each epoch.

Overall, AnoniMME implements the following operations:

• Query Write Request: On input row i, query gene X, and public

key PK, a querying user generates n write requests, one for each

node. Each write request is generated by encoding the gene and

the public key into n vectors, so that all of them combined will

write the gene/public key at index i.
• Query Response Request: On input row i, encrypted contact

details c, a responding user generates n write requests, one for

each node. Write requests are generated, once again, by encoding

the encrypted contact details into n vectors.
• Database Collation: On input n databases, the master server col-

lates them into one final database and publishes it.

2.3 Security model
AnoniMME aims to guarantee the following three security goals:

i. Correctness. When all nodes execute the protocols correctly and

send data to the master server at the end of an epoch, the result-

ing database contains all the write requests processed as if the

requests were directly applied to the final database.

ii. Anonymous write. The probability that an adversary guesses at

which particular row a user has written is only negligibly better

than random guessing.

iii. Disruption resistance. An adversary controlling n users can

make at most n write requests (i.e. there is a limit to the number

of write requests each user can make during an epoch).

2.3.1 Threat model

We assume that the users of the system are untrusted, and may col-

lude with the nodes, the master server, or other users in order to vio-

late the security properties of the system. Both the master server and

the nodes are trusted for availability and to follow the protocol cor-

rectly, under the assumption that at least one of the nodes is honest

(i.e. does not collude with other nodes). We do not consider external

adversaries, since their actions can be mitigated via standard net-

work security techniques (i.e. using a secure and authenticated com-

munication channel). Finally, note that the security model of

AnoniMME mirrors that of Riposte (Corrigan-Gibbs et al., 2015).

2.4 A first attempt
We now present a first attempt at instantiating AnoniMME, and dis-

cuss its limitations, which we address in the actual construction of

AnoniMME presented in Section 3.2.

2.4.1 Intuition

We start by attempting to build from a simple extension of Reverse

PIR (Corrigan-Gibbs et al., 2015). More specifically, we implement

the query phase using the same mechanism of Riposte, i.e. we let

users anonymously submit the gene of interest, along with their pub-

lic key, with a ‘write request.’ We then add a response phase, allow-

ing users with an interest in the same gene to respond—specifically,

by encrypting their contact information using the public key con-

tained in the query and adding it to another write request.

Fig. 1. Visual representation of a MME query sequence

i162 B.Oprisanu and E.De Cristofaro

Deleted Text: ,
Deleted Text: type
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: O
Deleted Text: Matchmaker Exchange
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: M
Deleted Text: <italic>1.</italic> 
Deleted Text: <italic>2.</italic> 
Deleted Text: <italic>3.</italic> 
Deleted Text: ,
Deleted Text: . 
Deleted Text: ,
Deleted Text: ,
Deleted Text: F
Deleted Text: A
Deleted Text: . 
Deleted Text: Reverse Private Information Retrieval (
Deleted Text: )
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,


In the following, we present a construction assuming the pres-

ence of two servers (S1 and S2) and a database with l rows.

2.4.2 Query phase

Assume user A wants to anonymously query gene XA. She builds a

write request, consisting of (XA, PKA), where PKA is her public key

and writes this at row i in the database. More specifically, she picks

2 l random numbers, r1; r2; . . . ; rl and s1; s2; . . . ; sl, where l is the size

of the database. The query write request vectors are constructed as

follows:

v1 ¼ r1; r2; . . . ; ri þXA; . . . ; rlð Þ;

v01 ¼ s1; s2; . . . ; si þ PKA; . . . ; slð Þ;

v2 ¼ �r1;�r2; . . . ;�ri; . . . ;�rlð Þ;

v02 ¼ �s1;�s2; . . . ;�si; . . . ;�slð Þ:

Note that v1 þ v2 ¼ XA � ei, and v01 þ v02 ¼ PKA � ei, where ei denotes

the unit vector with 0’s at all positions except at position i, where it

is equal to 1 and thus the construction is correct. Then, A sends

v1; v
0
1

� �
to S1, and v2; v

0
2

� �
to S2.

Write requests are collected until the end of an epoch, when the

servers combine their local states and publish the database with the

queries. As long as the two servers do not collude, none of them can

re-construct what any given user has written, i.e. none of the servers

can recover the gene or public key of the user sent in the write re-

quest. Also, in order to achieve disruption resistance, one can limit

the number of queries to one per user for each phase of the epoch.

2.4.3 Response phase

After the database with the queries is published, the response phase

begins. Here, we can rely on MME’s algorithm to generate matches

on existing MME data, and simply extend it to encrypt the contact

details of the relevant users with an interest in the same gene. This

would be inline with the current privacy policy of the MME, as con-

tact details of researchers with an interest in the same gene are al-

ready shared.

Users can also be given an option to voluntarily provide their

contact details as follows. If user B notices that another researcher

(user A) has an interest in the same gene X, say at row i of the data-

base, she gets A’s public key PKA and encrypt her contact informa-

tion (CB) under PKA and generates a write request as a share of

EncPKA
CBð Þ, in a similar manner to the first epoch. More specifical-

ly, she chooses random r01; . . . ; r0l and forms the following vectors:

u1 ¼ r01; . . . ; r0i þ EncPKA
CBð Þ; . . . ; r0l

� �
;

u2 ¼ �r01; . . . ;�ri0 ; . . . ;�r0lð Þ

User B then sends u1 to server S1 and u2 to S2. At the end of this

epoch, the results are being published in a column adjacent to the

queried gene and the public encryption key. The querying users can

use the database to find the row of interest (in this case i), decrypt

the contact details and get in touch with the responding users.

2.4.4 Correctness and security

It is straightforward to see that the construction is correct, since, if

all nodes execute the protocols correctly the result of combining all

their local database states at the end of an epoch by the master ser-

ver will result in revealing all the write requests processed. An adver-

sary’s advantage of guessing at which a certain user has written in

the final database is the same as random guessing, hence, the con-

struction guarantees anonymous writes. Disruption resistance can

be also achieved in a straightforward manner since MME requires

users to register on one of the databases, so they can allow max-

imum one write request per registered user per epoch.

2.4.5 Limitations

Alas, this construction has the following limitations:

i. Collisions: They might occur for writes generated by honest

users, which all want to write at the same row.

ii. Maliciously-formed write requests: A malicious user can easily

send a malformed request to the servers, making all the data

within the database non-recoverable.

3 Materials and methods

In this section, we provide methods for collision handling for our

first attempt and use it to provide a description of the n-server proto-

col. We also evaluate the proposed method in terms of time and

bandwidth required in order to asses the feasibility of the proposed

construction.

3.1 Handling collisions
As discussed previously, collisions might occur whenever multiple

users want to write at the same row. Aiming to address them, we set

the database size to be large enough to accommodate write requests

at a 95% non-collision rate. In other words, 5% of the queries will

likely fail due to collisions and will need to be re-submitted.

3.1.1 Minimizing collisions

Our intuition is to follow a ‘balls and bins’ approach, i.e. if we

throw m balls uniformly and randomly into the l bins, we can esti-

mate how many bins will contain exactly one ball. In our model, we

can associate write requests to the m balls and the rows of the data-

base to the l bins. Let Bij be the event that ball i falls into bin j: for

all i and j, we have Pr Bij

� �
¼ 1

l . Then, let O
1ð Þ

j be the event that

exactly one ball falls in bin j. We have that:

Pr O
1ð Þ

j

h i
¼ m

l
1� 1

l

� �m�1

� m

l
� m

l

� 	2
þ 1

2

m

l

� 	3

using the binomial theorem and ignoring low order terms. Then, lPr

O
1ð Þ

j

h i
is the expected number of bins with exactly one ball, i.e. the

expected number of messages successfully received. Dividing by m,

we get the expected success rate as

E SuccesRate½ � ¼ l

m
Pr O

1ð Þ
j

h i
� 1�m

l
þ 1

2

m

l

� 	2

Thus, for a 95% expected success rate, we need l � 19:5m.

In AnoniMME, in order to set the size of the database, we need

to estimate the expected number of write requests for each epoch.

Looking at the three MME members which show statistics on the

number of users, we find that GeneMatcher has 4066 registered

users, MyGene2 345 registered families and Decipher 247 registered

projects (users have to be part of a project in order to join Decipher)

as of November 2017. This yields an average of approximately

1550 users per database. Assuming that this is representative of the

number of users for all MME databases, we can approximate the

total number of users to be in the order 10 000. We also need to esti-

mate how many users make queries in each epoch: assuming 5% of

users do so at each epoch, each epoch can run for 500 queries, yield-

ing a database of size l � 10 000. Further, note that we design

AnoniMME’s write request so that the row number at which we

AnoniMME: bringing anonymity to the Matchmaker Exchange platform for rare disease gene discovery i163

Deleted Text: 2 
Deleted Text: . 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: . 
Deleted Text: ,
Deleted Text: ,
Deleted Text: . 
Deleted Text: . 
Deleted Text: ;
Deleted Text: non 
Deleted Text: C
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: s
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 


write is determined at random, given the number of write requests

in the epoch as well as the database size, in order to avoid biases in

choosing rows. This method, however, does not provide any way to

recover in the case where a collision occurs, in that case the queries

are irrecoverable and the users would need to re-submit their queries

in a future epoch.

3.1.2 Recovering from collisions

We also use a simple technique for recovering from collisions if/

when these occur. Assume a messages have been written at row i,

i.e. we have a ¼ m1 þm2 þ � � � þma. Inspired by (Corrigan-Gibbs

et al., 2015), we can modify the way in which the queries are built

to recover each of the individual message mj, for 1 � j � a; specif-

ically, we can use a system of a equations, which allows us to solve

for each of the colliding messages. Without loss of generality, we

consider the case a¼2 and explain how to recover from collisions

occurring for the gene name, but similar methods can be used for

a > 2 and to recover public key and/or encrypted contact details.

When a collision occurs at row i, we have an entry a ¼ XA þXB,

where XA is the gene sent by user A, and XB is the gene sent by user

B. If, rather than just sending the queried gene X, users send

X;X2
� �

, we can recover XA and XB by solving a system of two equa-

tions with two variables.

In this case, we also compute the size of the database needed for

an expected success rate as follows:

E SuccessRate½ � ¼ l

m
Pr O

1ð Þ
j

h i
þ 2l

m
Pr O

2ð Þ
j

h i
;

where lPr O
1ð Þ

j

h i
is the expected number of rows with exactly one

write request applied to them, computed as before and 2lPr O
2ð Þ

j

h i
is

the expected number of rows with exactly two write requests

applied to them. Computing Pr O
2ð Þ

j

h i
¼ m

2

� �
1
l2

1� 1
l

� �m�2
, we ob-

tain the value of the expected success rate as:

E SuccessRate½ � � 1� 1

2

m

l

� 	2
þ 1

3

m

l

� 	3
:

In this case, for an epoch of m write requests, with a 95% expected

success rate, we need a database with l0 � 2:7 m cells (two columns

and l ¼ l0

2 rows). This implies that with 500 write requests per epoch,

the database needs l0 � 2:7� 500 ¼ 1350 cells for each vector.

We now generalize for any value of a. Users submit X;X2; . . . ;

Xa for any gene X to be queried. This allows us to recover from an

a-way collision as, in that case we obtain a system of a equations

with a variables. The expected success rate is:

E SuccessRate½ � ¼ l

m
Pr O

1ð Þ
j

h i
þ 2l

m
Pr Oj 2ð Þ
� �

þ

þ � � � þ al

m
Pr Oa

j

h i

where lPr O
kð Þ

j

h i
is the expected number of rows with exactly k

write requests applied to them. Each Pr O
kð Þ

j

h i
is computed as

Pr O
kð Þ

j

h i
¼ m

k

� �
1
lk

1� 1
l

� �m�k
. Hence, we obtain:

E SuccessRate½ � � 1þ �1ð Þaþ1

a!

m

l

� 	a
þ �1ð Þaþ2

aþ 1ð Þ!
m

l

� 	aþ1

We solve this equation for l, given the expected success rate

E SuccessRate½ �, the collision recovery factor a and m the number of

write requests to be written in a certain epoch. If this method is used

throughout both epochs, colliding requests from the query phase

will have to be recovered before the response phase can begin.

Due to the nature of our query/response model, we can expect

collisions to occur more often in the response phase. Hence, we will

can build the system using different collision recovery factors aq for

the query phase and ar for the response phase, with ar � aq.

3.2 N-server construction
We now present the generalized model for the case with n servers

and a database with l rows. We use collision parameters aq and ar

for the query and response phase, respectively. The various steps of

the construction are illustrated in Figure 2.

3.2.1 Query phase

Assume user A wants to query gene XA, but does not want to reveal

that she is the person querying it. As in the construction presented in

Section 2.4, A builds her write request, consisting of (XA, PKA),

where PKA is her public key, aiming to write at row i in the data-

base. She picks random numbers r1;1; . . . ; r1;l; r1;lþ1; . . . r1;laq
; r2;1; . . . ;

rn;laq
and r01;1; . . . ; r01;l; r

0
1;lþ1; . . . ; r01;laq

; r02;1; . . . ; r0n;laq
, where l is the

size of the database, n the number of nodes the write request will be

sent to, and aq the number of allowed collisions. The query write re-

quest vectors are then constructed as follows:

v1;1 ¼ r1;1; r1;2; . . . ; r1;i þXA; . . . ; r1;l

� �
v01;1 ¼ r011;; r

0
1;2; . . . ; r01;i þ PKA; . . . ; r01;l

� �
v1;2 ¼ r1;lþ1; . . . ; r1;lþi þX2

A; . . . ; r1;2l

� �
v01;2 ¼ r01;lþ1; . . . ; r01;lþi þ PK2

A; . . . ; r01;2l

� �
..
.

v1;aq
¼ r1;l aq�1ð Þþ1; . . . ; r1;l aq�1ð Þþi þX

aq

A ; . . . ; r1;laq

� 	

v01;aq
¼ r01;l aq�1ð Þþ1; . . . ; r01;l aq�1ð Þþi þ PK

aq

A ; . . . ; r01;laq

� 	

v2;1 ¼ r2;1; r2;2; . . . ; r2;i; . . . ; r2;l

� �
v02;1 ¼ r02;1; r

0
2;2; . . . ; r02;i; . . . ; r02;l

� �
..
.

vn;1 ¼ � r1;1; r1;2; . . . ; r1;i; . . . ; r1;l

� �
�
Xn�1

j¼2

vj;1

v0n;1 ¼ � r011;; r
0
1;2; . . . ; r01;i; . . . ; r01;l

� �
�
Xn�1

j¼2

v0 j;1

..

.

vn;aq
¼ � r1;l aq�1ð Þþ1; . . . ; r1;l aq�1ð Þþi; . . . ; r1;laq

� 	
�
Xn�1

j¼2

vj;aq

v0n;aq
¼ � r01;l aq�1ð Þþ1; . . . ; r01;l aq�1ð Þþi; . . . ; r01;laq

� 	
�
Xn�1

j¼2

v0j;aq
:

The querying user A ends vj; v
0
j

� 	
to server j for each j,

1 � j � n, where vj ¼ vj;1; . . . ; vj;aq

� �
and v0 j ¼ v0j;1 . . . ; v0j;aq

� �
. We

also consider the special case of aq ¼ 1, when there is no recovery

for collisions, but, instead, we adjust the database size according to

the minimizing collisions case. The servers collect write requests

until the end of the epoch and then send their local databases to the

master server, which will combine them to reveal the database.

i164 B.Oprisanu and E.De Cristofaro

Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: C
Deleted Text: . 
Deleted Text: ,


3.2.2 Response phase

As the database with the queries is published, the response phase

begins. As discussed in Section 2.4, we can rely on MME’s algorithm

to generate matches on existing data from the platform, encrypt the

contact details of the relevant users with an interest in the same gene

and extend it to allow for voluntary responses. More specifically,

user B can add their contact details CB by sending a write request as

a share of c ¼ EncPKA
CBð Þ, in a similar manner to the first epoch.

That is, first, she picks random s1;1; . . . ; s1;l; s1;lþ1; . . . ; s1;lar
; s2;1; . . . ;

sn;lar
and forms the following vectors:

u1;1 ¼ s1;1; . . . ; s1;i þ c; . . . ; s1;l

� �
;

u1;2 ¼ s1;lþ1; . . . ; s1;lþi þ c2; . . . ; s1;2l

� �
;

..

.

u1;ar
¼ s1;l ar�1ð Þþ1; . . . ; s1;l ar�1ð Þþi þ car ; . . . ; s1;lar

� �

u2;1 ¼ s2;1; . . . ; r02;i; . . . ; s2;l

� 	

..

.

un;1 ¼ � s1;1; s1;2; . . . ; s1;i; . . . ; s1;l

� �
�
Xn�1

j¼2

uj;1;

..

.

un;ar
¼ � s1;l ar�1ð Þþ1; . . . ; s1;l ar�1ð Þþi; . . . ; s1;lar

� �
�

�
Xn�1

j¼2

uj;ar

User B then sends uj ¼ uj;1; . . . uj;aq

� �
to server Sj. At the end of

this epoch, the results are being published in a column adjacent to

the queried gene and the public encryption key. In case of collisions,

the individual ciphertexts can be recovered up to ar collisions.

Finally, the querying users can use the database to find the row of

interest (in this case i) and decrypt the contact details received and

contact the person.

3.3 Experimental evaluation
We now present an experimental evaluation of AnoniMME, aiming

to demonstrate its practicality for real-world deployment.

We have implemented the n-server construction (Section 3.2)

using Python 3.6 and evaluated our prototype on a Macbook Pro

running MacOS Sierra 10.12.6 and equipped with a 2.7 GHz Intel

i5 processor, and 16GB of RAM. Experiments are performed in two

different settings, with two and six node servers, respectively, and

always averaged over 1000 executions. We also use three different

epoch sizes, namely, 100, 500 and 1000 write requests per epoch

during the query phase. For the response phase, we keep the data-

base size fixed from the query phase. Overall, we evaluate running

times needed to generate the write requests and the bandwidth over-

head supporting the recovery of 2, 5 and 10 colliding messages, all

on the client side (i.e. one request per epoch).

The servers run Flask with RESTful interface, so we use HTTP

requests to send the messages and the payload is built in JSON,

therefore, we measure, in bytes, the size of the JSON payload (plus

HTTP headers) to estimate the total bandwidth required for sending

write requests.

On the client side, the cryptographic layer includes generating

public/private keys (done only once) and building the vectors to be

sent to the n servers as part of the write request, which incurs O(n)

complexity. Gene name and contact details are assumed to be no lon-

ger than 64 characters, while random numbers used for vector gener-

ation during query phase are up to 1 024 bits long, for aq 2 f1; 2g and

ar ¼ 2. For the response phase, the length of the random values varies

according to the collision recovery factor ar. For ar ¼ 5, their length is

2560 bits, while for ar ¼ 10 it is 5120.

Finally, note that plausible gene queries are generated using the

set of gene symbols (e.g. ‘BRCA2’) from http://gfuncpathdb.ucden

ver.edu/iddrc/iddrc/data/officialGeneSymbol.html.

3.3.1 Two node servers

We start with the setting involving two node servers and a master

server, considering epochs of size 100, 500 and 1000. As mentioned

above, we evaluate bandwidth overhead and running times required

for query and response write requests.

The database size required for each of the three test cases is cal-

culated according to the method presented in Section 3.1 for mini-

mizing collisions, thus, l ¼ 19:5m, where l denotes the number of

rows required and m is the number of write requests for the epoch.

It follows that the l amounts to 2000, 10 000 and 20 000 rows for

m equal to 100, 500 and 1000, respectively.

Running times for both the query write and the response (consid-

ering ar 2 f2; 5;10g) are shown in Figure 3. Overall, we find that,

during the query phase, with a database size of 2000 rows, it takes

approximately 0.014 s to generate vectors in our testbed. Running

times scale linearly, i.e. it takes 0.062 s with 10 000 rows and

0.126 s with 20 000 rows. The bandwidth overhead, shown in

Figure 4, ranges from 2.5 MB for the smallest database size to 25

MB for the largest case considered in our test cases, which can be

Fig. 2. n-server write request processing. At the end of the epoch the Master Server publishes the database with all the write requests and the nodes will be reset

to hold an empty database

AnoniMME: bringing anonymity to the Matchmaker Exchange platform for rare disease gene discovery i165

Deleted Text: . 
Deleted Text: ,
Deleted Text: E
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/data/officialGeneSymbol.html
http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/data/officialGeneSymbol.html
Deleted Text: N
Deleted Text: S
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 


considered an acceptable amount of traffic expected from the client

side.

For the response phase, we find that, when ar ¼ 2, the results are

similar to the query phase since responding users need to generate

two vectors in order to allow collision recovery, same as for the

querying user. When ar equals 5 or 10, we notice an increase in both

running times and bandwidth. Nonetheless, computational com-

plexity is still acceptable, since, even with the largest database size,

write request generation takes less than 0.5 s for ar ¼ 5 and less than

1.5 s for ar ¼ 10. Communication overhead, on the other hand,

increases to 160 MB and 617 MB, respectively, with the largest

database size.

However, one can adjust the collision minimization parameter

so that 10-way collision recovery is not needed.

3.3.2 Six node servers

We also experiment with an instantiation of AnoniMME using six

node servers, thus mirroring the current MME setting, which

involves seven members. Once again, we consider three settings

(100, 500 and 1000 write requests per epoch), and obtain the result-

ing database size based on the recovery from collisions method

discussed in Section 3.1. We support recovery from two colliding

messages for the query phase, i.e. aq ¼ 2. Therefore, the number of

rows required is l ¼ 2:7m
2 , where m is the number of write requests

for the epoch, thus, l equals 135 675 and 1350 for m¼100, 500 and

1000, respectively. As per the response phase, we run tests with dif-

ferent values ar 2 f2;5;10g, considering the database size fixed as

for the query phase.

Once again, we estimate running times (Fig. 5) and the band-

width overhead (Fig. 6). Even though this requires more vectors to

be generated by the users compared to the two-node setting (Section

3.3.1), we observe a considerable decrease in both running times

and bandwidth overhead for the same epoch sizes due to the

decreased number of rows in the database. Specifically, computa-

tional complexity is again linear over all test cases, but the write re-

quest generation taking less than half the time. There is also a big

improvement in terms of communication complexity: even in the

most bandwidth-heavy case (i.e. ar ¼ 10), with 1000 write requests

per epoch, we observe a 5-fold improvement, with bandwidth

decreasing from 617 MB to 125 MB.

On the other hand, the query phase is less efficient than the re-

sponse phase (with ar ¼ 2), compared to the two-node setting, since

the querying user now has to generate two vectors for each gene so

Fig. 3. Two nodes running times for query write request, response write re-

quest with recovery from 2 collisions, response write request with recovery

from 5 collisions, response write request with recovery from 10 collisions

Fig. 4. Two nodes bandwidth averages for query write request, response

write request with recovery from 2 collisions, response write request with re-

covery from 5 collisions, response write request with recovery from 10

collisions

Fig. 5. Six nodes running times for query write request, response write re-

quest with recovery from 2 collisions, response write request with recovery

from 5 collisions, response write request with recovery from 10 collisions

Fig. 6. Six nodes bandwidth averages for query write request, response write

request with recovery from 2 collisions, response write request with recovery

from 5 collisions, response write request with recovery from 10 collisions

i166 B.Oprisanu and E.De Cristofaro

Deleted Text: N
Deleted Text: S
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: ,
Deleted Text: , 
Deleted Text: see Figure 
Deleted Text: see Figure 
Deleted Text: cf. 
Deleted Text: ,
Deleted Text: , 
Deleted Text: five


that collision recovery is possible, hence, four vectors in total;

whereas, the responding user only generates two vectors.

4 Discussion

In this section, we discuss the experimental data, as well as provide

an overview of related work.

4.1 Remarks
Our experimental evaluation attests to the practicality of using

AnoniMME to bring anonymity to the MME. Overall, using the

method proposed in Section 3.3.1 to recover write requests in case

of collisions yields better running times and bandwidth complex-

ities, even when the number of nodes increases.

Since AnoniMME is based on Riposte (Corrigan-Gibbs et al.,

2015), one might want to compare the two systems; however,

Riposte focuses on experimental results from the server’s perspec-

tive, while we evaluate performance from a user perspective.

Also note that the bandwidth overhead in our n-server construc-

tion is non-negligible, especially with a high collision recovery factor

and increasing database sizes (as discussed in Section 3.3.1). A pos-

sible solution would be to use distributed point functions to reduce

bandwidth complexity, similar to Riposte. However, we leave this

to future work.

As the anonymity set size in AnoniMME corresponds to the

number of users querying in a given epoch, one could increase it by

requiring users to send empty queries to the system, following a cer-

tain probability distribution. The write requests would be formed as

discussed in Section 3.2, although, instead of inputting a gene, the

public key, or the contact details, the users just send an empty query.

This is also used in Riposte, to minimize statistical disclosure attacks

on their platform.

Finally, note that our implementation currently allows for 64

character messages, thus, queries can also include phenotypes from

the HPO (as currently supported by MME), although, to ease of

presentation we have discussed our experiments by only considering

gene names. In future work, we plan to conduct a user study simu-

lating a real-world deployment of AnoniMME with users of the

MME, aiming to evaluate its usability with respect to anonymity

protection, delays introduced by epochs, etc.

4.2 Related work
Rapid and effective progress in genomics and personalized medicine

is often promoted as being dependent on the ability to share

sequenced genomes, and make them accessible to researchers for dif-

ferent research purposes. However, it is often hard to share data due

to privacy, ethical, legal and informed consent hurdles. To address

these issues, a few privacy-preserving methods have been presented

to facilitate genomic data sharing. Kamm et al. (2013) use secret

sharing for distributing data among several entities. Using secure

multi-party computations on the data, computations can be done

across multiple independent entities, without violating the privacy

of individual donors or leaking the data to third parties. Then,

Wang et al. (2015) allow clinicians to find similar patients in bio-

repositories, with similarity being defined as the edit distance. Their

construction is based on a combination of a novel genomic edit dis-

tance approximation algorithm and new construction of private set

difference size protocols. Chen et al. (2017) introduce a framework

using Intel’s Software Guard Extension and hardware for trust-

worthy computations. This way, secure and distributed computation

over encrypted data is performed, respecting institutional policies

and regulations for protected health information.

Another initiative developed by GA4GH, besides MME, is the

Beacon Project (Global Alliance for Genomics and Health, 2016); a

beacon is a service that any institution can implement to share genet-

ic data. Users can query the system through a federated search en-

gine, the Beacon Network. The queries are of the form ‘Do you have

any genomes with an ‘A’ at position 100 735 on chromosome 3?’,

and the beacon responds with either ‘Yes’ or ‘No’, keeping all other

sequence data concealed. This kind of queries can be used to either

search all beacons or specific databases. The result is then shown as

a list of databases where the allele has been previously observed,

including the institution that holds that database. Shringarpure and

Bustamante (2015) present an attack on beacons, showing that re-

identification is possible using a likelihood-ratio test. Mitigations

for this attack are presented by Raisaro et al. (2017), however these

mitigations comes with a diminished utility of the beacon. The ori-

ginal attack has been improved by Thenen et al. (2017) in terms of

number of queries needed to determine the presence of an individual

in a beacon. Note that these attacks do not apply to MME, since

no genotype information or aggregate data is released publicly and

the querying is done only on specific genes, with no genotype

information.

Overall, a number of attacks to anonymized/de-identified gen-

omic data have been presented. Homer et al. (2008) show how to

detect the presence of an individual genotype in a mixture of pooled

DNA, while Gymrek et al. (2013) recover the surnames of individu-

als from a genomic data repository by profiling short tandem repeats

on the Y chromosome, querying recreational genealogy databases

and relying on metadata like age and state to recover the identity of

the target.

As already mentioned, our construction is similar in nature to

Riposte (Corrigan-Gibbs et al., 2015), an anonymous broadcast

messaging system, which also built using Reverse PIR. Riposte

allows a large number of clients to post messages anonymously on a

‘bulletin board’ maintained at a small set of servers. The main goal

of the system is to provide a platform for whistleblowers, allowing

them to anonymously post 160 byte length messages. Besides using

Reverse PIR in a different setting, and thus addressing different chal-

lenges in scalability, also note that our AnoniMME framework also

allows replies to messages.

5 Conclusion

This paper presented AnoniMME, a framework geared to bring

anonymity to the MME platform. Specifically, AnoniMME supports

anonymous queries, by relying on Reverse PIR, while mirroring the

functionalities of MME. Queries include the gene name as in MME,

but also the querying user’s public key and are collected during

epochs whose length is based on the number of write requests. By

taking advantage of the underlying MME matching protocol, these

queries can be seamlessly responded to, without publicly revealing

the contact details of other researchers/clinicians which generated a

match, by using the public key provided to encrypt the match. Also,

other users can provide their (encrypted) contact details if they so

wish.

The proposed protocol is compatible with the functionalities and

the requirements of MME, but adds anonymous queries with a low

overhead, as we demonstrated empirically. Thus, we are confident

that AnoniMME can eventually be deployed in the wild and further

AnoniMME: bringing anonymity to the Matchmaker Exchange platform for rare disease gene discovery i167

Deleted Text: Matchmaker Exchange
Deleted Text: Human Phenotype Ontology
Deleted Text: W
Deleted Text: ,
Deleted Text: <italic>&hx201C;</italic>
Deleted Text: , 
Deleted Text: <italic>&hx201D;</italic>
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: Matchmaker Exchange (
Deleted Text: )
Deleted Text: ,


encouraging researchers to share genomic data, by minimizing the

possibility of exposing confidential research when using MME.

As part of future work, we plan to include and experimentally

evaluate an extension to malicious users in our prototype, support

the execution of the response phase over multiple query epochs, fur-

ther reduce bandwidth complexity and perform a user study to

evaluate its usability.

Acknowledgement

The authors thank Christophe Dessimoz for valuable feedback provided, as

well as insights from users of the platform.

Funding

This work was supported by a Google Faculty Award on Enabling Progress in

Genomic Research via Privacy-Preserving Data Sharing.

Conflict of Interest: none declared.

References

Buske,O.J. et al. (2015) The Matchmaker Exchange API: automating patient

matching through the exchange of structured phenotypic and genotypic pro-

files. Human Mutat., 36, 922–927.

Chen,F. et al. (2017) PRINCESS: privacy-protecting Rare disease

International Network Collaboration via Encryption through Software

guard extensionS. Bioinformatics, 33, 871–878.

Corrigan-Gibbs,H. et al. (2015) Riposte: an anonymous messaging system

handling millions of users. In: Proceedings of the 2015 IEEE Symposium on

Security and Privacy, IEEE Computer Security, pp. 321–338.

Global Alliance for Genomics and Health. (2016) A federated ecosystem for

sharing genomic, clinical data. Science, 352, 1278–1280.

Gymrek,M. et al. (2013) Identifying personal genomes by surname inference.

Science (New York, N.Y.), 339, 321–324.

Homer,N. et al. (2008) Resolving individuals contributing trace amounts of

DNA to highly complex mixtures using high-density SNP genotyping micro-

arrays. PLOS Genet., 4, e1000167.

Kamm,L. et al. (2013) A new way to protect privacy in large-scale genome-

wide association studies. Bioinformatics, 29, 886–893.

Philippakis,A.A. et al. (2015) The Matchmaker Exchange: a platform for rare

disease gene discovery. Human Mutat., 36, 915–921.

Raisaro,J.L. et al. (2017) Addressing Beacon re-identification attacks: quantifi-

cation and mitigation of privacy risks. J. Am. Med. Inform. Assoc., 24,

799–805.

Shringarpure,S.S. and Bustamante,C.D. (2015) Privacy risks from genomic

data-sharing Beacons. Am. J. Human Genet., 97, 631–646.

Thenen,N.v. et al. (2017) Re-identification of individuals in genomic

data-sharing Beacons via allele inference. bioRxiv.

Wang,X.S. et al. (2015) Efficient genome-wide, privacy-preserving similar

patient query based on private edit distance. In: Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security,

ACM. pp. 492–503.

i168 B.Oprisanu and E.De Cristofaro

Deleted Text: Matchmaker Exchange
Deleted Text: ,

	l
	l
	l
	l

