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Applying Radiomics to Predict Pathology 
of Postchemotherapy Retroperitoneal 
Nodal Masses in Germ Cell Tumors

INTRODUCTION

Multimodal treatment has dramatically increased 
the likelihood of cure in metastatic germ cell 
tumor (GCT), and the reduction of treat-
ment morbidity is an important survivorship 
imperative. The standard of care for patients  
with metastatic nonseminoma GCT (NSGCT) is  
cisplatin-based chemotherapy followed by post-
chemotherapy retroperitoneal lymph node dis-
section (pcRPLND) for patients with residual 
nodal masses. These residual nodal masses 
occur in approximately 40% of patients treated 
with chemotherapy, and surgery is indicated if 
postchemotherapy axial nodal measurements 
are > 1 cm in the setting of marker plateau or 

normalization.1 The goal of surgery is to remove 
residual mature teratoma or viable GCT found in 
30% to 40% and 5% to 10% of surgical speci-
mens, respectively.2,3 Thus, approximately 50% 
of patients who undergo pcRPLND are found 
to have fibrosis/necrotic tissue alone. Because 
pcRPLND is associated with short- and long-
term complications, such as time off from work, 
anesthetic risks, vascular complications, retro-
grade ejaculation, hernia, abdominal scarring, 
and chylous ascites,4 better discriminators are 
needed to differentiate between patients who 
require pcRPLND for detection of residual dis-
ease and those who do not.

Standard imaging with computed tomography 
(CT) or magnetic resonance imaging cannot 

Purpose After chemotherapy, approximately 50% of patients with metastatic testicular germ cell 
tumors (GCTs) who undergo retroperitoneal lymph node dissections (RPNLDs) for residual masses 
have fibrosis. Radiomics uses image processing techniques to extract quantitative textures/
features from regions of interest (ROIs) to train a classifier that predicts outcomes. We hypothesized 
that radiomics would identify patients with a high likelihood of fibrosis who may avoid RPLND.

Patients and Methods Patients with GCT who had an RPLND for nodal masses > 1 cm after first-line 
platinum chemotherapy were included. Preoperative contrast-enhanced axial computed tomogra-
phy images of retroperitoneal ROIs were manually contoured. Radiomics features (n = 153) were 
used to train a radial basis function support vector machine classifier to discriminate between 
viable GCT/mature teratoma versus fibrosis. A nested 10-fold cross-validation protocol was used 
to determine classifier accuracy. Clinical variables/restricted size criteria were used to optimize 
the classifier.

Results Seventy-seven patients with 102 ROIs were analyzed (GCT, 21; teratoma, 41; fibrosis, 40). 
The discriminative accuracy of radiomics to identify GCT/teratoma versus fibrosis was 72 ± 2.2% 
(area under the curve [AUC], 0.74 ± 0.028); sensitivity was 56.2 ± 15.0%, and specificity was 
81.9 ± 9.0% (P = .001). No major predictive differences were identified when data were restrict-
ed by varying maximal axial diameters (AUC range, 0.58 ± 0.05 to 0.74 ± 0.03). The prediction 
algorithm using clinical variables alone identified an AUC of 0.76. When these variables were 
added to the radiomics signature, the best performing classifier was identified when axial masses 
were limited to diameter < 2 cm (accuracy, 88.2 ± 4.4; AUC, 0.80 ± 0.05; P = .02).

Conclusion A predictive radiomics algorithm had a discriminative accuracy of 72% that improved 
to 88% when combined with clinical predictors. Additional independent validation is required 
to assess whether radiomics allows patients with a high predicted likelihood of fibrosis to avoid 
RPLND.
Clin Cancer Inform. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 License

abstract

original reports

Jeremy  Lewin

Paul  Dufort

Jaydeep  Halankar

Martin  O’Malley

Michael A.S.  Jewett

Robert J.  Hamilton

Abha  Gupta

Armando  Lorenzo

Jeffrey  Traubici

Madhur  Nayan

Ricardo  Leão

Padraig  Warde

Peter  Chung

Lynn  Anson Cartwright

Joan  Sweet

Aaron R.  Hansen

Ur  Metser

Philippe L.  Bedard

Author affiliations and 
support information (if 
applicable) appear at the 
end of this article.
Licensed under the 
Creative Commons Attri-
bution 4.0 License

Corresponding author: 
Philippe L. Bedard, MD, 
Department of Medicine, 
University of Toronto, 
7-723, 700 University 
Ave, Toronto, ON M5G 
1Z9, Canada; e-mail: 
philippe.bedard@uhn.ca.

https://creativecommons.org/licenses/by/4.0/
http://ascopubs.org/journal/cci
mailto:philippe.bedard@uhn.ca


reliably differentiate fibrosis from mature tera-
toma or viable GCT. Baseline clinical and patho-
logic factors have been investigated in their 
ability to detect residual active disease, includ-
ing the presence of teratoma in the primary 
tumor, prechemotherapy tumor marker level, 
prechemotherapy nodal size, and interval size 
reduction during chemotherapy.2,5-8 However, no 
predictive algorithm is sufficiently sensitive to be 
used routinely in clinical practice beyond resid-
ual nodal size.5,9

The field of radiomics focuses on improving 
quantitative analysis of medical images by using 
automated high-throughput extraction.10 Texture 
analysis typically involves the accumulation of 
multidimensional histograms of image inten-
sities. A large number of nonlinear metrics are 
computed from these distributions that mea-
sure properties like heterogeneity, directionality, 
and entropy and produce a large set of features 
that can subsequently be tested for accuracy 
in predicting treatment outcomes, even if the 
physiologic underpinnings are unknown. This 
approach is supported by research that demon-
strates spatial variation of protein expression 
within tumors, which correlates to radiophe-
notypes in CT data.11 A radiomics approach to 
assessing retroperitoneal nodes is particularly 
well suited in GCT given that NSGCTs exhibit 
histomorphologic heterogeneity with various 
regions of teratoma, yolk sac, embryonal carci-
noma, and choriocarcinoma that can be iden-
tified in both the primary tumor and the nodal 
metastasis. Thus, we hypothesized that radiom-
ics would identify patients with a high likelihood 
of fibrosis who may avoid RPLND.

PATIENT AND METHODS

The study aim was to determine whether tex-
ture features from postchemotherapy CT images 
can correctly discriminate between fibrosis and 
teratoma/GCT in patients who had undergone 
pcRPLND after first-line platinum-based chemo-
therapy for metastatic NSGCT.

Patient Selection

This single-institution, retrospective study included 
patients diagnosed with NSGCT between Janu-
ary 1, 1995, and October 31, 2014, who had 
residual retroperitoneal masses after front-
line cisplatin-based chemotherapy and who 

had undergone pcRPLND. The inclusion cri-
teria were NSGCT histology with normaliza-
tion or plateau of tumor markers after frontline  
cisplatin-based chemotherapy, residual nodal 
size > 1 cm on CT imaging measured through 
transverse axial dimension, and pathology from 
RPLND along with pre- and postchemotherapy 
CT imaging. Patients were excluded if they had 
a noncontrast CT scan or the investigators could 
not correlate the nodal mass on CT imaging with 
the pathology report. Patients were identified 
from an institutional testicular cancer database 
after research ethics board approval. Selected 
patients represented all three possible patho-
logic outcomes from their pcRPLND (teratoma, 
necrosis/fibrosis, viable GCT).

Image Acquisition

Contrast-enhanced CT imaging of the abdomen 
and pelvis was performed with nonionic intrave-
nous contrast (Appendix). Regions-of-interest  
(ROIs) were drawn circumferentially around each 
postchemotherapy residual nodal mass by two 
study team members (J.L., J.H.) after the resid-
ual nodal lesion was identified on the template 
RPLND pathology report and correlated with 
imaging.

Texture Metrics

A set of 11 first-order and 142 second-order 
texture metrics were generated from each vol-
ume of interest (VOI), which comprised a set of 
two-dimensional ROIs that occupied a contig-
uous range of slices and overlapped from one 
slice to the next. The first-order metrics con-
sisted of the 11 image intensity percentiles from 
each VOI and ranged from 0% (the minimum 
value) to 100% (the maximum value) with nine 
steps of 10% in between. These metrics pro-
vided a characterization of the one-dimensional 
image intensity histogram shape.

Before computing the 142 second-order texture 
metrics, the intensities within each VOI were 
binned into 32 equal-sized bins that spanned 
the range of image intensities between the first 
and 99th percentiles. The binning was con-
ducted to minimize histogram noise when com-
puting second-order texture metrics, whereas 
the use of image intensities between the first 
and 99th percentiles minimized the effect of out-
liers on the bin layout. The second-order texture 
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features consisted of metrics from four classes 
computed from multidimensional histograms 
as follows: mean and range of the 13 Haralick 
texture features computed from the grayscale 
co-occurrence matrix12 taken over all 13 neigh-
bor orientations13 on the three-dimensional lat-
tice, five features based on the neighborhood 
gray tone difference matrix,14 10 features from 
the gray-level run-length matrix,15 and the same  
10 features from the gray-level size-zone matrix.16  
Repetition of these groups at multiple resolutions 
produced the full set of 142 second order fea-
tures.

Machine Learning Algorithm

A nested 10-fold cross-validation protocol was 
used to determine classifier accuracy. Restricted 
axial and radial size criteria and clinically mean-
ingful variables used in previous prediction algo-
rithms were used to optimize the classifier 
(teratoma in primary, prechemotherapy tumor 
marker level, pre- and postchemotherapy mass 
size).2,5-8 Additional details of the radiomics algo-
rithm are described in the Appendix.

Statistical Analysis

Descriptive statistics were used to summarize 
baseline demographics. Machine learning pro-
tocol and other statistical analysis are described 
in the Appendix. Assessment of clinical variables 
to predict pathologic outcomes were analyzed 
through a published clinical nomogram.7 Maxi-
mum effective radii were defined as the radius of 
a sphere with the same nodal volume.

RESULTS

Included Population

Through the institutional database, 322 patients 
with NSGCT underwent pcRPLND for lesions 
> 1 cm of whom 167 were identified between 
the January 1, 2007, and October 31, 2014, 
where routine depositing of imaging occurred 
on our institutional electronic server. From these 
patients, we specifically selected 99 with avail-
able pathology reports and imaging. Twenty-two 
patients were excluded because of difficulty in 
localization of nodal disease (n = 7), lack of con-
trast (n = 3), technical difficulties in retrieving 
imaging (n = 3), and other reasons (n = 9; Fig 
1). The final cohort of 77 patients with 102 ROIs 
was used for analysis (fibrosis, n = 28 [40 ROIs]; 
teratoma, n = 35 [42 ROIs]; GCT, n = 14 [20 
ROIs]). The existing literature has reported a rate 
of 5% to 10% chance of residual viable GCT.2,3 
To develop a robust radiomics signature, we pur-
posely included all patients with GCT from 2007 
for analysis. Thus, residual GCTs in this cohort 
were over-represented and identified in 14 
(18%) of 77 patients (Table 1). The characteris-
tics of the patient population and ROIs are listed 
in Table 1. The mean size of the retroperitoneal 
masses were smaller for patients with fibrosis 
(46 mm) than for those with GCTs (63 mm) and 
teratomas (66 mm; P = .10).

Radiomics Signature

The receiver operating characteristic (ROC) 
curves for the three binary configurations that 
used the full 102 ROIs are shown in Figure 2. For 
the teratoma versus GCT/fibrosis configuration, 
the classifier achieved a mean accuracy of 75.4 
± 2.1% in 100 repetitions of the nested 10-fold 
cross-validation protocol, which corresponds to 
a sensitivity of 63.0 ± 8.6%, specificity of 83.8 ± 
5.0%, and area under the curve (AUC) of 0.77 ± 
0.023 (P = .001). For the GCT versus teratoma/
fibrosis configuration, the classifier achieved a 
mean accuracy of 79.6 ± 0.4%, which corre-
sponds to a sensitivity of 1.52 ± 3.76%, speci-
ficity of 99.9 ± 0.6%, and AUC of 0.53 ± 0.056 
(P = .31). Finally, for the most clinically mean-
ingful scenario of fibrosis versus teratoma/GCT 
configuration, the classifier achieved a mean 
accuracy of 71.7 ± 2.2%, which corresponds to 
a sensitivity of 56.2 ± 15.0%, specificity of 81.9 
± 9.0%, and AUC of 0.74 ± 0.028 (P = .001). 
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Fig 1. Patient flow 
diagram. GCT, germ cell 
tumor.
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In assessing the distribution of accuracies for 
individual nodes, we assessed the performance 
of the 102 ROIs over the 100 repetitions. Over 
the entire data set, only two nodes were classi-
fied correctly 100% of the time, and none were 
classified incorrectly more than two thirds of the 
time (Appendix Fig A1). Of the 41 nodes with 
teratoma, > 80% were classified correctly more 
than half of the time, whereas of the 40 nodes 
with fibrosis, 88% were classified correctly more 
than half of the time, but only 43% were classi-
fied correctly more than half of the time for the 
nodes with GCT.

Finally, we assessed which radiomics features 
were most useful in making predictions of patho-
logic outcomes. For the teratoma versus GCT/
fibrosis classifier, 10 of the 153 features were sta-
tistically significantly correlated with the binary 
outcome after a false discovery rate correction 
to q = 0.05. All were first-order texture features, 
which reflects that teratoma possesses a lower 
distribution of CT densities. In contrast, 98 of the 
153 features were significantly correlated with 
outcome for the fibrosis versus teratoma/GCT 
configuration, and of these, the top 10 were all 
second-order texture features that quantitated 
patterns of spatial heterogeneity in CT densities 
rather than gross changes in magnitudes.

Restricted-Size Data Sets With and Without 
Clinical Variables

We next aimed to assess whether the radiom-
ics signature had different performance across 

varying size diameters with or without the inclu-
sion of clinical variables. The performance of 
the classifier improved as the axial diameters 
increased, with an AUC of 0.58 at 40-mm axial 
cuts that increased to 0.74 with unrestricted size 
criteria (Table 2; Fig 3A). This was also iden-
tified when analyzing the data using maximum 
effective radii (maximum radius: 15 mm, AUC,  
0.57; < 25 mm, AUC, 0.70; Fig 3B). However, 
the AUCs also increased for lower, more- 
restrictive thresholds, even as the size of the 
data sets was sharply reduced to < 20 mm in 
axial cuts (AUC, 0.67) and < 10 mm in maxi-
mum radius (AUC, 0.64; Figs 3A and B). None-
theless, the improvement achieved by maximally 
restricting the data sets was not enough to over-
take the best performance achieved with the 
largest, unrestricted data sets.

We next analyzed the performance of a pub-
lished clinical nomogram7 for patients with fully 
available clinical data (n = 40) and calculated the 
optimism-adjusted AUC using the bootstrapped 
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Table 1. Patient Characteristics and ROIs

Characteristic No. 

No. of patients 77

Histology (No. of ROIs)

Teratoma 35 (42)

Fibrosis 28 (40)

Germ cell tumor 14 (20)

Median age, years (range) 26 (14-60)

Chemotherapy

BEP × 3 30

BEP × 4 32

EP 3

VIP 4

Other 1

Unknown 7

Imaging characteristics 
(mean ± SD)

Image pixel size, mm 0.79 ± 0.08

Study slice gap, mm 2.69 ± 0.55

Slices in ROI 15.7 ± 15.8

Voxels in ROI 6.3 × 104 ± 2.4 × 105

ROI volume, mm3 9.6 × 104 ± 3.5 × 105

Maximum ROI axial 
diameter, mm

35.8 ± 31.9

Abbreviations: BEP, bleomycin, etoposide, cisplatin; EP, etopo-
side, cisplatin; ROI, region of interest; SD, standard deviation; 
VIP, etoposide, ifosfamide, cisplatin.
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Fig 2. Receiver 
operating characteristic 
curves for radiomics 
classifier discrimination 
among three different 
binary configurations: 
teratoma (T) versus germ 
cell tumor (GCT)/fibrosis 
(F) (blue line); F versus 
T/GCT (gold line); GCT 
versus F/T (gray line). 
For F versus T/GCT, the 
classifier achieved a 
mean accuracy of 71.7 ± 
2.2%, which corresponds 
to a sensitivity of 56.2 ± 
15.0% and a specificity 
of 81.9 ± 9.0% with an 
area under the curve of 
0.74 ± 0.028 (P = .001).
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procedure of Steyerberg et al.17 Using clinical 
variables alone (prechemotherapy tumor mark-
ers [alpha-fetoprotein, beta-human chorionic 
gonadotropin, lactate dehydrogenase]), residual 
mass size, percentage of mass shrinkage, and 
presence of teratoma elements in orchiectomy 
specimens), we calculated an AUC of 0.76. 
When these clinical variables were added to  
the radiomics classifier (Figs 3C and D), the 
AUC ranged from 0.63 when analyzing axial  
cutoffs of < 50 mm up to the highest observed 
AUC of 0.80 when the analysis was restricted to 

the smallest residual masses (axial nodal size  
< 20 mm).

DISCUSSION

Although the role of pcRPLND for residual 
masses after platinum-based chemotherapy is 
well established, considerable debate contin-
ues with regard to which patients may safely 
avoid surgery. By using a postchemotherapy CT 
axial size cutoff of > 1 cm, approximately 50% 
of patients were found to have fibrosis alone at 
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Table 2. Classifier Performance When Restricted by Maximum Axial Diameter

Axial Diameter (mm) No.
Accuracy, Mean 

± SD
Sensitivity, Mean 

± SD
Specificity, Mean 

± SD AUC ± SD P

< 20 38 69.4 ± 4.0 74.9 ± 14.2 62.6 ± 16.3 0.68 ± 0.05 .03

< 30 60 65.2 ± 3.9 57.6 ± 16.2 72.7 ± 15.0 0.65 ± 0.05 .04

< 40 77 62.4 ± 2.8 32.1 ± 15.8 86.4 ± 11.3 0.58 ± 0.05 .14

< 50 84 65.9 ± 3.3 41.2 ± 20.0 84.4 ± 12.7 0.65 ± 0.05 .01

< 60 90 69.1 ± 2.4 50.7 ± 14.2 82.5 ± 10.2 0.71 ± 0.04 .01

No limit 102 71.8 ± 2.6 60.1 ± 15.0 79.4 ± 8.2 0.74 ± 0.03 .01

Abbreviation: SD, standard deviation.
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Fig 3. Bar plots of the 
area under the receiver op-
erating characteristic curve 
for each of the four restrict-
ed cases: (A) restricted axial 
diameter, (B) restricted ra-
dial diameter, (C) restricted 
axial diameter with clinical 
variables, and (D) restrict-
ed radial diameter with 
clinical variables. The y-axis 
measures the area under 
the curve (AUC) from 0 to 1, 
whereas the x-axis indicates 
the restriction applied to the 
full data set. * significant at 
P ≤ .05; ** significant  
at P = .01. Fig 3A: < 40 mm, 
P = .14; Fig 3B: < 10 mm,  
P = .06; < 15 mm, P = .24; 
Fig 3C: < 40 mm, P = .11; 
Fig 3D: < 25 mm, P = .07.
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pcRPLND. When one limits pcRPLND to those 
with smaller lesions (eg, < 1 cm), the chance 
of viable GCT or mature teratoma is 11%.5 As 
a result, most guidelines endorse surveillance 
of small residual postchemotherapy lesions 
to reduce the burden of overtreatment.18 Koll-
mannsberger et al1 reported a cohort of 161 
patients with residual lesions of < 1 cm who did 
not undergo pcRPLND, with only 10 relapses 
observed over a median follow-up of 52 months. 
Similarly, Ehrlich et al19 reported a cohort of 
patients with residual lesions < 1 cm from an 
Indiana University cohort managed expectantly; 
12 (9%) of 141 patients experienced a relapse 
at a median of 15 years follow-up, and all but 
four successfully underwent salvage treatment. 
Nevertheless, others advocate for universal 
pcRPLND for all patients with nodal disease 
before platinum-based chemotherapy, irrespec-
tive of nodal size at postchemotherapy imaging, 
to reduce the risk of teratoma transformation, 
the potential toxicities of salvage chemotherapy, 
and the burden of surveillance imaging.9

Because imaging size criteria > 1 cm cannot 
reliably identify viable GCT or mature teratoma, 
several clinical prediction algorithms have been 
investigated.2,5-8 The most widely used algorithm 
includes six clinical variables (prechemotherapy 
tumor markers [alpha-fetoprotein, beta-human 
chorionic gonadotropin, lactate dehydrogenase], 
residual mass size, percentage of mass shrink-
age, and the presence of teratoma elements in 
orchiectomy specimen).7 Despite a high discrim-
inative accuracy (AUC range, 0.77 to 0.84),7 this 
model has not been universally adopted in clin-
ical practice because of its complexity.20 With 
the use of radiomics, the current study iden-
tifies an AUC of 0.74 that improved to 0.80 in 
residual masses < 20 mm with the addition of 
clinical variables. Of note, the performance of 
our radiomics signature improved as the axial 
diameters increased, with an AUC of 0.58 at 
40-mm axial cuts and 0.74 with unrestricted 
size criteria. This finding suggests that the mod-
est discriminative accuracy may be related to the 
small sample size. However, even when limited 
to more-restrictive size criteria (and thus fewer 
patients), the data seem to show that the rela-
tionship between texture features and lesion 
type becomes cleaner and more deterministic 
when the focus of the analysis is restricted to 
smaller masses. Nonetheless, the improvement 
achieved by maximally restricting the data sets 

was not enough to overtake the best perfor-
mance achieved with the largest, unrestricted 
data sets. Because we cannot entirely discount 
that the imbalance of nodal size in our data set 
among pathologic findings (fibrosis v teratoma v 
GCT) accounts for the variation of the classifier 
performance, a larger series across a range of 
residual nodal mass dimensions is required to 
optimize the radiomics signature.

There is great enthusiasm for the potential of 
quantitative image analysis to improve predic-
tion of clinical outcomes.21 Radiomics models 
have been built to predict histologic subtypes,22 
predict pathologic response to chemotherapy23 
and chemoradiotherapy,24 and identify lymph 
node metastasis.25 Because NSGCT is known to 
exhibit histomorphologic heterogeneity, a quan-
titative radiomics approach theoretically should 
augment standard practice given its ability to 
provide information about spatial and temporal 
variability. In the current radiomics data set, the 
predictive ability to identify mature teratoma was 
based on exclusively first-order texture features, 
which reflect the frequently cystic appearance 
with low-density spatial regions on CT imaging.  
In contrast, the top 10 features that discrimi-
nate fibrosis from teratoma/GCT were all second- 
order texture features, which supports the role 
for mathematical prediction algorithms for pat-
terns such as spatial heterogeneity, which are 
impossible to describe subjectively. A radiom-
ics approach has been criticized for problems 
with reproducibility, especially with variations 
between machines and contrast timing; diffi-
culty with segmentation, especially with lesions 
that display complex margins; and problems 
with externally validating radiomics models. In 
addition, our radiomics signature did not seem 
to improve established clinical nomograms.7 
Thus, although the approach is novel, additional 
independent validation that addresses these 
criticisms is required to determine whether the 
signature can be optimized to make it clinically 
usable. Because the cancer radiomics field is 
still in its infancy, large-scale clinical applica-
tion still requires data processing uniformity, 
harmonization of informatics infrastructure, and 
standardization with regard to the reporting of 
radiomics features.

Given the variable success of clinical and radio-
mics prediction methods, molecular mark-
ers hold promise with regard to their ability to 
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detect residual disease. Molecular studies have 
demonstrated that levels of serum microRNAs 
correlate with stage of disease26 and reduction in 
response to treatment in patients with metastatic 
disease.27 Early reports support this by having 
demonstrated that plasma levels of miR-371 
correlate with the presence of active germ cell 
malignancy in surgical specimens, with miR-371 
being undetectable in any samples with no via-
ble tumor (zero of nine) and overexpressed in 11 
of 12 samples with viable GCT.28 Future studies 
are required to investigate whether these molec-
ular markers replace or complement a radiomics 
approach or replace standard prediction models 
to safely avoid pcRPLNDs in patients with low 
predicted risk of residual teratoma or viable GCT.

In the setting of a highly curable disease, over-
whelming clinical evidence is needed to change 
practice; thus, the application of radiomics or 
molecular algorithms with high negative predic-
tive value will not eliminate the need for ongo-
ing surveillance imaging for patients at low risk 
of residual mature teratoma. In such patients, 
more-frequent abdominopelvic CT surveillance 
imaging is required compared with patients who 
are treated with pcRPLND. Concerns exist about 
an increased risk of second malignancy for 
patients who undergo frequent CT imaging, such 
as those with clinical stage I NSGCT managed 
with active surveillance versus primary RPLND.29 
Thus, patients must be counseled about the risk 
of surveillance imaging versus overtreatment with 
pcRPLND for fibrosis alone, similar to discus-
sions that occur in the stage 1 setting.30

The current findings have a number of import-
ant limitations. First, this retrospective, single- 

institution analysis used a selected patient 
sample that was validated with internal boot-
strapping without an external validation cohort. 
Second, the analysis was restricted to patients 
with postchemotherapy residual retroperitoneal 
nodal masses. Whether these findings can be 
translated to residual masses at other anatomic 
sites, such as liver or lung, where surrounding 
normal parenchymal changes induced by che-
motherapy may be increased and thus may 
limit radiomics prediction algorithms is unclear. 
Third, radiomics is a technically challenging and 
time-consuming approach that is unlikely to be 
clinically deliverable at places outside larger 
tertiary centers without improvements in auto-
mated contouring of ROIs. Fourth, detection of 
microscopic residual viable GCT in an otherwise 
fibrotic or necrotic large lymph node mass may 
be impossible to detect by a radiomics approach 
because of the limited resolution of a CT scan. 
Finally, there was no central pathology review, 
although all patient cases were reported in the 
same department by expert genitourinary pathol-
ogists and quality assurance procedures.

In summary, we developed a predictive radiom-
ics algorithm that had an overall discriminative 
accuracy of 72% that improved to 88% when 
combined with clinical predictors. Additional 
independent validation is required to assess 
whether radiomics, in conjunction with standard 
clinical predictors, can identify patients with 
a high predicted likelihood of fibrosis to avoid 
pcRPLND.
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Computed Tomography Imaging

Contrast-enhanced computed tomography (CT) imaging of the abdomen and pelvis was performed with a 64-multidetector 
CT scanner (Aquilion 64; Toshiba Medical Systems, Otawara, Tochigi, Japan) with an individual detector width of 0.5 
mm, a 0.5-second gantry rotation time, and a table speed of 53 mm/rotation. The following scan parameters were used: 
detector collimation, 0.5 mm × 64; reconstruction slice thickness, 5 mm; increment, 2.5 mm; and tube current  
determined by automated tube modulation, 120 kVp. Coronal reformations (reconstruction thickness, 3 mm; increment,  
3 mm) were available for review. The scan was performed after injection of nonionic intravenous contrast material (iohexol, 
30 mg iodine/mL [Omnipaque 300; GE Healthcare, Chicago, IL) with a power injector at a dose of 2 mL/kg up to a maxi-
mum of 200 mL at a rate of 3 mL/s with a 60-second delay.

Correlation Between Nodal Size and Pathology Outcomes

Preliminary analyses indicated the presence of outliers in the distributions of the maximum nodal size. Because this can 
reduce the power of parametric tests and bias effect size estimates, Wilcox (Introduction to Robust Estimation and Hy-
pothesis Testing [ed 4], Academic Press, 2017) has recommended the use of 20% trimmed means and Winsorized vari-
ances for statistical inference. We used the percentile-t bootstrap version (Keselman et al: Psychol Sci 15:47-51, 2004) 
of Yuen’s (Biometrika 61:165-170, 1974) two-sample t test to compare fibrosis and nonfibrosis (teratoma and germ cell 
tumor [GCT]) groups. As a corresponding measure of effect size, we used the percentile bootstrap version (Keselman et al: 
Psychol Methods 13:110-129, 2008) of the robust Cohen’s d (dt) of Algina et al (Psychol Methods 10:317-328, 2005) 
on the basis of 20% trimmed means and Winsorized variances. For all bootstrapped statistics, 2,000 resamples were 
drawn with replacement from the original data. The WRS package of R (https://github.com/nicebread/WRS) was used for 
this series of analyses.

Machine Learning

All machine learning was carried out using the support vector machine (SVM) algorithm with a radial basis function kernel 
implemented using the LibSVM software library (Chang et al: ACM Trans Intell Syst Technol 2:27, 2011) and accessed 
through an associated MATLAB (MathWorks, Natick, MA) interface. The goal of the machine learning was to train a clas-
sifier to predict whether each volume of interest contained a teratoma, GCT, or fibrotic region on the basis of the texture 
features extracted from the voxels within the volume of interest. Because the SVM algorithm is only capable of discrimi-
nating between two classes, the training algorithm was applied to the data in three binary configurations: teratoma versus 
GCT and fibrosis; GCT versus teratoma and fibrosis; and fibrosis versus teratoma and GCT.

For each SVM training run, it was necessary to tune three hyperparameters that governed the behavior of the classifier. 
The first hyperparameter pertained to feature selection. An F-statistic approach (Chen et al: Feature Extraction 207:315-
324, 2006) was used to rank the 153 input texture features in order of their association with the response classification. 
A tunable hyperparameter representing the fraction of the most highly associated features to keep was then applied to 
select the features that were used. The second hyperparameter was the standard cost parameter common to all flavors of 
SVM, whereas the third was the width of the gaussian curve that makes up the radial basis function kernel.

A nested cross-validation scheme was used to tune the three hyperparameters while keeping the assessment of accuracy 
completely independent. In each of 100 iterations of the outer loop, 10-fold cross-validation was used to hold out 10% 
of the data for testing, whereas the remaining 90% was passed to the inner loop. Within the inner loop, an additional 
10-fold cross-validation protocol was used for each point in a three-dimensional grid that covered a range of fractions 
of the best features to retain, values of the SVM cost parameter, and values of the radial basis function width. The inner 
loop cross-validation result was recorded for each grid point searched, and at the conclusion of the inner loop, the best 
performing triple of hyperparameters was used to train a classifier using all of the inner loop data. This classifier was then 
applied to classify the held-out data from the outer loop, and the results were recorded as the classifier’s accuracy.

Receiver Operating Characteristic and Other Post Hoc Analyses

An SVM classifier does not produce a dichotomous binary classification as its output but rather as a single, continuous 
number on the real line. Only when a threshold is applied to it is it transformed into a classification. This makes it possi-
ble to adjust the threshold to trade off sensitivity and specificity, thus creating a receiver operating characteristic (ROC) 
curve. Furthermore, repeating the outer loop of the nested cross-validation protocol 100 times yields 100 such numbers 
for each tumor, which results in a more fine-grained ROC curve than would be possible with no repetitions. Each of the 
100 numbers for a particular tumor represented an instance in which it was held out during cross-validation with a differ-
ent 10% of the data and allowed for a more robust characterization of the accuracy for that patient. The mean ± standard 
deviation accuracies reported are the best from each of the 100 ROC curves, and the sensitivities and specificities were 
taken from the point on each curve where the best accuracy was found. The ROC curves displayed in the figures were 
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generated by combining all of the trial data into a single curve. In addition to producing the ROC curve, we examined the 
percentage of the 100 repetitions in which each patient case was classified or misclassified to determine whether particu-
lar patient cases were consistently misclassified or whether the errors were evenly spread among all patient cases.

Analyses of Restricted Data Sets

An additional set of analyses was planned to explore the possibility that the inclusion of tumors of vastly different sizes in 
the same data set may reduce the effectiveness of the machine learning approach. Specifically, tumors at opposite ends 
of the size spectrum may in fact be genotypically and/or phenotypically different, as evidenced by either significantly dif-
ferent growth rates or different ages, one or both of which must account for the size differences. Tumors that are genotypi-
cally and/or phenotypically different may embody different radiomics signatures, which makes it difficult for the machine 
learning algorithm to arrive at a definitive discriminative pattern.

To assess this possibility, two additional rounds of machine learning analysis were undertaken in which the full set of pa-
tient cases was restricted to include only tumors within a certain size range. In the first, the maximum cross-sectional di-
ameter of each tumor in the axial plane was measured across all axial slices that contained the tumor, and a series of six 
thresholds (20 mm, 30 mm, 40 mm, 50 mm, 60 mm, and no limit) was applied to exclude tumors with diameters greater 
than each threshold. The spacing of these thresholds was chosen so that enough new patient cases were introduced after 
each increase in the threshold for one to reasonably expect that the results could change. In the second round, the same 
principle was used, but in this case, the thresholds represented the effective radius of the tumor, defined as the radius 
of a sphere with the same volume as the tumor. Four effective radius thresholds were used (10 mm, 15 mm, 20 mm, 25 
mm), again, because each new step caused a sufficient number of new patient cases to be included.

In this set of experiments, only a single binary classification was examined that discriminated fibrosis from GCT and tera-
toma combined (the most clinically relevant case). Aside from this and the restriction of the data sets by maximum axial 
diameter or effective radius, all other aspects of these machine learning trials were identical to the protocol described 
previously.

Augmentation With Clinical Variables

Because this work was originally undertaken to examine the possible use of radiomics signatures for tumor classification 
and to compare the results with existing techniques on the basis of clinical variables, some of the experiments described 
here were repeated with the set of radiomics variables augmented with the best known clinical variables. The goal was to 
determine whether the information contained in the radiomics signatures was redundant with or complementary to the 
information embodied in the clinical variables. For each restricted analysis described in the previous section, the analysis 
was repeated with the radiomics data set augmented with key clinical variables (teratoma in primary, prechemotherapy 
tumor marker level, pre- and postchemotherapy mass size). Patient cases with any of the variables missing were excluded, 
which brought the total number before the application of size restrictions down to 61.
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Fig A1. Illustration of 
classification accuracy for 
each of the 102 regions of 
interest (ROIs) over each of 
the three × 100 randomized 
trials, 100 for each of the 
three binary configurations. 
For the purposes of this 
figure, the two classes 
within each configuration 
are termed positive for the 
singlet class that contains 
only one type of lesion and 
negative for the doublet 
class that contains the 
two remaining lesion types 
grouped together. Each ROI 
is shown with the configura-
tion for which the type was 
positive. Within each binary 
configuration, the ROIs are 
sorted in order of decreas-
ing classification accuracy 
demonstrated by the sup-
port vector machine clas-
sifier from left to right. For 
each, the full set of three × 
100 trials are represented 
by four colored bands. The 
blue bands represent the 
trials where the ROI was in 
the singlet (positive) class 
and classified correctly; the 
gold bands represent the 
trials where the ROI was in 
the doublet (negative) class 
and classified correctly; 
the gray bands represent 
the trials where the ROI 
was in the singlet class and 
classified incorrectly; and 
the red bands represent the 
trials where the ROI was in 
the doublet class and clas-
sified incorrectly. F, fibrosis; 
GCT, germ cell tumor; T, 
teratoma.
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