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Simple Summary: Growth differentiation factor 15 (GDF-15) is a stress responsive cytokine that
mediates food intake, energy consumption, and body weight. We aimed to evaluate whether
circulating GDF-15 level could be associated with cachexia symptoms, which include loss of skeletal
muscle mass, systemic inflammatory reaction, poor performance status, anorexia, shortened survival
time and biological tumor activity in advanced pancreatic cancer (APC). The cut-off for serum GDF-15
was 3356.6 pg/mL, as the mean plus two standard deviations in patients with benign pancreatic
disease. APC patients with high serum GDF-15 showed worsened performance, anorexia and
elevations of inflammatory and tumor burden, signatures of cachexia, and activation of Akt and JNK
in tumor GDF-15-producing pathways. This study identified tumor-driven GDF-15 as a potential
cause of cachexia symptoms in APC.

Abstract: We aimed to evaluate the association of circulating growth differentiation factor 15 (GDF-15)
with cachexia symptoms and the biological activity of advanced pancreatic cancer (APC). Treatment-
naïve patients with liver metastasis of APC or with benign pancreatic disease were retrospectively
analyzed. Clinical data, blood samples, and biopsy specimens of liver metastasis were collected prior
to anti-cancer treatment. Serum GDF-15 levels and multiple protein expressions in lysates extracted
from liver metastasis were measured by enzyme-linked immuno-sorbent assay and reverse-phase
protein array, respectively. The cut-off for serum GDF-15 was determined as 3356.6 pg/mL, the mean
plus two standard deviations for benign pancreatic disease. The high-GDF-15 group was charac-
terized as showing low Karnofsky performance status (KPS) (p = 0.037), poor Eastern Cooperative
Oncology Group performance status (ECOG-PS) (p = 0.049), severe appetite loss (p = 0.011), and high
serum levels of carbohydrate antigen 19-9 (p = 0.019) and C-reactive protein (p = 0.009). Tumors of the
high-GDF-15 group expressed high levels of phosphorylated (p)JNK (p = 0.007) and pAkt (p = 0.040).
APC patients with high serum GDF-15 showed signatures of cachexia and activation of the signaling
pathways involving Akt and JNK in the tumor. This study indicated circulating GDF-15 could be
associated with cachectic symptoms in APC.
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1. Introduction

As a member of the transforming growth factor (TGF)-β subfamily, growth differenti-
ation factor 15 (GDF-15) is a stress-responsive cytokine associated with various diseases
such as cancers [1–5], cardiovascular disorders [6], mitochondrial disorders [7], hyper-
thyroidism [8], obesity and type 2 diabetes [9]. GDF-15 mediates food intake, energy
consumption, and body weight [10,11]. Circulating GDF-15 binds to the GDNF family
receptor a-like (GRFAL)/RET receptor complex in the brain stem, triggering receptor
phosphorylation and downstream intracellular signaling [10]. The signaling of GFRAL
antagonism and agonism, respectively, increase and decrease food intake [10]. High cir-
culating levels of GDF-15 in cancer patients have been associated with chemoresistance,
anorexia, emesis and weight loss [12–14], all of which are symptoms of cachexia [15].
Cachexia is defined as a multiple metabolic disorder characterized by an ongoing loss of
skeletal muscle mass [16]. This pathology is frequently seen in patients with advanced
pancreatic cancer (APC) [17], who show systemic inflammation and worsened perfor-
mance status (PS) [18–20]. One possibility is that elevated levels of circulating GDF-15
are associated with cachectic symptoms, including loss of skeletal muscle mass, systemic
inflammatory reaction, poor PS, anorexia, and shortened survival time.

Expression of GDF-15 is maintained at low levels in most tissues [21] and is in-
creased by p53 activation due to various cellular stressors, such as inflammation, oxidative
stress, hypoxia, and oncogene activation [22]. Serum GDF-15 levels in the patients with
chronic pancreatitis were higher, 2248 pg/mL in mean [1] compared to healthy subjects
(416.8 pg/mL [23], 546 [24], 639 [25] in mean). Pancreatic disease compressing the pan-
creatic duct is considered to increase the GDF-15 level, and thus can result from benign
pancreatic diseases including chronic pancreatitis, intraductal papillary mucinous tumor,
and serous cystic tumor. The cut-off level to characterize a high serum level of GDF-15 in
APC thus should discriminate cancer-related upregulation of GDF-15 from the effects of
benign pancreatic disease. We therefore planned to determine the upper limit of serum
GDF-15 levels in benign pancreatic diseases, in order to set an appropriate cut-off to
discriminate low and high serum GDF-15 groups for APC.

Solid stress increased GDF-15 expression by transcriptionally regulating GDF-15
expression through activation of the Akt pathway in pancreatic cancer cells [26]. Stress
responses involving the Akt pathway can become dominant in cases with pancreatic cancer
complicated by high levels of circulating GDF-15, providing biological validation for a
cut-off for serum GDF-15 in pancreatic cancer. The clinical and tumoral characteristics of
APC patients with high serum GDF-15 levels are expected to provide useful information
for elucidating the causes of clinical symptoms triggered by stress responses in the tumor
microenvironment.

We undertook the present study to investigate the following in APC patients: (A) an
appropriate cut-off value for serum GDF-15 levels; (B) the relationship between serum
GDF-15 levels and clinical data; and (C) tumor characteristics associated with high serum
levels of GDF-15.

2. Materials and Methods
2.1. Ethics

This study was approved by the ethics review committee of National Cancer Center
Hospital East (approval no. 2020-373).

2.2. Patients

Treatment-naïve patients with liver metastasis from pathologically proven APC or
with benign pancreatic disease were eligible to participate in this study. Subjects were
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registered between 5 August 2011 and 7 January 2015 at the National Cancer Center Hospi-
tal East. Benign pancreatic diseases comprised chronic pancreatitis, intraductal papillary
mucinous tumor, non-invasive intraductal papillary mucinous carcinoma, and serous cystic
tumor. Written informed consent was obtained from all subjects before enrollment.

2.3. Definition of Cancer Cachexia and Sarcopenia

In this study, we defined cancer cachexia as either weight loss >5% or weight loss >2%
with a body mass index (BMI) < 20 kg/m2 [16]. Base cachexia was defined as weight loss
within 6 months before starting chemotherapy. Sarcopenia was diagnosed using the Japan
Society of Hepatology criteria [27] as low handgrip strength (<26 kg for males; <18 kg for
females) and low muscle mass (<42 cm2/m2 for males; <38 cm2/m2 for females). Muscle
mass was evaluated as the skeletal muscle index (SMI) at the level of the third lumbar
vertebra (L3) on computed tomography.

2.4. Data Collection

Body weight, Karnofsky performance status (KPS), Eastern Cooperative Oncology
Group performance status (ECOG-PS), laboratory tests, severity of symptoms (the Japanese
version of the MD Anderson Symptom Inventory; MDASI-J) [28] and a blood sample
were collected before anti-cancer treatment. MDASI-J is a 13-item symptom scale (pain,
fatigue, nausea, disturbed sleep, distress, shortness of breath, memory, lack of appetite,
drowsiness, dry mouth, sadness, vomiting, and numbness or tingling) rated numerically
from 0 (“not present”) to 10 (“as bad as you can imagine”) based on symptoms present over
the preceding 24 h. Severe appetite loss was defined as MDASI-J ≥ 2, as per our previous
study [29]. The cut-off for serum levels of C-reactive protein (CRP) was determined as
2.0 mg/dL in accordance with our previous study [20]. The cut-off for carbohydrate antigen
(CA)19-9 was defined as above median serum CA19-9 level, which was 4150 U/mL in
our study.

2.5. Enzyme-Linked Immuno-Sorbent Assay (ELISA)

Blood samples were collected in a serum-separating tube on the morning after
overnight fasting and completely clotted for 30–60 min at room temperature. After centrifu-
gation at 1500 g, 25 ◦C for 15 min, serum samples were separated and frozen at −80 ◦C until
analysis. Serum GDF-15 levels were quantitatively determined in duplicate using an ELISA
kit in accordance with the protocol from the manufacturer (R&D Systems, Minneapolis,
MN, USA).

2.6. Protein Expression Analysis

Tissue cores were obtained from liver metastases of APC with endoscopic ultrasonography-
guided fine-needle aspiration biopsy (FNAB) [30]. Immediately after the procedure, a
tissue core specimen was homogenized with tissue-Lyser II (QIAGEN, Hilden, Germany)
in the lysis buffer of a NucleoSpin TriPrep kit (Macherey-Nagel, GmbH & Co., KG, Düren,
Germany), and was filtered with the NucleoSpin TriPrep kit. After protein purification
with a Pierce™ SDS-PAGE Sample Prep Kit (Thermo Fisher Scientific, Waltham, MA, USA),
the lysate was snap-frozen and stored at −80 ◦C until needed. Reverse-phase protein array
(RPPA) analysis of lysates was performed at the functional proteomic RPPA core facility
of the MD Anderson Cancer Center. Briefly, tissue lysates were serially diluted two-fold
for five dilutions (Undiluted, 1:2, 1:4, 1:8, and 1:16) and arrayed onto nitrocellulose-coated
slides [31,32]. RPPA slides immunostained with 435 primary antibodies were scanned with
a TissueScope scanner (HURON Digital Pathology, St. Jacobs, ON, Canada), and the signal
intensity of each spot on the arrays was quantified using Array-pro Analyzer 6.3 software
(Media Cybernetics, Silver Spring, MD, USA). The relative protein levels of analytes in each
sample were then determined using the SuperCurve 1.5.0 R package via SuperCurveGUI
2.1.1. [33]. RPPA analysis was performed in the patients whose protein samples could be
extracted, purified, and detected as a reproducible band of β-actin in western blotting.
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2.7. Statistical Analyses

Continuous data were compared using the Mann–Whitney U test. Associations
between serum GDF-15 levels and each categorical variable were examined using a chi-
square test or Fisher’s exact test. Fisher’s exact test and chi-square test were used for
analysis of 2 × 2 contingency tables and more than 2 × 2 consistency tables, respectively.
Overall survival (OS) was calculated from the starting date of first-line chemotherapy or
BSC. Progression-free survival (PFS) was calculated only in patients with chemotherapy
from the starting date of first-line chemotherapy. Survival curves were drawn using the
Kaplan–Meier method. OS and PFS were compared using the log-rank test between low-
and high-GDF-15 groups of APC patients with liver metastasis. For all statistical tests,
values of p < 0.05 were considered statistically significant. Median survival times were
calculated with 95%CIs, as determined using the Brookmeyer and Crowley method. Data
analyses were performed using JMP® version 11 software (SAS Institute, Cary, NC, USA).

3. Results
3.1. Cut-Off Value for Serum GDF-15 Levels

The CONSORT diagram for this study is shown in Figure 1. A total of 120 patients
were included and analyzed in this study, of whom 99 patients had liver metastasis of
APC (38 women, 61 men; median age, 66.2 years; range, 39–85 years). The remaining
21 patients had benign pancreatic disease (10 women, 11 men; median age, 69.0 years;
range, 50–81 years), including chronic pancreatitis (n = 4, 19.1%), intraductal papillary
mucinous tumor (n = 15, 71.4%) and serous cystic tumor (n = 2, 9.5%).
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Mean (± standard deviation [SD]) serum GDF-15 levels were significantly higher in
the 99 patients with liver metastasis of APC (2990.2 ± 1967.0 pg/mL) than in the 21 patients
with benign disease (1177.0 ± 1089.8 pg/mL; p < 0.001) (Figure 2). The cut-off value was
determined as 3356.6 pg/mL, representing the mean plus twice the SD of the serum GDF-
15 level in patients with benign disease, (Figure 2). As a result, 34.3% (n = 34) of the
99 APC patients were classified as the high-GDF-15 group. Mean serum GDF-15 levels
were 5257.0 ± 1649.9 pg/mL in the high-GDF-15 group and 1804.5 ± 602.5 pg/mL in the
low-GDF-15 group.
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3.2. Baseline Clinical Characteristics

Among the 99 APC patients, 87 patients (87.9%) received first-line chemotherapy, com-
prising gemcitabine + nab-paclitaxel (n = 3, 3.0%); FOLFIRINOX (fluorouracil, leucovorin,
irinotecan, and oxaliplatin) (n = 14, 14.1%); gemcitabine (n = 26, 26.3%); gemcitabine +
erlotinib (n = 32, 32.3%); and others (n = 12, 12.1%). The remaining 12 patients (22.1%)
received the best supportive care (BSC). The characteristics of patients with high serum
GDF-15 levels included low KPS (p = 0.037), poor ECOG-PS (p = 0.049), high serum CA19-9
levels (p = 0.019), high serum CRP levels (p = 0.009), and severe appetite loss (p = 0.011)
(Table 1). The proportion of patients receiving chemotherapy was significantly lower in
the high-GDF-15 group (76.5%) than in the low-GDF-15 group (93.9%, p = 0.020) (Table 1).
No significant differences in other baseline clinical data were apparent between high- and
low-serum GDF-15 levels, including proportion of chemotherapy regimen.

Actual mean serum GDF-15 levels were high in groups with severe appetite loss (n = 48),
high CRP (n = 43), KPS < 90 (n = 42), and CA19-9 > 4150 U/mL (n = 49) as compared to groups
with non-severe appetite loss (n = 43; 3407.1 pg/mL vs. 2285.9 pg/mL; p = 0.003; Figure 3A),
low serum CRP (n = 56; 3581.0 pg/mL vs. 2535.5 pg/mL; p = 0.013; Figure 3B), KPS ≥ 90
(n = 49; 3274.32 pg/mL vs. 2367.3 pg/mL; p = 0.001; Figure 3C), and CA19-9 ≤ 4150 U/mL
(n = 50; 3348.3 pg/mL vs. 2639.2 pg/mL; p = 0.027; Figure 3D), respectively.
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Table 1. Univariate analysis of baseline clinical characteristics to identify factors related to serum GDF-15 levels in patients
with metastatic APC.

Variables
Serum GDF-15 Levels

p-Value
Low High

Sex Male 42 (64.6%) 19 (55.9%) 0.514
Female 23 (35.4%) 15 (44.1%)

Age (years) Median (range) 67.0 (39–85) 65.9 (50–85) 0.665

KPS Median (range) 90 (60–100) 80 (60–100) 0.037

ECOG-PS 0 36 (56.3%) 9 (31.0%) 0.049
1 25 (39.1%) 16 (55.2%)
2 3 (4.7%) 4 (13.8%)

Chemotherapy Yes 61 (93.9%) 26 (76.5%) 0.020

Regimen GEM + nab-PTX 2 (3.3%) 1 (3.8%) 0.738
Modified FOLFIRINOX 10 (16.4%) 4 (15.4%)

GEM monotherapy 16 (26.2%) 10 (38.5%)
GEM + Erlotinib 23 (37.7%) 9 (34.6%)

others 10 (16.4%) 2 (7.7%)

CEA (ng/mL) Median (range) 14.8 (0.9–363.4) 26.4 (1.3–1441.0) 0.247

CA19-9 (U/mL) Median (range) 2995.0
(0.1–330,600.0)

10771.5
(0.5–343,352.0) 0.019

Ascites Present 34 (52.3%) 14 (41.2%) 0.397

Peritoneal metastasis Present 28 (43.1%) 19 (55.9%) 0.290

Biliary Drainage before starting
chemotherapy Present 8 (12.3%) 5 (14.7%) 0.760

Lung metastasis Present 14 (21.5%) 6 (17.7%) 0.794

Distant lymph node metastasis Present 4 (6.1%) 5 (14.7%) 0.268

Serum CRP levels (mg/dL) Median (range) 1.20 (0.03–18.58) 3.22 (0.06–21.72) 0.009

Cachexia Cachexia 37 (56.9%) 17 (50.0%) 0.531
Non-cachexia 28 (43.1%) 17 (50.0%)

Sarcopenia Sarcopenia 19 (33.9%) 10 (52.6%) 0.179
Non-sarcopenia 37 (66.1%) 9 (47.4%)

SMI (kg/m2) Median (range) 44.26 (27.40–52.10) 40.14 (28.28–52.88) 0.203

MDASI-J appetite loss Median (range) 1 (0–10) 4 (0–10) 0.011

Body weight loss (%) Median (range) 5.74 (−17.42–22.81) 5.03 (−1.72–30.00) 0.690

Fisher’s exact test or the chi-square test were used for comparisons of categorical variables between the low-GDF-15 group (serum GDF-15
level < 3356.6 pg/mL) and the high-GDF-15 group (serum GDF-15 level ≥ 3356.6 pg/mL). KPS, Karnofsky performance status; ECOG-PS,
Eastern Cooperative Oncology Group performance status; GEM, gemcitabine; nab-PTX, nab-paclitaxlel; CEA, carcinoembryonic antigen;
CA19-9, carbohydrate antigen 19-9; CRP, C-reactive protein; SMI, skeletal muscle mass index; MDASI-J, Japanese version of the MD
Anderson Symptom Inventory.
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3.3. Survival

Median OS was 4.10 months (95% confidence interval [95%CI], 3.33–5.87 months) for
all 99 patients with APC, 2.70 months (n = 34; 95%CI, 1.37–5.83 months) for high-GDF-
15 patients and 5.70 months (n = 65; 95%CI, 3.63–7.60 months) for low-GDF-15 patients
(p = 0.113).

In the 87 patients who received chemotherapy, the median OS was 5.57 months (95%CI,
3.63–6.53 months). Median OS was 3.33 months (n = 26; 95%CI, 1.73–5.87 months) for
high-GDF-15 patients and 5.87 months (n = 61; 95%CI, 3.70–7.97 months) for low-GDF-15
patients. No significant differences in OS were evident between high- and low-GDF-15
patients (p = 0.254) (Figure 4A).

Median PFS was 2.20 months (95%CI, 1.83–2.87 months) for the 87 patients with
chemotherapy, 1.58 months (n = 26; 95%CI, 0.97–2.73 months) for high-GDF-15 patients,
and 2.60 months (n = 61; 95%CI, 1.90–3.20 months) for low GDF-15 patients (p = 0.546).
No significant differences in PFS were apparent between high- and low-GDF-15 patients
(Figure 4B).
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3.4. Tumor Characteristics

RPPA analysis was performed in 38.2% (n = 13) of high-GDF-15 patients (n = 34)
and 41.5% (n = 27) of low-GDF-15 patients (n = 65). In this study, 435 proteins and
phosphoproteins were analyzed in the lysates of FNAB tissue cores from liver metastases
of APC patients. Significant differences between the low- and high-GDF-15 groups were
found for 12 proteins (Table S1), including phospho-(p)JNK (threonine183_tyrosine185)
and pAkt (threonine 308), both of which were significantly higher in the high-GDF-15
group than in the low-GDF-15 group (pJNK: 0.046 vs. −0.094 in mean, p = 0.007, Figure 5A;
pAkt: 0.123 vs. −0.020, p = 0.040, Figure 5B).

The 40 APC patients who underwent tumor analysis by RPPA were separated into
two groups according to median expression levels (pJNK: −0.0256 and pAkt: 0.0036).
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Mean serum GDF-15 levels were significantly higher in the groups with pJNK expression
level ≥ −0.0256 (n = 19) and pAkt expression level ≥ 0.0036 (n = 21) than in the groups
with pJNK expression level < −0.0256 (n = 21; 3522.6 pg/mL vs. 2040.5 pg/mL; p = 0.015;
Figure 5C) and pAkt expression level < 0.0036 (n = 19; 3307.8 pg/mL vs. 2122.0 pg/mL;
p = 0.020; Figure 5D).
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4. Discussion

Mean circulating GDF-15 levels have been suggested to be higher in patients with pan-
creatic ductal adenocarcinoma, as 1731 pg/mL [23], 2428 [24], 7694.58 [1] and 2990.2 (this
study), compared to patients with colorectal adenocarcinoma (CRC) (1371.0 pg/mL [23]
and 2030 pg/mL [25]), non-small-cell lung carcinoma (mean, 1258.0 pg/mL [23] and me-
dian, 828.8–2000 pg/mL [34,35]), and gastric adenocarcinoma (1154.0 pg/mL [23]). An
atlas of the human transcriptome reported that GDF-15 mRNA expression was relatively
low in pancreatic cancer compared to prostate, urothelial, renal, melanoma, and colorectal
cancers [36]. The discrepancy between tumor mRNA expression and circulating level of
GDF-15 may involve the ratio of patients with metastasis in each study population. A
large proportion of CRC patients in a previous study [23] showed early-stage disease,
although CRC patients with distant metastasis showed higher levels of serum GDF-15
(mean, 3531 pg/mL) [25] and all APC patients in the present study showed liver metasta-
sis. GDF-15 levels in various cancers should thus be assessed in concert with the ratio of
metastasis in the study population. The diurnal pattern of serum GDF-15 levels needs to be
clarified for evaluation of serum GDF-15. Circadian oscillation led to variations in serum
GDF-15 levels near the midline estimating statistic of rhythm (MESOR) of about ± 10%,
with a MESOR of 381 ± 15 pg/mL in healthy men [37]. In the present study, blood samples
were obtained the morning after overnight fasting, and all APC patients showed liver
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metastasis. The effects of circadian oscillation and metastatic rate on circulating GDF-15
levels were considered to have been minimized in our study.

Our results showed that patients in the high-GDF-15 group experienced severe ap-
petite loss compared with those in the low-GDF-15 group. In a previous study, median
serum GDF-15 levels were higher in cancer patients with anorexia (1224.1 pg/mL) than
in patients without anorexia (812.4 pg/mL) [34], where the cut-off value for anorexia was
set at the lowest Functional Assessment of Anorexia/Cachexia Treatment (FAACT) score
tertile, similar to the consensus definition of anorexia (FAACT ≤ 24) [38]. Our results
showed that median MDASI scores in the high- and low-GDF-15 groups were 4 and 1 on a
0–10 scale, respectively. National Comprehensive Cancer Network (NCCN) guidelines for
palliative care have proposed defining non-pain symptoms scoring >4 on the 0–10 scale
as severe [39]. In validation studies of MDASI, severe, moderate, and mild symptoms are
defined as scores ≥7, 5 or 6, and 1–4, respectively [28,40]. The degrees of anorexia in high-
and low-GDF-15 groups corresponded to the upper and lower limits of mild anorexia,
respectively. A prior report proposed the minimal clinical difference in numerical rating
scale for anorexia as 1.5 points [41], and the median MDASI-J score in our study was
3 points higher in the high-GDF-15 group than in the low-GDF-15 group. On this basis, we
concluded that patients in the high-GDF-15 group showed a clinically meaningful increase
in the severity of anorexia compared with those in the low-GDF-15 group.

Our RPPA analysis revealed that expressions of pJNK and pAKT were significantly
higher in the high-GDF-15 group than in the low-GDF-15 group. Tumor-associated stresses
such as solid stress have been reported to induce phosphorylation of JNK and AKT [42–44].
Growth-induced solid stress in a tumor reflects an excessive tumor burden that compresses
surrounding tissues [45,46]. APC patients with high serum GDF-15 levels also had high
serum CA19-9 levels, suggesting high tumor burden [47]. Intriguingly, Akt and JNK have
been shown to activate transcription of the GDF-15 gene [26,48] and to promote secretion
of the GDF-15 protein [5,49]. We therefore speculate that increased solid stress due to a
large tumor burden augments the expressions of pJNK and pAKT and also increases levels
of circulating GDF-15. In addition, we observed that p-forkhead box-containing protein
(FOX)O3a (serine 318_serine 321), p-tuberin (threonine_1462), and pElk-1 (serine 383) were
highly expressed in the high-GDF-15 group compared to the low-GDF-15 group (Table S1).
Activation of FOXO3a and tuberin was noted to promote tumor growth [50,51], which was
inhibited by Akt-mediated phosphorylation [52]. On the other hand, Elk1 was activated by
JNK-mediated phosphorylation, leading to cell proliferation and oncogenesis [53]. These
observations suggest that signaling pathways involving Akt and JNK play important roles
in tumor growth in APC patients with high serum GDF-15 levels.

Evans’ diagnostic criteria for cachexia include body weight loss, sarcopenia, systemic
inflammation, appetite loss and fatigue, and are related to poor PS [54]. In our study,
patients with high serum levels of GDF-15 showed severe appetite loss, systemic inflam-
mation and poor PS, but not sarcopenia or body weight loss. We consider that an increase
in tumor burden contributed to GDF-15-related anorexia via solid stress and was related
to systemic inflammation and worsened PS prior to the onset of body weight loss and
sarcopenia. A phase 1, first-in-humans, two-part, open-label clinical trial was recently
started for CTL-002, a GDF-15 neutralizing antibody, recruiting subjects with advanced-
stage, relapsed, or refractory solid tumors (NCT04725474). The target patients will be
evaluated for not only antitumor effect and safety, but also cachexia-related outcomes,
since inhibition of GDF-15 biological activity has been shown to reverse body weight loss
and restore muscle and fat tissue mass in several cachectic animal models [55]. This clinical
trial of CTL-002 is expected to clarify the relationship between GDF-15 and cachexia.

The present study had a limitation that requires consideration when interpreting the
results. This study had no validation cohort for the cut-off value of serum GDF-15 levels.
Our cut-off value was able to discriminate the biological activity of JNL and AKT signaling
in tumors as pathways producing GDF-15. In terms of biological activity, our cut-off value



Cancers 2021, 13, 4842 11 of 13

for serum GDF-15 was confirmed. Further studies to validate our cut-off for serum GDF-15
are warranted.

5. Conclusions

In conclusion, APC patients with high serum GDF-15 showed worsened performance
status, anorexia and elevations of inflammation and tumor burden as signatures of cachexia,
as well as activation of Akt and JNK in tumor GDF-15-producing pathways. This study
indicated that circulating GDF-15 could be associated with cachectic symptoms in APC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194842/s1, Table S1: Summary of results obtained from RPPA.
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