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Background: Cachexia is defined as an involuntary decrease in body weight, which
can increase the risk of death in cancer patients and reduce the quality of life.
Cachexia-inducing factors (CIFs) have been reported in colorectal cancer and pancreatic
adenocarcinoma, but their value in diffuse large B-cell lymphoma (DLBCL) requires
further genetic research.

Methods: We used gene expression data from Gene Expression Omnibus to evaluate
the expression landscape of 25 known CIFs in DLBCL patients and compared them
with normal lymphoma tissues from two cohorts [GSE56315 (n = 88) and GSE12195
(n = 136)]. The mutational status of CIFs were also evaluated in The Cancer Genome
Atlas database. Based on the expression profiles of 25 CIFs, a single exploratory dataset
which was merged by the datasets of GSE10846 (n = 420) and GSE31312 (n = 498)
were divided into two molecular subtypes by using the method of consensus clustering.
Immune microenvironment between different subtypes were assessed via single-sample
gene set enrichment analysis and the CIBERSORT algorithm. The treatment response of
commonly used chemotherapeutic drugs was predicted and gene set variation analysis
was utilized to reveal the divergence in activated pathways for distinct subtypes. A risk
signature was derived by univariate Cox regression and LASSO regression in the merged
dataset (n = 882), and two independent cohorts [GSE87371 (n = 221) and GSE32918
(n = 244)] were used for validation, respectively.

Results: Clustering analysis with CIFs further divided the cases into two molecular
subtypes (cluster A and cluster B) associated with distinct prognosis, immunological
landscape, chemosensitivity, and biological process. A risk-prognostic signature based
on CCL2, CSF2, IL15, IL17A, IL4, TGFA, and TNFSF10 for DLBCL was developed, and
significant differences in overall survival analysis were found between the low- and high-
risk groups in the training dataset and another two independent validation datasets.
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Multivariate regression showed that the risk signature was an independently prognostic
factor in contrast to other clinical characteristics.

Conclusion: This study demonstrated that CIFs further contribute to the observed
heterogeneity of DLBCL, and molecular classification and a risk signature based on
CIFs are both promising tools for prognostic stratification, which may provide important
clues for precision medicine and tumor-targeted therapy.

Keywords: cachexia-inducing factors, molecular subtype, prognosis-related, signature, diffuse large B-cell
lymphoma

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is a biologically
and clinically heterogeneous B-cell neoplasm morphologically
characterized by large lymphoid cells with B-cell markers growing
in a rapidly proliferating and diffuse pattern (Caimi et al., 2016).
DLBCL is one major subtype of non-Hodgkin lymphoma (NHL)
which originates from B-cells, and it constitutes more than
25–35% of NHL cases in developing countries (Miao et al.,
2019). It is estimated that 81,560 people in the United States
will be diagnosed with NHL, and 20,720 of those will die of
related causes in 2021 (Siegel et al., 2021). In the last decades,
dramatic improvements have been achieved in the treatment
of DLBCL, and the regimen of rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP) has been
established as the first-line or standard therapy for patients
diagnosed with DLBCL. Approximately 60% of cases can be
cured by using this treatment strategy (Sarkozy et al., 2015).
However, in the light of huge heterogeneity in all patients,
more than one-third of individuals will fail this first-line therapy
and experience extremely poor prognosis (Voltin et al., 2020),
illustrating the unmet need to emphasize the importance of
risk stratification that can lead to more scientific and effective
personalized treatment. In recent times, the risk assessment of
DLBCL has mainly concentrated on the international prognostic
index (IPI) and cell of origin (COO); the application of COO
classification in DLBCL has revealed two subtypes, namely, the
germinal center B-cell-like (GCB) and activated B-cell-like (ABC)
(Moffitt and Dave, 2017) subtypes. However, both IPI and COO
are widely questioned regarding the risk stratification of a small
number of DLBCL and do not accurately predict the outcome
for cases (Wight et al., 2018) because the distinction based on
COO does not fully account for the heterogeneous outcomes and
chemotherapy response of DLBCL. The recent improvement in
bioinformatics algorithm and microarray technology provided
huge opportunities for clinical applications of paraffin-embedded
tissue and brings a new dawn to the risk classification of DLBCL.
The non-negative matrix factorization consensus clustering
algorithm used by Chapuy et al. (2018) and the GenClass
algorithm were employed by Schmitz et al. (2018) to analyze
the genetic data of 304 and 574 cases of patients with DLBCL,
respectively. Their analyses showed the existence of distinct
subtypes independent of or within the COO subtypes. According
to these previously reported studies, we hypothesized that the
analysis of a gene expression signature may add considerable

texture to improve the classification for risk stratification and
personalized therapeutic implication in DLBCL.

Cachexia is a non-specific symptom characterized by a
state of involuntary substantial loss of skeletal muscle mass
with or without adipose tissue loss and is usually difficult
to rehabilitate by conventional nutritional support (Mallard
et al., 2019). Cachexia severely compromises life quality and
reduces treatment tolerance among patients with cancer and
contributes to 20% of all cancer deaths (Fearon et al., 2012).
Weight loss greater than 10% in 6 months is determined
to be one of the B symptoms and has been confirmed in
multiple large retrospective research as an adverse prognostic
factor for NHL, independent of IPI (Han et al., 2013; O’Brian
et al., 2016; Xiao et al., 2017; Wight et al., 2018). Patients
with the same height and a similar tumor burden but with
a different cachexia status will receive a completely different
chemotherapy drug regimen and are typically associated with
distinct prognoses. Several tumor-derived and inflammatory
factors are classified as cachexia-inducing factors (CIFs) and are
derived from the tumor secretome or host; these are suggested
to be involved in the pathogenesis of patients and drive the
development of cachexia (Pettersen et al., 2020). Thus far,
several markers for cachexia, such as serum albumin, body
mass index, adipopenia, and sarcopenia, have been investigated
and suggested to be likely factors affecting the prognosis of
DLBCL (Go et al., 2020). Furthermore, 25 known CIFs were
reported in a previous study, and their prognosis value was
explored in 12 cancer types except DLBCL (Freire et al., 2020);
hence, appropriate attention should be paid to CIFs in the
context of DLBCL.

In this study, we comprehensively analyzed and determined
the potential prognostic value of the 25 CIFs in DLBCL and
stratified 884 patients into two subtypes based on the expression
levels of these 25 CIFs. Subsequently, a deeper characterization
of the immune microenvironment and biological process of the
two subtypes was conducted. In addition, treatment sensitivity
of commonly used drugs was predicted for patients with a
distinct subtype. Moreover, we developed a multi-CIFs-based
signature by utilizing the LASSO Cox regression model to
predict the overall survival (OS) of patients with DLBCL. The
prognostic accuracy of this signature was validated in two
independent cohorts. Our signature can complement the existing
risk stratification systems including COO and IPI score for
prediction of outcome in DLBCL, possibly enabling physicians
to make more informed treatment decisions.
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MATERIALS AND METHODS

Dataset Sources and Selection as Well
as Data Processing
The raw CEL data of GSE56315 (55 DLBCL samples and 33
normal B-cell samples), GSE12195 (73 DLBCL samples and
20 normal B-cell samples), GSE12453 [11 DLBCL samples,
25 normal B-cell samples, and 12 cases of classical Hodgkin’s
lymphoma (cHL)], GSE10846 (420 cases of DLBCL), GSE31312
(498 cases of DLBCL), and GSE87371 (223 cases of DLBCL), all of
which were based on the GPL570 platform (HG-U133_Plus_2),
were selected and downloaded. GSE32918 (249 cases of DLBCL)
based on the platform of GPL8432 (Illumina HumanRef-8 WG-
DASL v3.0) was downloaded in the form of a preprocessed
expression matrix uploaded by the authors. All datasets were
extracted from the Gene Expression Omnibus (GEO)1 database.
The selection criteria for DLBCL datasets were as follows: (a)
all expression profiling datasets based on any platform except
those based on HG-U133A platform (the HG-U133A platform
was developed 20 years ago, and the number of probes is less than
half of that of other platforms), (b) all datasets should have basic
clinical data characteristics including sex, age, OS, and OS status,
and (c) datasets with a larger sample size and the minimum
number of patients being > 200.

Using these criteria, the DLBCL datasets of GSE10846,
GSE31312, GSE87371, and GSE32918 were identified and used
to perform prognostic analysis. All the raw chip data went
through the process of quality assessment, quality control,
background correction, and normalization, and the process was
completed by “simpleaffy” (version 2.64.0), “affyPLM” (version
1.64.0), and “arrayQualityMetrics” (version 3.46.0) packages.
All microarray data were converted into expression matrix
after processing. Finally, 1,529 cases of DLBCL, 78 cases of
normal B-cell tissue, and 12 cases of cHL were included in
the GEO dataset. All samples that lacked survival information
and/or had survival data of < 1 day were excluded from
further analysis.

Landscape of Expression and Genetic
Variation as Well as Prognostic Value of
CIFs in DLBCL
To clarify the expression difference of 25 CIFs (CCL2, CD40LG,
CSF1, CSF2, CSF3, CXCL12, CXCL8, FGF2, HGF, IFNG, IL10,
IL15, IL17A, IL1B, IL4, IL6, LEP, LIF, MMP13, PDGFB, TGFA,
TNF, TNFSF10, TNFSF11, and VEGFA) between DLBCL and
normal B-cell tissues and to ensure its reliability, ANOVA was
performed to calculate the discrimination in the two datasets,
namely, GSE56315 and GSE12195. Based on the expression
value of the 25 CIFs, principal component analysis was also
performed to assess the distribution between the DLBCL and
normal B-cell tissues. The mutation status and influence of
mutation status on the survival of all CIFs in 48 cases of
DLBCL patients was obtained from the cBioPortal database2.

1http://www.ncbi.nlm.nih.gov/geo/
2https://www.cbioportal.org/datasets/

The samples with complete survival data in GSE10846 and
GSE31312 were merged into a single meta-cohort (N = 882),
and combat algorithm of “sva” package (version 3.38.0) was
used to combine the datasets and remove batch effects to
reduce non-biological technical biases. Genomic instability often
generates a diversity of genome, leads to cancer occurrence, and
influences disease development. Thus, the presence of deletions
and accumulation of amplifications of CIFs were investigated.
A univariate Cox regression model was adopted to calculate
the hazard ratios (HRs) for each CIF in DLBCL patients,
and Pearson’s correlation analysis was utilized to evaluate the
positive or negative regulatory relationship among the 25 CIFs.
The network of related relationships of a CIF whose value of
expression was correlated with one or more CIFs (| Pearson
R| > 0.1 and P < 0.001) was visualized by Cytoscape software
(version 3.8.2).

Unsupervised Clustering for 25 CIFs
in DLBCL
Unsupervised clustering analysis was employed to detect
unknown possible distinct subtypes based on the expression of
25 CIFs and differentiated in the meta-cohort (n = 882) for
further analysis. The consensus cluster algorithm was performed
by “ConsensuClusterPlus” package (version 1.52.0) to determine
the number of clusters and stability of classification, and 1,000
repetitions were conducted to ensure the accuracy of the
results (Wilkerson and Hayes, 2010). To determine the influence
of distinct subtype on prognosis, Kaplan–Meier analysis was
conducted and compared by log-rank test, and Kruskal–Wallis
test was utilized to distinguish the expression of CIFs between
different subtypes.

Estimation of Immune Infiltration and
Prediction of Cytotoxic and
Immunomodulator Drug Sensitivity
To gain deeper insights into the tumor microenvironment of
patients with DLBCL, CIBERSORT was used to calculate the
composition difference of 22 kinds of infiltrating immune cells in
DLBCL and normal B-cells. P < 0.05 was considered to indicate
statistical significance. In addition, although the remarkable
outcome of anti-PD-1 therapy in classic Hodgkin’s lymphoma
(cHL) is acknowledged, the efficacy of anti-PD-1 monotherapy
in DLBCL remains unsatisfactory and needs further investigation
(Kline et al., 2020). Therefore, the distribution of immune
cells in the microenvironment of cHL and DLBCL was also
calculated. Single-sample gene set enrichment analysis (ssGSEA)
algorithm which is based on 29 immune gene sets was applied to
comprehensively quantify the relative abundance of immune cell
types, pathways, functions, and checkpoints in each patient. The
difference of 29 immune gene sets and 22 immune cells between
cluster A and cluster B patients was analyzed using Kruskal–
Wallis testing. In addition, the “pRRophetic” package (version
0.5) (Geeleher et al., 2014) was utilized to predict the treatment
response for cytotoxicity and molecular targeted therapy between
patients in cluster A and those in cluster B to determine their
sensitivity to commonly used drugs for DLBCL.
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Gene Set Variation Analysis and
Functional Annotation
To provide deeper insights into the heterogeneity of biological
processes between cluster B and cluster A patients, gene
set variation analysis (GSVA) enrichment analysis was
performed by using “GSVA” R packages (version 1.36.3).
GSVA is a non-parametric unsupervised analysis method
mainly employed in expression dataset and is widely used
to evaluate the variation in biological process activity and
pathway in the samples of an expression dataset. The gene sets
of “c2.cp.kegg.v6.2.symbols.gmt” were selected and downloaded
from MSigDB database3 for implementing the GSVA analysis.
Only adjusted P < 0.05 values were considered as statistically
significant. Moreover, the “limma” package (version 3.44.3)
was utilized to determine different biological pathways between
cluster A and cluster B patients, and the results of |log2(fold
change)| > 0.2 and P < 0.05 were considered to be statistically
significant (Song et al., 2020). In addition, the R package of
“limma” (version 3.44.3) was used to identify differentially
expressed genes (DEGs) between cluster B and cluster A with
the criterion of |log2(fold change)| > 1 and P < 0.05 for Gene
Ontology (GO) and pathway enrichment analysis.

Generation and Validation of Prognostic
Signature Based on CIFs
Univariate Cox proportional hazard regression analysis was
utilized to assess the relationship between CIFs and OS of DLBCL
patients within the meta-cohort (which was incorporated by
GSE10846 and GSE31312, and the meta-cohort was set as the
training group). Only P < 0.05 was considered to indicate the
most valuable prognostic CIF genes which were sorted out to
perform the LASSO Cox regression analysis which depend on
the R package “glmnet” (version 4.1). LASSO Cox regression
analysis is a well-established and widely used mathematical
selection method for screening the most predictive markers.
The most prominent advantage of LASSO Cox regression is
that, by penalized regression on all variable coefficients, the
relatively unimportant coefficients of independent variables
whose coefficients are close to 0 are excluded from the model.
The optimal values of the penalty parameter λ were determined
through 10 cross-validations. The following formula was derived
to calculate the risk score based on the expression of candidate
CIF genes, weighted by the regression coefficient obtained from
LASSO Cox regression analysis in the training dataset:

Risk score =
n∑

i=1

expi × βi

where i is the number of CIF genes, expi represents the expression
value of CIF gene i, and βi represents the regression coefficient.
By setting the median risk score as the cutoff value, all DLBCL
patients were dichotomized into high- and low-risk groups. To
evaluate the stability and reproducibility of the CIF signature, two
external datasets including GSE87371 (n = 221) and GSE32918

3http://www.gsea-msigdb.org/gsea/msigdb/index.jsp

(n = 244) were validated. Survival curves were constructed
using the Kaplan–Meier method and carried out using the
“survival” package in R (version 3.2-7). In addition, we used
the “medcalc” statistical software to evaluate the performance
of our CIF signature for its ability to discriminate molecular
subtype with poor prognosis in DLBCL patients who were
recently identified.

Comprehensive Analysis of Risk
Stratification and Clinical Attributes
To investigate the effect of the CIF-based risk signature on
the prognosis of DLBCL, univariate and multivariate Cox
regression analyses were conducted. The risk signature and other
clinicopathological attributes including sex, age, stage, COO
type, extranodal sites involved, serum LDH level, IPI score,
bulky disease, B-symptoms, and Eastern Cooperative Oncology
Group (ECOG) performance were entered into the analysis. All
clinicopathological parameters were grouped according to the IPI
criteria: serum LDH level, >1 × normal; ECOG performance
status,≥2; extranodal sites involved, >1; age, >60 years; and Ann
Arbor stage, III–IV. All other statistical analyses were conducted
using R (version 4.0.2).

RESULTS

Patient Characteristics
A total of 1,475 patients with DLBCL and 53 with normal B cells
from six independent academic institutions were included in the
analysis after excluding samples that lacked clinical metadata; of
these, 1,347 DLBCL samples from four datasets with survival
time were used for prognosis-related research. The clinical
characteristics of the 1,347 patients are presented in Table 1
and Supplementary Table 1. The median follow-up was 28.62
months [interquartile range (IQR): 11.22–52.14] for patients in
the GSE10846 cohort, 34.32 months (17.25–55.42) for those in
the GSE31312 cohort, 39.84 months (4.10–70.8) for those in
the GSE32918 cohort, and 35.49 months (22.53–49.31) for those
in the GSE87371.

Cachexia-Inducing Factors Are
Up-Regulated in DLBCL
To assess the biological function of CIFs, the expression profiles
of 25 CIFs in two cohorts were obtained for systematically
investigating the distinct expression patterns between DLBCL
and normal B-cell tissues. Almost all CIFs were dramatically
over-expressed in DLBCL that comprised the dataset GSE56315,
which was subsequently validated in another dataset, GSE12195.
Nineteen CIFs were identified to be up-regulated in GSE56315
and 21 CIFs were over-expressed in GSE12195 (Figures 1A,B).
CCL2, CD40LG, CSF1, CSF3, CXCL12, FGF2, IFNG, IL10, IL15,
IL1B, LIF, MMP13, PDGFB, TGFA, TNFSF10, and VEGFA were
all up-regulated in both datasets, except for CSF2 which was
down-regulated in DLBCL. Furthermore, the expression level
of IL17A showed no statistically significant difference between
the DLBCL and normal B cell tissues (P > 0.05). Based on
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the expression level of these 25 CIFs, we could accurately
distinguish DLBCL from normal samples (Supplementary
Figures 1A,B). The high heterogeneity of the expression
landscape indicated that CIFs play an essential biological role
in DLBCL pathogenesis and progression. Apart from this,
we first summarized somatic mutations of the 25 CIFs in
DLBCL patients based on The Cancer Genome Atlas cohort.
Thirteen CIFs were found with experienced mutations, and
TNF showed the highest frequency of mutations followed by
VEGFA, IL17, and IL10 (Figure 1C). In addition, patients with

TABLE 1 | Clinical characteristics of the 1,347 cases of diffuse large B-cell
lymphoma patients.

Characteristics GSE10846 GSE31312 GSE32918 GSE37371

(n = 412) (n = 470) (n = 244) (n = 221)

Age

< 60 179 (43.4%) 186 (39.6%) 68 (27.9%) 109 (49.3%)

≥ 60 233 (56.6%) 284 (60.4%) 176 (72.1%) 112 (50.7%)

Sex

Male 222 (53.9%) 271 (57.7%) 142 (58.2%) 116 (52.5%)

Female 172 (41.8%) 199 (42.3%) 102 (41.8%) 105 (47.5%)

NA 18 (4.3%)

Stage

I–II 188 (45.6%) 223 (47.4%) 71 (32.1%)

III–IV 217 (52.7%) 247 (52.6%) 150 (67.9%)

NA 7 (1.7%)

COO type

GCB 182 (44.2%) 230 (48.9%) 119 (48.8%) 82 (37.1%)

ABC 167 (40.5%) 197 (41.9%) 79 (32.4%) 85 (38.5%)

Unclassified 63 (15.3%) 43 (10.2%) 54 (24.4%)

NA 46 (18.8%)

ECOG performance

0–1 295 (71.6%) 374 (79.6%)

2–4 93 (22.6%) 96 (20.4%)

NA 24 (5.8%)

LDH escalated

Yes 177 (43.0%) 275 (58.5%)

No 173 (42.0%) 149 (31.7%)

NA 62 (15.0%) 46 (9.8%)

Bulky

Yes 94 (20.0%)

No 271 (57.7%)

NA 105 (22.3 %)

IPI score

0–2 275 (58.5%) 119 (53.8%)

3–5 148 (31.5%) 102 (46.2%)

NA 47 (10.0%)

B symptom

Yes 130 (27.7%)

No 278 (59.1%)

NA 62 (13.2%)

Extranodal sites

Yes 145 (35.2%) 278 (59.1%)

No 236 (57.3%) 192 (40.9%)

NA 31 (7.5%)

LIF and TGFA mutations showed a negative correlation with
survival (Supplementary Table 2). Three CIF gene clusters
were identified by unsupervised clustering analysis (Figure 2B),
and most CIFs in the same cluster had a positive regulatory
relationship with each other except in CIF cluster 3 (Figure 2A
and Supplementary Table 3). A univariate Cox regression model
was also designed to reveal the prognostic value of 25 CIFs in
DLBCL patients of the meta-cohort that was enrolled by two
GEO datasets (GSE10846 and GSE31312) after batch correction
(Supplementary Figures 2A–D), and seven CIFs (CCL2, CSF2,
IL15, IL17A, IL4, TGFA, and TNFSF10) were significantly
associated with OS (Figure 2A and Supplementary Table 4).
The comprehensive landscape of CIF interactions and their
prognostic significance for patients with DLBCL were delineated
with the network (Figure 2A).

Consensus Clustering for CIFs and
Identifying Molecular Subtypes of DLBCL
All in all, 882 cases of DLBCL from the meta-cohort (n = 882)
were utilized to find a stable and reliable subtype classification
at the end of the repeat sampling. Thus, k = 2 was identified as
the optimal number of clustering based on the expression levels
of CIFs and the result of proportion of ambiguous clustering
(PAC) measure (Supplementary Figures 3A–H). A total of 882
DLBCL patients were clustered into two subtypes named as
cluster A (n = 541) and cluster B (n = 341) (Supplementary
Table 5). Cluster B was significantly associated with poor OS,
and the 50-month OS rates for cluster A and cluster B patients
were 31.6 and 24.0% (Figure 2C). Integration of consensus
clustering and COO-based classification from the 882 patients
and Kaplan–Meier curves also showed that patients separated
by COO with distinct molecular signature had a significantly
different prognosis (p < 0.0001, Figure 2D). The ABC of COO
subtypes accounts for a larger population in cluster A than in
cluster B (Figure 2E), but there were no significant differences
(p = 0.416). As expected, an increased expression of most CIFs
was observed in high-risk cases with DLBCL (Figure 2F), and
the variation of CIF expression in different molecular subtypes
further showed heterogeneity of DLBCL.

Distinct Immune Cell Infiltration and
Molecular Function Between Different
Molecular Subtypes
CIBERSORT immune analysis confirmed that DLBCL was
associated with decreased naive B cells and memory B cells
and had an abundance of activated memory CD4 T cells,
follicular helper T cells, M0 macrophages, M1 macrophage, and
M2 macrophages in three independent cohorts (Supplementary
Figures 4A–C). However, DLBCL showed higher infiltration
levels of CD8 T cells and lower expression of CD274 (PD-L1)
than cHL (Supplementary Figure 4C).

Per recent findings of distinct prognosis between cluster A
and cluster B, ssGSEA and CIBERSORT were used to define
the distribution of immune landscape and pattern between
the two subtypes, and the result showed that cluster A and
cluster B have significant divergence in almost all components
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FIGURE 1 | The landscape of cachexia-inducing factors in the diffuse large B-cell lymphoma (DLBCL). (A,B) Expression levels of 25 cachexia-inducing factors in
DLBCL and normal B cell from human tonsils (A, GSE56315; B, GSE12195). The black dots represent outliers. (C) The mutation frequency of 25 CIFs in 48 patients
with DLBCL from The Cancer Genome Atlas cohort.

of immune cell types and immune functions. ssGSEA revealed
that patients in cluster B were associated with a remarkably high
number of activated dendritic cells (aDCs), APC co-inhibition,
APC co-stimulation, cytokine and cytokine receptor (CCR),
CD8+ T-cells, check-point, cytolytic activity, activated dendritic
cells (DCs), immature dendritic cells (iDCs), inflammation
promotion, macrophages, para-inflammation, NK cells, MHC
class I, neutrophils, plasmacytoid dendritic cells (pDCs), T-cell
co-inhibition, T-cell co-stimulation, T helper cells, Th1 cells
(T helper 1), Th2 cells, tumor-infiltrating lymphocytes (TIL),
regulatory T cells (Treg), type I IFN response, and type II IFN
response. In comparison, cluster A patients showed a significantly
high number of B cells. Unsupervised hierarchical clustering of
immune cell types and functions are described in Figure 3A
and Supplementary Table 6. CIBERSORT immune analysis
also confirmed that cluster A showed an overrepresentation of
naive B cell and memory B cells, whereas cluster B showed
higher infiltration levels of CD8 T cells, plasma cells, CD4 T
cells, CD4 naive T cells, activated memory T cells, gamma
delta resting NK cells, activated NK cells, monocytes, M1
macrophages, eosinophils, M2 macrophages, resting dendritic
cells, neutrophils, activated mast cells, activated dendritic
cells, and resting mast cells (Figure 3B and Supplementary
Table 7). Interestingly, the considerable inconsistencies in the
scale of fraction of B cells between cluster A and cluster B
patients presented in CIBERSORT were very similar to the
results obtained in the ssGSEA analysis, indicating that the
high proportion of B cells was associated with prolonged
survival. To better illustrate the characteristics of immune cell
infiltration and molecular function, we tested the correlation

between immune cell infiltration obtained from CIBERSORT and
immune landscape and molecular pattern acquired from ssGSEA
(Supplementary Figure 5). In addition, PD-L1 and CTLA-4 were
also identified as being considerably overexpressed in cluster
B (Figure 4D).

Heterogeneity of Drug Sensitivity and
Biological Behaviors Between Different
Molecular Subtypes
The IC50 of seven commonly used cytotoxic drugs
(cisplatin, cytarabine, doxorubicin, etoposide, gemcitabine,
vinblastine, and vinorelbine) and one immunomodulator drug
(lenalidomide) was predicted for cluster B and cluster A patients
(Supplementary Table 8). We found that cisplatin, doxorubicin,
and etoposide had lower IC50 in cluster B patients, contrary to
the result of cytarabine, vinblastine, and lenalidomide in cluster
B patients (Figure 4A). Furthermore, to explore the discrepancy
of biological behaviors between cluster A and cluster B, GSVA
and GO as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were performed. As shown
in Figure 4B and Supplementary Tables 9, 10, cluster B patients
had markedly enriched pathways of NOD-like receptor signaling,
chemokine signaling, cytokine–cytokine receptor interaction,
hematopoietic cell lineage, and complement and coagulation
cascades. Briefly, 79 DEGs were identified between cluster B
and cluster A (Supplementary Figures 6A,B), and these DEGs
were remarkably related to cytokine activity and cytokine-related
pathway (Figure 4C and Supplementary Figures 7A–D), which
re-confirmed that cytokine activity and cytokine-related pathway
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FIGURE 2 | The comprehensive landscape of cachexia-inducing factor (CIF) interactions and identification of two molecular subtypes with different prognoses and
transcriptome traits. (A) Network showing the landscape of CIF interactions and their prognostic significance for patients with DLBCL. The circle size represented the
effect of each CIF on the prognosis, and the range of values calculated by log-rank test was p < 0.005, p < 0.01, p < 0.05, and P ≥ 0.05, respectively. Red circle,
risk factors of prognosis. Blue circle, protective factors of prognosis. The lines linking the CIFs showed their interactions, and the thickness of the connecting line is
positively correlated with the strength of the correlation. Negative correlation was marked with blue and positive correlation with red. Dots in the circle represent three
CIF gene clusters termed as CIF clusters 1–3 and marked with purple, dark cyan, and yellow, respectively. (B) Heat maps showing the 25 CIFs’ expression level
clustered by different subtypes and segregation according to the relevance of CIFs. (C) Survival analyses for the two molecular subtypes based on 882 patients with
diffuse large B-cell lymphoma (DLBCL) from two Gene Expression Omnibus cohorts (GSE10846 and GSE31312) including 541 cases in cluster A and 341 cases in
cluster B. Kaplan–Meier curves with log-rank p value 0.028 showed a significant survival difference among distinct subtypes. (D) Patients separated by cell of origin
(COO) subtype with distinct molecular subtypes have a significantly different prognosis. (E) The proportion of COO subtypes in cluster A and cluster B patients.
(F) Difference in the expression of 25 CIFs between cluster A and cluster B subtype groups.

played a nonnegligible role in immune regulation in the tumor
microenvironment.

The Risk Signature Robustly Identifies
DLBCL Patients With Poor Survival
To construct a prognostic signature, seven CIFs that were
identified as being associated with OS in the univariate
Cox regression were included in the LASSO Cox regression
model in the training dataset (882 samples selected from
the meta-cohort). The optimal tuning parameter identified

the following seven CIFs: CCL2, CSF2, IL15, IL17A, IL4,
TGFA, and TNFSF10 (Supplementary Figures 8A,B). A risk
score was then computed for each DLBCL patient based on
the individual expression of the seven CIFs, weighted by
the regression coefficient in the training set based on the
following formula: risk score = (0.0668 × CCL2 expression) +
(−0.2463 × CSF2 expression) + (0.05391 × IL15 expression)
+ (-0.2381 × IL17A expression) + (-0.2305 × IL4 expression)
+ (-0.1621 × TGFA expression) + (-0.1621 × TNFSF10
expression).Taking the median risk score as the cutoff value,
all patients were divided into high- and low-risk groups.
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FIGURE 3 | Immune signature analysis. (A) Unsupervised hierarchical clustering of immune cell types and functions by individual subtypes (cluster A, blue; cluster B,
yellow. *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001). (B) Comparative fraction of the immune cell infiltration between cluster A and cluster B subtypes.

High-risk patients had a worse prognosis than low-risk ones
[HR: 1.623 (1.348–1.995); P < 0.001] (Figure 5A). In addition
to predicting survival, the performance of our risk signature
to identify the cluster B molecular subtype recently identified
with poor prognosis was determined, and it yielded an area
under the curve value of 0.786 [95%CI (0.758–0.813); P < 0.001;
Supplementary Figure 9A]. It showed that the distribution of
risk scores between cluster A and cluster B vary significantly
(P = 2.22e 10−12, Supplementary Figure 9B) and a large
proportion (264 of 341, 77.42%) of patients in cluster B were

classified into a high-risk group (Supplementary Figure 9C).
The role of the risk signature was validated by an additional
two datasets that were consistent with the initial findings
of the training dataset. There was significant distinction in
OS between the high- and low-risk patients, and patients
who were categorized into the high-risk group had shorter
OS than those categorized into the low-risk group, cohort-1
[GSE87371; HR: 1.652 (1.208–2.259); P = 0.002] and cohort-2
[GSE32918; HR: 1.734 (1.225–2.455); P = 0.002] (Figures 5B,C).
Kaplan–Meier curves also showed that patients separated by
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FIGURE 4 | Prediction of chemotherapy and immunomodulatory effect and biological characteristics in distinct subtypes. (A) Sensitivity analysis of eight common
therapeutic drugs in patients of cluster A and cluster B. (B) Differences in pathway activities scored by gene set variation analysis between cluster A and cluster B
patients. Red dot indicates activated pathways in cluster B patients, and blue dot indicates insignificant activated pathways between cluster A and cluster B
patients. (C) Functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for differentially expressed genes between cluster
A and cluster B patients. BP, biological process; CC, cellular component; MF, molecular function. (D) CD274 (PD-L1) and CTLA4 expression difference in cluster A
and cluster B.

distinct pathological type have a significantly different prognosis
(Supplementary Figures 10A–C).

The CIF Risk Signature Serves as an
Independent Predictor of Risk and
Survival Outcomes in DLBCL Patients
To evaluate whether the risk signature had an additional
prognostic value that was beyond the clinical characteristics,
univariate and multivariate Cox regression analyses were
performed by clinical features and risk signature. In the
univariate Cox regression, the seven-CIF-based risk signature was
significantly correlated with OS. After multivariable adjustment
by age, stage, COO type, extranodal sites involved, serum
LDH level, and ECOG performance, the seven-CIF-based risk
signature remained a powerful and independent prognostic
factor for DLBCL patients (HR: 1.621, 95%CI: 1.306–2.011,
P < 0.0001). Similar results were also noted in the testing cohort-
1 dataset (HR: 1.468, 1.068–2.018; P = 0.018) as well as in the
testing cohort-2 dataset (HR: 1.640, 1.157–2.325; P = 0.005)
(Figure 5D). The observations in our study demonstrate that the
CIF-based risk signature contributes to the additive prognostic
value beyond that of age, pathological type, extranodal sites
involved, serum LDH level, and ECOG in DLBCL patients.

DISCUSSION

Molecular classification of human cancers dividing patients into
distinct molecular subtypes has unlocked an innovative approach
to personalized medicine. Although the COO classification of
GCB and ABC subtypes has been widely utilized to discriminate
cells of DLBCL to predict patient prognosis, it is still debatable
and considered unable to comprehensively demonstrate the
distinct genetic and genomic characteristics of all DLBCLs
(Wright et al., 2020). The extreme molecular heterogeneity
of DLBCL brings a huge challenge to the development of
precision treatment. Continuous progress in identification and
differentiation of subtypes or risk stratification is needed
to accelerate the management of personalized treatment in
DLBCL. Cachexia is reportedly related to standard R-CHOP
chemotherapy intolerance and significantly associated with a
poor prognosis in DLBCL patients (Go et al., 2016). In the
present study, we profiled the genomic landscape of CIFs in 882
DLBCL patients and revealed two distinct molecular subtypes
with significantly different survival outcome and distinctive
immune landscape, which captures the previously unexplained
heterogeneity of the tumor microenvironment in DLBCL and
may provide deeper insights into the heterogeneous responses
to cytotoxic and immune blockade therapy. In addition, it
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FIGURE 5 | Prognostic value of cachexia-inducing factor (CIF) risk signature in patients with DIBCL. (A–C) Performance of the CIFs based on the risk signature in
predicting overall survival in the training cohort and two independent testing cohorts. (D) Forest plot showing that the signature is significantly associated with
prognosis and works independently of the cell of origin subtyping and all clinical features in univariate CoxPH and multivariate CoxPH analyses.

may enable the development of subtype-specific treatment
strategies targeting unique immune (therapeutic) vulnerabilities.
Moreover, we developed and validated a seven-CIF-based risk
signature to complement the existing prognostic evaluation
system for the prediction of DLBCL outcome. To the best
of our knowledge, this is the first study to comprehensively
characterize the genomic landscape prognostic significance of
CIFs in patients with DLBCL.

The molecular heterogeneity of DLBCL constitutes a major
obstacle in treatment management of patients (Alkodsi et al.,
2019). Significant efforts have been invested in molecular biology,
and gene microarray technology has yielded significant public
and invaluable gene expression data sets, and those data can be
used for cancer or lymphoma risk stratification and pave the way
for accurate disease classification (Li et al., 2017; Tang et al., 2018).
To date, various molecular classification systems or mathematical

clustering methods have been previously proposed; however,
these classification approaches have their limitations and need
further improvements. An unsupervised clustering of 2,118
genes’ expression analysis performed by Monti et al. identified
three distinct subtypes of DLBCL, but the subtypes identified
in this study were not associated with prognosis (Monti et al.,
2005). By utilizing the method of recursive feature elimination
support vector machine, Risueño et al. (2020) identified two
subtypes in the GSE10846 dataset. Unfortunately, there is no
significant difference in survival between the two subtypes.
Karen Dybkaer et al. divided 1,139 samples of DLBCL into
four genetic subtypes and evaluated the prognostic difference
of those subtypes; it was seen that only the subclass of
GCB presented prognostic stratification (Dybkaer et al., 2015).
Another clustering methodology utilized by George Wright et al.
determined seven subtypes of DLBCL, but the significantly
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distinctive outcome was only observed within the ABC subtype
(Wright et al., 2020). Alkodsi et al. reported four subtypes of
DLBCL by clustering the expression of 36 somatic hypermutation
(SHM) genes, and those subtypes had a distinct clinical outcome
(Alkodsi et al., 2019). However, the detection of gene SHM
is more expensive and complicated than RT-PCR assay, which
were limitations to routine clinical application. In this study,
we investigated the contribution of CIFs to heterogeneity of
distinct prognosis, immunological landscape, chemosensitivity,
and biological process in DLBCL and showed two molecular
subtypes defined by CIF expression patterns, and our subtypes
showed distinctive prognosis within each of the COO subtypes.

It is well known that the presence of immune and
inflammatory cells contributes to modulate tumor growth
and invasion in DLBCL (Ennishi et al., 2020; Solimando
et al., 2020). Characterization of immune infiltration and
immune functions between different molecular subtypes provides
important insights into the clinical outcome heterogeneity and
pathogenesis of DLBCL. The naïve B-cells, memory B-cells,
and macrophages in our study were the most represented cell
proportions within the microenvironment of DLBCL patients.
Normally, naive B-cells experience the germinal center and
differentiate into either memory B-cells or plasma cells (for
response to infections and secretion of high-affinity antibodies)
to play a key role in humoral immunity (Bakhshi and Georgel,
2020). However, malignant transformation of DLBCL forms
the mature B cells, which also experienced the germinal
center reaction (Pasqualucci and Dalla-Favera, 2018). This
transformation may contribute to an excessive consumption of
naïve B cells and reduce the production of mature B cells.
However, the number of B cells always plays a core role in the
immune network and is related to prolonged survival (Bindea
et al., 2013), which is consistent with our results. Our analysis
revealed that the proportions of naïve B and memory B cells in
DLBCL are significantly lower than the normal control group and
represented lower fractions in cluster B which was associated with
a worse prognosis. GSVA, GO, and KEGG enrichment results
showed that cluster B, which had an abundance almost the same
as that of immune cells, was strongly associated with cytokine
activity and the chemokine pathway. This phenomenon may be
related to the fact that immune cells are capable of producing
multiple types of cytokines and chemokines (Tamma et al., 2020).

Macrophages, including M1 and M2 types, are more
conspicuous than any other immune cell except B cells in DLBCL,
and the proportion of M2 type macrophages was higher than
that of macrophages M1. M1 macrophages have an antitumor
response against neoplastic cells. Conversely, M2 macrophages
have a predominant role of promoting tumor growth and
progression (Poles et al., 2019). Macrophages usually maintain
a balanced state; if macrophages M2 predominate, the balance
may shift to a pro-tumor microenvironment (Riihijarvi et al.,
2015). CTLA-4 is expressed on regulatory T (Treg) cells and
is believed to act as an immune checkpoint receptor, which
contributes to the inhibition and exhaustion of T-cells, and has
an additional role in promoting the proliferation and survival
of B-cell lymphoma (Herrmann et al., 2017). In our study,
the number of regulatory T (Treg) cells was higher in cluster

B than in cluster A, in line with the expression level of
CTLA-4. Aberrant PD-L1 expression also offered a key immune
escape mechanism in B-cell lymphoproliferative disorders, and
increased PD-L1/PD-1 expression confers an adverse prognosis
in DLBCL (Vari et al., 2018). The low overall response rate of anti-
PD-1 antibody in DLBCL was attributed, at least to some extent,
to the low expression of PD-L1 (Autio et al., 2020). Blockade of
the PD1/PD-L1 axis showed particularly potent responses in cHL
patients, and an increased expression of PD-L1 was associated
with treatment response (Xu-Monette et al., 2018). We found that
the expression level of PDL-1 in DLBCL tissue was significantly
higher than in normal tissues but significantly lower than in
cHL, which may explain why the efficacy of immunotherapy in
DLBCL patients is not as good as that in cHL. Meanwhile, DLBCL
patients with a higher expression level of PD-L1 seem to show
a correlation with an increased resistance to frontline therapy
but always related to prolonged PFS if treated with anti-PD-1
antibody (El Hussein et al., 2020; Wang L. et al., 2020). In line
with this, cluster B which was associated with worse prognosis
showed a higher expression level of CD274/PD-L1 than cluster A.
The above-mentioned results suggest that cluster B patients may
benefit more from PD-1 blockade therapy than cluster A patients.

Compared with a single mRNA, microRNA, or miRNA,
integrating multiple biomarkers into a single signature by
LASSO Cox regression could substantially improve the value
of prognosis prediction (Zhang et al., 2013). In the present
study, we focused on CIFs and developed a seven-CIF-based
signature to predict OS in DLBCL. Another interesting aspect of
our signature is that it works independently of COO subtyping
and all clinical features. Although the potential of a signature
based on miRNA expression has previously been reported in
the prognostic stratification of DLBCL, but it is limited by a
small sample size and lacks an independent cohort to validate
its reliability (Montes-Moreno et al., 2011). Investigation of the
biological function of the seven CIFs included in our signature
has been conducted in previous studies. Interleukin (IL)-4 has
been confirmed to be elevated in HL and follicular lymphoma;
moreover, IL-4 not only contributes to the abnormal proliferation
of lymphoma cells but also prevents malignant lymphocytes
from apoptosis (Kawakami et al., 2005; Carey et al., 2007; Calvo
et al., 2008). Additionally, IL-17A has been reported to have
a role in promoting tumor growth and metastasis, but it also
exhibited anti-cancer ability and showed a positive function
in improving response to adjuvant chemotherapy in bladder
cancer and gastric cancer (Kulig et al., 2016; Wang et al.,
2019; Wang Z. et al., 2020). Granulocyte-macrophage colony-
stimulating factor 2 (CSF2) one of the sub-members of the CSF
family, has the capability of jeopardizing antitumor function
and has a positive role in immunosuppression; furthermore, it
can also improve antitumor efficacy through modulating the
infiltration of immune cells in the tumor microenvironment and
is associated with prolonged prognosis (Huang et al., 2020).
TGFA has been previously confirmed as a crucial oncogenic
mediator and promotes tumor cell growth via the TGF-α/EGFR
signaling pathway (Wu et al., 2016). TNFSF10 was found to
be involved in promoting tumor proliferation in non-Hodgkin’s
lymphoma by activating the NF-κB pathway (Agrusa et al., 2020).
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CCL2 was positively related to TNFSF10 in our study and
involved in the proliferation and survival of hematological
tumors (Rafei et al., 2011). IL-15 is a proinflammatory cytokine
that contributes STAT activation by mediating JAK1 and JAK3
phosphorylation, leading to lymphoma cell growth and survival.
Nonetheless, the antitumor capacity of IL-15 by improving NK-
cell function on the hematological malignancies has also been
documented (Mishra et al., 2014; Mao et al., 2016).

Limitations of the present study should be acknowledged.
Firstly, it is a retrospective research instead of a prospective
study. Secondly, subtype classification and prognostic signature
should be further validated for its efficacy in more independently
prospective population. Finally, additional genetic and
experimental studies of CIFs are required to elucidate the
carcinogenesis and progression mechanism in DLBCL.

CONCLUSION

Our results show that CIFs further contribute to the observed
heterogeneity of DLBCL, with specific tumor microenvironment
features associated with disease progression and severity.
Furthermore, a novel signature based on CIFs was identified
and validated in multiple groups of patients, which allows
robust risk stratification and may facilitate the implementation
of individualized treatment for DLBCL patients with a
different prognosis.
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Supplementary Figure 1 | Principal component analysis for the expression
profiles of 25 cachexia-inducing factors (CIFs) to distinguish diffuse large B-cell
lymphoma (DLBCL) from normal samples in GSE12195 and GSE56315 cohorts:
(A,B). Two subgroups without intersection were identified, indicating the DLBCL,

and normal samples were well distinguished based on the expression profiles
of CIFs.

Supplementary Figure 2 | Box plot of expression data before and after
normalization. The x-axis presents the different cohorts, and the y-axis presents
the expression value. (A) Data before and after normalization of the expression
profiles of GSE10846 and GSE31312. (B) The Venn diagram for intersection of
the probe set of GSE10846 and GSE31312. (C) Samples distribution of the two
cohorts are significantly different before batch correction. (D) Samples distribution
of the two cohorts after batch correction.

Supplementary Figure 3 | Unsupervised clustering of 25 cachexia-inducing
factors in 882 cases of patients with diffuse large B-cell lymphoma (DLBCL) to
identify distinct molecular subtypes. (A–F) Consensus matrices of the DLBCL
cohort for k = 2–7, allowing quick and accurate visualization of cluster boundaries.
(G) Consensus clustering cumulative distribution function for k = 2 to 9. (H)
Tracking plot showing the consensus cluster of items (in columns) at k = 2 to
9 (in rows).

Supplementary Figure 4 | Difference in the abundance of immune cell infiltration
and expression of Pd-1 among diffuse large B-cell lymphoma (DLBCL), normal B
cell, and classic Hodgkin’s lymphoma (cHl). (A,B) The proportion of immune cell in
DLBCL and normal B cell extracted from tonsil: (A) GSE56315 and (B)
GSE12195). (C) The proportion of immune cell infiltration and expression level of
PD-L1 among DLBCL, normal B cell, and cHL. ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

Supplementary Figure 5 | Correlation of immune landscapes and immune cell
infiltration. Positive correlation was marked with blue, and negative correlation was
marked with yellow.

Supplementary Figure 6 | Differentially expressed genes in cluster B and cluster
a patients. (A) Heat map for differentially expressed genes in cluster B and cluster
a patients. (B) Volcano plot of differentially expressed genes in cluster B and
cluster a patients. Red, significantly upregulated genes; blue, significantly
downregulated genes; Fc, fold change.

Supplementary Figure 7 | Functional enrichment analysis for differentially
expressed genes (DEGs) between cluster B and cluster a patients. (A) Kyoto
Encyclopedia of Genes and Genomes analyses for DEGs. (B) Biological process.
(C) Cellular component. (D) Molecular function.

Supplementary Figure 8 | Identification of the risk signature by least absolute
shrinkage and selection operator (Lasso) Cox regression. (A) Lasso coefficient of
the seven cachexia-inducing factors associated with overall survival in univariate
Cox regression. (B) Ten-fold cross-validation for tuning the parameter selection in
the Lasso module.

Supplementary Figure 9 | Performance of the cachexia-inducing factor
(CIFs) signature in identifying poor molecular subtypes in the training cohort.
(A) Comparative risk score between cluster a subtype and cluster B subtype.
(B) Receiver operating characteristic curves to depict the accuracy of CIFs
risk signature in identifying cluster B which was with poor prognosis.
(C) Alluvial diagram showing the changes of CIFs cluster subtypes, risk, and
status.

Supplementary Figure 10 | Performance of combinations of the prognostic
model and cell of origin subtype in the prediction of patients with DLBCL in the
training cohort and two independent testing cohorts. (A) GSE10846 +
GSE31312. (B) GSE87371. (C) GSE32918.

Supplementary Table 1 | Clinical characteristics of the 882 cases of DLBCL
patients which was merged by GSE10846 and GSE31312.

Supplementary Table 2 | Prognostic analysis for mutation satatus of 13 CIFs in
48 cases of DLBCL.

Supplementary Table 3 | Spearman correlation analysis of the 25 CIFs.

Supplementary Table 4 | Prognostic analysis of 25 CIFs in 884 cases of DLBCL
using a univariate Cox regression model.
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Supplementary Table 5 | consensus clustering analysisi results of 884 cases of
DLBCL.

Supplementary Table 6 | Estimating relative abundance of tumor
microenvironment cells in 884 case of DLBCL patients by the Single-Sample
Gene-Set Enrichment Analysis (ssGSEA).

Supplementary Table 7 | 22 kinds of infiltrating immune cell composition which
calculate by CIBERSORT analysis.

Supplementary Table 8 | Maximum inhibitory concentration (IC50) for
cytotoxicity and Immunomodulator drugs pedicted in 884 cases of
DLBCL.

Supplementary Table 9 | The differentially biological pathways between cluster B
and cluster A which obtained GSVA enrichment analysis.

Supplementary Table 10 | Functional annotation and KEGG pathway for
differentially expressed genes between cluster B and cluster A patients.
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