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Abstract. The regulation of nicotinic acetylcholine re- 
ceptors (AChRs) in chick ciliary ganglia was examined 
by using a radiolabeled anti-AChR mAb to quantitate 
the amount of receptor in ganglion detergent extracts 
after preganglionic denervation or postganglionic ax- 
otomy. Surgical transection of the preganglionic input 
to the ciliary ganglion in newly hatched chicks caused 
a threefold reduction in the total number of AChRs 
within 10 d compared with that present in unoperated 
contralateral control ganglia. Surgical transection of 
both the choroid and ciliary nerves emerging from the 
ciliary ganglion in newly hatched chicks to establish 
postganglionic axotomy led to a nearly 10-fold reduc- 
tion in AChRs within 5 d compared with unoperated 
contralateral ganglia. The declines were specific since 
they could not be accounted for by changes in gangli- 

onic protein or by decreases in neuronal survival or 
size. Light microscopy revealed no gross morphologi- 
cal differences between neurons in operated and con- 
trol ganglia. A second membrane component of cho- 
linergic relevance on chick ciliary ganglion neurons is 
the ~t-bungarotoxin (Qt-Bgt)-binding component. The 
a-Bgt-binding component also declined in number af- 
ter either postganglionic axotomy or preganglionic de- 
nervation, but appeared to do so with a more rapid 
time course than did ganglionic AChRs. The results 
imply that cell-cell interactions in vivo specifically 
regulate both the number of AChRs and the number of 
~t-Bgt-binding components in the ganglion. Regulation 
of these neuronal cholinergic membrane components 
clearly differs from that previously described for mus- 
cle AChRs. 

M 
OTOR innervation of vertebrate skeletal muscle 
plays a major role in regulating the number and 
distribution of nicotinic acetylcholine receptors 

(AChRs) 1 in muscle tissue (for reviews see Fambrough, 
1979, and Schuetze and Role, 1987). Electrophysiological 
studies have indicated that neuronal AChRs may also be 
regulated by cell-cell interactions. Focal iontophoretic appli- 
cation of acetylcholine (ACh) to the surface of frog and mud- 
puppy parasympathetic neurons during intracellular record- 
ing reveals a nonuniform distribution of ACh sensitivity 
consistent with the greatest receptor localization being at 
points of synaptic contact (Harris et al., 1971; Roper, 1976; 
Dennis and Sargent, 1979). Surgical denervation of the neu- 
rons causes an increase in the mean ACh sensitivity, a more 
uniform distribution of sensitivity, and a decrease in the 
mean rise time of the response. These results suggest the ap- 
pearance of substantial numbers of extrasynaptic AChRs as 
a consequence of neuronal denervation (Kuffler et al., 1971; 
Roper, 1976; Dennis and Sargent, 1979). Recent studies with 
frog sympathetic neurons have led to a different conclusion: 
the neurons have a nonuniform distribution of ACh sensitiv- 
ity, but denervation produces no change in the magnitude, 

1. Abbreviations used in this paper: ACh, acetytcholine; AChR, nicotinic 
acetylcholine receptor; ct-Bgt, ~t-bungarotoxin. 

distribution, or time course of the ACh response of the cells 
(Dunn and Marshall, 1985). The basis for the different re- 
sults with frog denervated sympathetic and parasympathetic 
neurons remains unresolved. The effects of postganglionic 
axotomy on neuronal ACh sensitivity have been examined in 
parasympathetic ciliary ganglia of newly hatched chicks 
where surgical transection of the postganglionic nerves 
causes an eightfold reduction in sensitivity after 3-4 d (Bren- 
ner and Martin, 1976). Postganglionic axotomy may also pro- 
duce a reduction in the ACh sensitivity of adult guinea pig 
sympathetic neurons (Purves, 1975). These findings suggest 
that the number and possibly the distribution of neuronal 
AChRs can be regulated by one or more types of cell-cell 
interactions, and that the underlying mechanisms may differ 
from those previously described for regulation of the well- 
characterized skeletal muscle AChR. 

Recently probes have been identified that distinguish and 
permit the quantitation of AChRs in the chick ciliary gan- 
glion. One of these is a monoclonal antibody, mAb 35, that 
was raised against AChR purified from Electrophorus elec- 
tric tissue and recognizes the "main immunogenic region" of 
muscle and electric organ AChR ~t subunits (Tzartos et al., 
1981; Barkas et al., 1987). Several lines of evidence indicated 
that mAb 35 cross reacts with the AChR of chick ciliary gan- 
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glion neurons (Jacob et al., 1984; Smith et al., 1985, 1986; 
Stollberg et al., 1986). This indication has now been con- 
firmed by demonstrating that the ct-neurotoxin Bgt 3.1, which 
specifically and completely inhibits the AChR response of 
ciliary ganglion neurons (Ravdin and Berg, 1979; Ravdin et 
al., 1981), can be used to identify AChRs on the neurons 
(Halvorsen and Berg, 1986) and that the receptors are the 
same as those recognized by mAb 35 on the surface of the 
cells (Halvorsen and Berg, 1987). 

The availability of mAb 35 as a probe for neuronal AChRs 
allows one to examine for the first time in a quantitative man- 
ner the way in which cell-cell interactions may regulate the 
number and distribution of neuronal AChRs. We have used 
~25I-mAb 35 to measure the levels of total AChR present in 
detergent extracts of ciliary ganglia from newly hatched 
chicks after preganglionic denervation or postganglionic ax- 
otomy in vivo. For comparison, the levels of r 
(ct-Bgt)-binding component in the extracts were also deter- 
mined, since the component is distinct from, though possi- 
bly related to, the functional AChR on the neurons. We have 
measured amounts of total ganglionic protein, number of 
surviving neurons, and mean neuronal soma and nuclear di- 
ameters to determine whether degenerative changes in the 
neurons might account for the observed changes in AChR 
levels. We show here that the total number of AChRs declines 
dramatically after axotomy as predicted by the electrophysio- 
logical studies on chick ciliary ganglion neurons. Denerva- 
tion, however, produces a slow decline in the total number 
of ganglionic AChRs rather than an increase or maintained 
level of receptors as observed for ACh sensitivity after 
preganglionic denervation of frog and mudpuppy autonomic 
neurons (Kuffler et al., 1971; Roper, 1976; Dennis and Sar- 
gent, 1979; Dunn and Marshall, 1985). The total number of 
r components also declines after the opera- 
tions, and the decline is more rapid than the decrease in 
AChRs. 

Materials and Methods 

Operations 
Surgical preganglionic denervation or postganglionic axotomy was per- 
formed on ciliary ganglia in chicks 2-4 d after hatching by a modification 
of methods previously described (Pilar and Tuttle, 1982). Briefly, chicks 
were anesthetized with metboxyflurane followed by sodium pentobarbital. 
A small incision was made along the caudal portion of the lower eyelid. The 
eyeball was carefully retracted and the connective tissue attaching the eye- 
ball to the orbital wall was gently separated to expose the posterior portion 
of the eyeball. Extraocular muscles were spread apart to reveal the ciliary 
ganglion. For preganglionic denervation, iridectomy scissors were used to 
cut the preganglionic input from the Edinger-Westphal (accessory oculomo- 
tor) nucleus. For postganglionic axotomy all of the ciliary and choroid 
nerves emerging from the ganglion were cut. Denervation or axotomy was 
performed on a single ciliary ganglion per chick, leaving the contralateral 
ganglion as a control. The lower eyelid incision was then sutured and the 
chicks allowed to recover from the anesthesia. There was occasional bleed- 
ing. Animals that bled heavily were not retained for the experiments. The 
use of alcohol-sterilized instruments and Betadine antiseptic solution to 
paint the skin around the lower eyelid appeared to be sufficient to prevent 
infection. Chicks were maintained in a heated brooder for 1-5 d after ax- 
otomy and 2-10 d after denervafion. The complete absence of a pupillary 
light reflex was used as a criterion for a successful operation; the ganglion 
was examined at the end of the experiment to confirm that the appropriate 
nerves had been completely severed. The success rate of the surgery was 
"~85 %. 

AChR Assays 
mAb 35 was purified and radioiodinated to specific activities of 2-3 x 10 ~8 
cpm/mol as previously described (Smith et al., 1985). Total ganglionic 
AChRs were assayed by determining the number of specific 12SI-mAb 
35-binding sites present in detergent extracts prepared from ciliary ganglia 
as previously described (Smith et al., 1985). Briefly, both operated and con- 
trol ganglia were dissected, trimmed free of connective tissue, and stored 
frozen at -70~ while accumulating stocks. The ganglia were then thawed 
and homogenized at 4~ by hand in 10 mM NaPO4, pH 7.4, containing 50 
mM NaCI and 0.5 % Triton X-100. Particulate debris was removed by cen- 
trifugation for 1 min at 15,600 g. Aliquots of the extract were then incubated 
with 4 nM ~25I-mAb 35 for 30 min at room temperature, and bound 
~5l-mAb 35 was separated from free antibody by ion exchange chromatog- 
raphy on DEAE cellulose. Nonspecific binding, determined by including 
a 30-40-fold excess of unlabeled mAb 35 in the binding reaction, was sub- 
tracted from total radioactivity retained by the column to calculate specific 
binding. Results were corrected for a mean efficiency of 64% for the column 
procedure (Stollberg and Berg, 1987). 

Other Assays 
ct-Bgt was purified and radioiodinated by a modified chloramine T method 
as previously described (Ravdin and Berg, 1979; Lindstrom et al., 1981). 
Binding sites were assayed in detergent extracts by using a modification of 
the method of Meunier et al. (1974) as previously described (Smith et al., 
1985). 

Total ganglionic protein was measured in detergent extracts by the protein 
microassay (Bio-Rad Laboratories, Richmond CA). 

Neuronal cell counts were carried out on serial sections of both operated 
and control ganglia as previously described (Landmesser and Pilar, 1974; 
Nishi and Berg, 1977). Briefly, day 5 axotomized and day 10 denervated gan- 
glia along with contralateral control ganglia were fixed with 2 % glutaralde- 
hyde and 2% paraformaldehyde in 20 mM NaPO4, pH 7.2, containing 60 
mM sucrose. The ganglia were rinsed, trimmed, postfixed with osmium 
tetroxide, and processed for Epon embedment. Ganglia were serially sec- 
tioned at a thickness of 7 Inn. The sections were mounted on subbed glass 
slides (Rogers, 1973) and stained with toluidine blue. All ciliary and choroid 
neurons possessing a nucleus with a distinct nucleolus were counted in each 
section of the ganglion. The cell counts were corrected for double counting 
by the method of Abercrombie (1946). Ciliary and choroid neurons were 
distinguished by morphological criteria (Landmesser and Pilar, 1974). Neu- 
ronal soma and nuclear diameters were measured with a light microscope 
using a calibrated reticule and eyepiece. 

Materials 
White Leghorn chick embryonated eggs were obtained locally from Mcln- 
tyre Poultry (Lakeside, CA) and maintained and hatched at 39~ in a hu- 
midified incubator. The hybridoma cell line secreting mAb 35 was gener- 
ously provided by Dr. Jon Lindstrom of the Salk Institute (San Diego, CA). 
Bungarus multicinctus venom was purchased from Miami Serpentarium 
(Salt Lake City, UT). Methoxyflurane was purchased from Pitman-Moore, 
Inc. (Washington Crossing, NJ), and sodium pentobarbital from Sigma 
Chemical Co. (St. Louis, MO). 

Results 

Changes in the Number of AChRs 
Unilateral postganglionic axotomy of ciliary ganglia in 
newly hatched chicks caused a rapid decline in the total num- 
ber of ganglionic AChRs as detected by specific t25I-mAb 
35 binding in ganglionic detergent extracts. No compensa- 
tory change was observed in the number of AChRs in the 
unoperated contralateral ciliary ganglion from the same 
animals (Fig. 1 A). 5 d after axotomy the ratio of AChRs in 
operated and control ganglia had declined •10-fold (Fig. 1 
B). Unilateral preganglionic denervation of ciliary ganglia 
in newly hatched chicks also produced a decline in gan- 
glionic AChRs, though with a slower time course. Again, no 
change was observed in the number of AChRs in unoperated 
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Figure 1. AChRs in axotomized ganglia. The ciliary and choroid 
nerves emerging from the ciliary ganglion were surgically tran- 
sected in newly hatched chicks, and the axotomized ipsilateral and 
unoperated contralateral ganglia were taken at the indicated times 
and assayed for specific u 2 5 I - m A b  35 binding to total AChRs in 
ganglionic detergent extracts. Each value represents the mean 
5: SEM of 2-4 determinations. (A) The number of AChRs per oper- 
ated (solid circles) or unoperated (open circles) ganglion. (B) The 
ratio of AChRs in operated and control ganglia. AChR levels in 5-d 
axotomized ganglia are only about a tenth of those present in un- 
operated contralateral ganglia. 
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Figure 2. AChRs in denervated ganglia. The preganglionlc nerve 
to the ciliary ganglion was surgically transected in newly hatched 
chicks, and the denervated ipsilateral and unoperated contralateral 
ganglia were taken at the indicated times and assayed for specific 
t25I-mAb 35 binding to total AChRs in ganglionic detergent ex- 
tracts. Each value represents the mean + SEM of 2-4 determina- 
tions. (A) The number of AChRs per operated (solid circles) or 
unoperated (open circles) ganglion. (B) The ratio of AChRs in 
operated and control ganglia. AChR levels in 10-d denervated gan- 
glia are about a third of those present in unoperated contralateral 
ganglia. 

contralateral ciliary ganglia (Fig. 2 A). 10 d after denerva- 
tion, AChR levels had fallen about threefold in denervated 
as compared with unoperated contralateral ganglia (Fig. 2 
B). In these and subsequent experiments the number of 
AChRs was calculated assuming, for convenience, a 1:1 
stoichiometry of mAb 35 bound to receptor. It is possible 
that two or more mAbs bind per receptor (I-[alvorsen and 
Berg, 1987), The exact stoichiometry is not important for the 
present studies, which instead depend only on a comparison 
of the relative amounts of receptor. 

The AChR declines were specific in that they were not ac- 
companied by decreases in total ganglionic protein. Ax- 
atomy produced a 62 % increase in the amount of ganglionic 
protein in the operated side over a 5-d period while no 

change was observed in the contralateral side: values at 5 d 
were 37 + 8 and 23 + 3 I.tg/ganglion (mean + SEM, n = 
5) for operated and control ganglia, respectively. The in- 
creased protein probably reflected proliferation of satellite 
cells as previously described in autonomic ganglia after ax- 
atomy (Purves, 1975). Normalizing the levels of ganglionic 
AChRs for protein still yielded an ,,ol0-fold difference be- 
tween operated and control ganglia with respect to AChR 
levels 5 d after axotomy. No change in the amount of total 
ganglionic protein was detected as a consequence of denerva- 
tion over the 10-d period examined even though most of the 
preganglionic terminals were likely to have degenerated 
within 3 d, assuming that pigeon (Giacobini et al., 1979) and 
chick are similar in this regard. Expressing AChR levels per 

J a c o b  and  B e r g  Regulation of Neuronal Acetylcholine Receptors 1 8 4 9  



100 

50 

to 50 
-i- 
o 

10 

I I I I I 
0 2 4 6 8 I0 

TIME AFTER OPERATION (d0ys) 

Figure 3. Decline in AChRs after axotomy and denervation. The 
number of AChRs per ganglion after axotomy (solid circles) or de- 
nervation (open circles) is presented as a percent of those present 
at the time of surgery. Values represent the mean + SEM of 2-4 
determinations and were calculated from the data presented in Figs. 
1 A and 2 A. 

ganglionic protein produced the same approximately three- 
fold difference between operated and control side ganglia 
10 d after denervation. 

The declines in AChRs observed both after postganglionic 
axotomy and after preganglionic denervation represent re- 
ductions in the number of receptors in each case rather than 
decreases in the affinity of receptor for antibody probe: in- 
creasing the concentration of t25I-mAb 35 threefold in the 
standard binding assay failed to detect additional specific 
binding sites in extracts of either denervated or axotomized 
ganglia (data not shown). The decline in AChRs after ax- 
otomy followed a single exponential rate of decay with a half- 
time for receptor loss of 43 h (Fig. 3). AChR loss after dener- 
vation also followed a single exponential rate of decay. The 
half-time for receptor loss in this case was 9 d (Fig. 3). 

Neuronal Survival and Size 

To determine whether the decreases in AChRs might reflect 
neuronal cell death after the operations, cell counts were per- 
formed on serial sections of operated and control ganglia. 
Cell morphology at the light microscope level was used to 
distinguish choroid and ciliary neurons (Landmesser and Pi- 
lar, 1974) so that separate counts could be carried out. 5 d 
after axotomy a decrease was observed in both populations 
of neurons (Table I). The magnitude of the decrease 5 d after 

axotomy (37%) was substantially smaller, however, than the 
magnitude of the decrease in ganglionic AChRs (90%). 10 
d after denervation no difference was detected between con- 
trol and operated ganglia either in the number of choroid or 
ciliary neurons (Table I). Light microscopic analysis re- 
vealed no gross degenerative changes in surviving neurons 
(Fig. 4), although no specific stains were used to detect 
changes in the distribution of Nissl substance in response to 
axotomy as previously described (Pilar and Landmesser, 
1972). Measurements of neuronal soma and nuclear diam- 
eters revealed no degenerative changes or shrinkage of sur- 
viving neurons compared with control cells after either 5 d 
of axotomy or 10 d of denervation (Table II). These results 
demonstrate that the declines in AChR number produced by 
axotomy and by denervation did not reflect nonspecific de- 
generative changes in the neuronal population. 

a-Bgt-binding Components 

Chick ciliary ganglion neurons have a membrane component 
that binds ct-Bgt. The component is distinct from the func- 
tional synaptic AChR on the neurons since it is not present 
in synaptic membrane, and it is different from the AChR de- 
tected by Bgt 3.1 and mAb 35 (Jacob and Berg, 1983; Smith 
et al., 1985; Halvorsen and Berg, 1986, 1987). The compo- 
nent is, nonetheless, likely to be involved in cholinergic sig- 
naling in some manner since nicotinic cholinergic ligands 
specifically block ct-Bgt binding to the component, and the 
component is restricted in the neuron surface to areas sur- 
rounding preganglionic terminals. Accordingly, it seemed of 
interest to determine whether the ct-Bgt-binding component 
was regulated in parallel with AChRs in the ganglion after 
postganglionic axotomy or preganglionic denervation. 

Unilateral postganglionic axotomy produced a very rapid 
decline in the total number of ganglionic ct-Bgt-binding sites 
as detected by specific 125I-ct-Bgt binding in ganglionic de- 
tergent extracts. Only about a quarter of control levels re- 
mained 1 d after the operation (Fig. 5 A). No further decline 
was observed at subsequent times. The number of ~t-Bgt- 
binding sites in the unoperated contralateral ganglion did not 
change over the 5-d test period. Unilateral preganglionic 
denervation also produced a rapid decline in the number of 
(t-Bgt-binding sites in the ganglion such that about one-half 
of the original number was left at 2 d (Fig. 5 B). No further 
decrease was observed at later times after denervation. The 
number of ct-Bgt-binding sites may have increased some- 
what in unoperated contralateral ganglia over the same time 
course. Normalizing the ~t-Bgt-binding data for ganglionic 

Table L Neuronal Survival 

Number of neurons 

Ganglion Ciliary Choroid Total Percent 

Control 1,080 + 120 1,290 + 220 2,370 + 250 100 -]- 11 
Axotomy 650 + 60 850 + 80 1,490 + 110 63 + 5 
Denervation 1,130 + 70 1,270 + 200 2,390 + 210 101 + 9 

Ciliary ganglia were fixed, serially sectioned, stained, and counted separately for surviving choroid and ciliary neurons as described in Materials and Methods. 
Postganglionic axotomy for 5 d partially reduced the number of surviving neurons while preganglionic denervation for 10 d had no effect on the number of surviving 
neurons. Control: unoperated contralateral ganglia from chicks having the ipsilateral ganglion axotomized for 5 d. Axotomy: ganglia axotomized for 5 d by surgical 
transection of the postganglionic choroid and ciliary nerves. Denervation: ganglia denervated for 10 d by surgical transection of the preganglionic accessory oculo- 
motor nerve. Each value represents the mean 5: range of two ganglia that were serially sectioned and counted blind, separately. 
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Figure 4. Neuronal morphology. Sections from operated and control ganglia were prepared as described in Materials and Methods and 
were viewed through a light microscope. No gross differences were observed in ciliary or choroid neuron morphologies for axotomized 
or denervated ganglia as compared with unoperated contralateral ganglia. (A) Unoperated contralateral ganglion from a chick having the 
ipsilateral ganglion axotomized for 5 d. (B) Ganglion 5 d after postganglionic axotomy. (C) Ganglion 10 d after preganglionic denervation. 
Bars, 50 p.m. 

protein after the operations did not substantially alter the 
patterns. 

When comparisons are made between the declines that oc- 
curred after the operations in the number of  ~t-Bgt-binding 
sites and the number of  AChRs, it is clear that the two follow 
different time courses, a-Bgt-binding sites declined more 

rapidly, reaching a plateau value by the earliest time exam- 
ined, both after axotomy and after denervation (Fig. 5). 
AChRs followed a more gradual but steady decline over the 
same time periods (Figs. 1 and 2). In all cases examined, the 
absolute number of a-Bgt-binding components exceeded by 
at least severalfold the number of  AChRs, assuming a similar 

Table 11. Neuronal Soma and Nuclear Diameters 

Ciliary neurons Choroid neurons 

Ganglion Soma diameter Percent Nucleus diameter Percent Soma diameter Percent Nucleus diameter Percent 

Cont ro l  2 8 . 0  + 1.3 100 + 5 9 .8  + 0 .5  100 + 5 17.1 ___ 0 .9  100 _+ 5 7.5 + 0 .4  100 __+ 5 
A x o t o m y  31 .6  ___ 0 .8  113 + 3 11.0 + 0 .3  112 + 3 19.1 ___ 0 .8  112 + 5 7 .9  + 0 .4  105 + 5 
Denerva t ion  28 .9  + 0 .9  103 + 3 11.2 + 0 .4  114 + 4 17.2 + 0 .7  101 + 4 7 .7  ___ 0 .4  103 ___ 5 

The soma and nuclear diameters were measured for choroid and ciliary neurons in sections of ciliary ganglia prepared as described in Table I. Each value represents 
the mean _+ range (in microns) of two ganglia. Approximately 40 ciliary and 40 choroid neurons were measured in different regions of each ganglion. No difference 
was observed in either parameter for operated ganglia compared with control ganglia. Control: unoperated contralateral ganglia from chicks having the ipsilateral 
ganglion axotomized for 5 d. Axotomy: ganglia axotomized for 5 d by surgical transection of the postganglionic choroid and ciliary nerves. Denervation: ganglia 
denervated for 10 d by surgical transection of the preganglionic accessory oculomotor nerve. 
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Figure 5. ct-Bgt-binding components in operated ganglia. The total 
number of ct-Bgt-binding components in detergent extracts prepared 
from operated ganglia (solid circles) were measured at the indicated 
times, and the values compared with those obtained from unoper- 
ated contralateral ganglia (open circles) from the same chicks. Each 
value represents the mean -t- SEM of 3-4 determinations. (A) Ax- 
otomized ganglia. A sharp decline is observed in the number of 
ct-Bgt-binding components per ganglion 1 d after axotomy; no ad- 
ditional change is observed over the next 4 d. (B) Denervated gan- 
glia. The number of a-Bgt-binding components is decreased by day 
2 of denervation and remains constant over the next 8 d. Note the 
different time scales in A and B. 

stoichiometry of ~t-Bgt and mAb 35 binding to their respec- 
tive membrane components. 

Discussion 

The decreases in AChRs and ct-Bgt-binding components in 
the chick ciliary ganglion caused by postganglionic axotomy 
and by preganglionic denervation are specific consequences 
since they cannot be accounted for by changes in neuron 
number or size, or by changes in ganglionic protein. Mor- 
phological examination at the light microscopic level de- 
tected no gross degenerative consequences in neurons of 
operated ganglia. Only in the case of axotomy was a decrease 

in neuron number noted, and the extent of the decline 5 d 
after axotomy was not nearly as great as the decrease in 
AChRs or tt-Bgt-binding components. Previous reports have 
suggested a similar resilience of the ganglion: axotomy of 
chick ciliary ganglia for 9 d was found to reduce total synap- 
tic contact area on the neurons by only 37% (Brenner and 
Johnson, 1976) while denervation of adult pigeon ciliary gan- 
glia caused no change in total ganglionic protein over 2 wk 
(Giacobini et al., 1979). Few, if any, changes were apparent 
in the membrane electrical properties of axotomized and 
denervated ganglion neurons compared with control neurons 
over the same time courses used in the present study (Kuffier 
et al., 1971; Purves, 1975; Brenner and Martin, 1976; Dunn 
and Marshall, 1985). 

The decrease observed here in total ganglionic AChRs 
caused by axotomy is similar in rate and extent to the de- 
crease previously reported for the mean ACh sensitivity of 
the neurons after axotomy (Brenner and Martin, 1976). The 
half-time of 43 h for receptor loss under these conditions is 
slower than the value of 22 h obtained for the half-life of 
AChRs on the neuron surface in cell culture (Stollberg and 
Berg, 1987). Either ciliary ganglion AChRs in vivo have a 
longer mean half-life or the receptors continue to be synthe- 
sized after postganglionic axotomy. 

The loss of AChRs induced by denervation is much slower 
still, displaying a half-time of,~9 d. This decline differs both 
from the precedent provided by skeletal muscle AChRs and 
from the results of electrophysiological studies on neuronal 
surface AChRs. Surgical denervation or chronic paralysis of 
vertebrate skeletal muscle causes a large increase both in the 
number of extrajunctional AChRs as reflected in the appear- 
ance of ACh sensitivity in extrajunctional regions and in the 
total number of AChRs in the muscle tissue (for reviews see 
Fambrough, 1979, and Schuetze and Role, 1987). Denerva- 
tion of frog and mudpuppy parasympathetic ganglia has also 
been reported to increase neuronal ACh sensitivity in the 
ganglia in a manner suggesting increased numbers of func- 
tional receptors on the neuron surface (Kuffler et al., 1971; 
Roper, 1976; Dennis and Sargent, 1979). No change in ACh 
sensitivity was found when frog sympathetic neurons were 
denervated (Dunn and Marshall, 1985). 

The present finding that denervation of the neurons 
reduces the total number of AChRs may reflect differences 
between hatchling chick autonomic neurons and those of 
adult frog and mudpuppy with respect to AChR regulation. 
Alternatively, changes in ACh sensitivity may not be an ap- 
propriate measure of AChR number since recent studies 
show that the number of functional AChRs is substantially 
smaller than and regulated independently from the total 
number of AChRs on the neurons (Margiotta et al., 1987a, b). 
Another consideration is that measurements of total gan- 
glionic AChRs as done here are influenced significantly by 
a large intracellular AChR pool in the neurons. Ultrastruc- 
tural studies with mAb 35 have demonstrated that AChRs on 
the neuron surface in situ are located predominantly at syn- 
apses (Jacob et al., 1984). Substantial numbers of internal 
AChRs can also be identified, however, both in embryonic 
ganglia (Jacob et al., 1986) and in ganglia from newly 
hatched chicks (our unpublished observations). The intracel- 
lular receptors are associated with organelles known to be in- 
volved in the synthesis, processing, and transport of integral 
membrane proteins. In cell culture it has been shown that 
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nearly two-thirds of the total specific mAb 35-binding sites 
are intracellular, and that only a minor fraction of the inter- 
nal sites is transported to the cell surface (Stollberg and Berg, 
1987). The significance and fate of the large intracellular 
AChR pool is unknown. It is possible that denervation of the 
neurons causes a large decrease in the intracellular pool of 
receptor while having little effect on AChRs in the plasma 
membrane. In any case, it is clear that the regulation of 
AChRs by innervation in the chick ciliary ganglion is very 
different from that in vertebrate skeletal muscle since dener- 
vation reduces the total number of ganglionic AChRs but in- 
creases the number of muscle AChRs. 

The relationship between the tx-Bgt-binding component 
and the ganglionic AChR is unknown. The ~t-Bgt-binding 
component from chicken brain binds nicotinic cholinergic 
ligands and contains a subunit with partial amino acid se- 
quence homology to the a subunit of chicken muscle AChR 
(ContioTronconi et al., 1985). Studies with the rat pheochro- 
mocytoma cell line PC12 (Patrick and Stallcup, 1977) and 
with chick ciliary ganglion neurons (Jacob and Berg, 1983; 
Jacob et al., 1984; Smith et al., 1985; Halvorsen and Berg, 
1986, 1987) clearly indicate that the ct-Bgt-binding compo- 
nent on the cells is distinct from the functional synaptic 
AChR. Even in chicken brain the tz-Bgt-binding component 
has been shown to be separate from AChRs distinguished by 
mAb 35 and high-affinity nicotine binding (Whiting and 
Lindstrom, 1986a, b). Nonetheless, it is intriguing that the 
t~-Bgt-binding component is influenced specifically and in 
a qualitatively similar way to the ganglionic AChR by the 
surgical disruption of cell-cell interactions, although the 
effect on the ~t-Bgt-binding component is more rapid. It 
seems unlikely that the ti-Bgt-binding component serves as 
a precursor to AChRs on neurons: multiple brain compo- 
nents have been identified that bind nicotine with high- 
affinity but not ~t-Bgt (Whiting and Lindstrom, 1986a, b), 
and recent evidence suggests multigene families for neuronal 
AChRs rather than a precursor-product relationship among 
receptor subtypes (Boulter et al., 1986; Goldman et al., 
1986, 1987). Moreover, ciliary ganglion neurons have large 
intracellular pools of AChRs as defined by mAb 35 binding 
that may in part serve as direct precursors to the surface 
AChRs (Jacob et al., 1986; Stollberg and Berg, 1987). 

The early decline in a-Bgt-binding sites after ganglionic 
denervation raises the possibility that some of the sites may 
be preganglionic in origin. Cell culture studies clearly dem- 
onstrate that ciliary ganglion neurons have both tz-Bgt-bind- 
ing components and AChRs (Ravdin et al., 1981; Smith et al., 
1986; Halvorsen and Berg, 1986, 1987). Ultrastructural in- 
vestigations of ~t-Bgt and mAb 35 binding on the neurons in 
situ demonstrate a postsynaptic cell localization but cannot 
exclude the possibility that some of the sites may be as- 
sociated with presynaptic terminals (Jacob and Berg, 1983; 
Jacob et al., 1984, 1986; Loring et al., 1985; Loring and Zig- 
mond, 1987). The denervation studies described here indi- 
cate that about three-quarters of the AChRs and half of the 
a-Bgt-binding sites as lower limits are associated with post- 
synaptic cells. This follows from the expectation that most 
preganglionic terminals in the ganglion would degenerate 
within 3 d after denervation as shown for adult pigeon ciliary 
ganglia (Giacobini et al., 1979). At this time many AChRs 
and ct-Bgt-binding sites are still present in the denervated 
chick ciliary ganglion. A previous report on adult chicken 

ciliary ganglia indicated that axotomy reduced ganglionic 
a-Bgt-binding levels while denervation had little effect 
(Fumagalli et al., 1978), possibly signaling a difference be- 
tween newly hatched and adult chickens in this regard. It 
seems probable that all of the AChRs and ~t-Bgt-binding 
sites in the ganglion are associated with the ganglionic 
neurons. 

The surgical manipulations used here are likely to have al- 
tered receptor number by isolating the neurons from re- 
quired cell-cell interactions. Motor innervation of vertebrate 
skeletal muscle controls the number and distribution of 
AChRs on muscle cells probably both by direct nerve-muscle 
contact (Anderson and Cohen, 1977; Role et al., 1985) and 
by stimulation of muscle activity (Lomo and Rosenthal, 
1972; Reiness and Hall, 1977). Factors have recently been 
purified from brain that increase the number and alter the 
distribution of muscle AChRs (Knaack et al., 1986; Usdin 
and Fischbach, 1986). Preliminary reports describe a stimu- 
latory effect of spinal cord explants on the ACh sensitivity 
of sympathetic neurons in culture (Role, 1985), and suggest 
that before innervation the neurons have little or no ACh sen- 
sitivity (Schuetze and Role, 1987). As for postganglionic 
influences, isolating autonomic neurons from their periph- 
eral targets has been shown to alter the synaptic properties 
of preganglionic contacts on the neurons (Purves, 1975; 
Brenner and Johnson, 1976), and muscle membrane frag- 
ments have been reported to be essential in sustaining the 
ACh sensitivity of ciliary ganglion neurons in culture (Tuttle, 
1983). The underlying mechanisms of neuronal AChR regu- 
lation remain to be determined. Since neuronal and skeletal 
muscle AChRs are encoded by different genes (Boulter et al., 
1986; Goldman et al., 1986, 1987), it is to be expected that 
they would be regulated differently. 
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