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Abstract

A central and still open question regarding the pathogenesis of autoimmune diseases, such

as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented

autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degrada-

tion is a key step in processing of proteins for MHC class I presentation. Different types of

proteasomes can be expressed in cells dictating the repertoire of peptides presented by the

MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configura-

tion of pancreatic β cells, as this might facilitate autoantigen presentation by β cells and

thereby their T-cell mediated destruction. Here we investigated whether so-called inducible

subunits of the proteasome are constitutively expressed in β cells, regulated by inflamma-

tory signals and participate in the formation of active intermediate or immuno-proteasomes.

We show that inducible proteasomal subunits are constitutively expressed in human and

rodent islets and an insulin-secreting cell-line. Moreover, the β5i subunit is incorporated into

active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally,

inducible subunit expression along with increase in total proteasome activities are further

upregulated by low concentrations of IL-1β stimulating proinsulin biosynthesis. These find-

ings suggest that the β cell proteasomal repertoire is more diverse than assumed previously

and may be highly responsive to a local inflammatory islet environment.
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Introduction

The proteasome is a multi-subunit complex essential for the proteolytic degradation of cellular

proteins and in the generation of specific sets of bioactive peptides [1] influencing a variety of

cellular processes e.g. transcriptional regulation, signaling and the regulation of the cell cycle

progression [2–5].

Proteasomal activity is executed by the proteolytic core, known as the 20S proteasome. It

consists of a stack of four heptameric rings: two outer α and two inner β rings [1]. The β rings

are composed of catalytically active subunits (β1, β2 and β5) that cleave peptide bonds at the

C-terminal side of proteins [6] with caspase-, trypsin- and chymotrypsin-like activities, respec-

tively [7, 8]. The standard 26S proteasome contains a 19S regulatory cap that binds the polyu-

biquitin chain, denatures the protein, and feeds it into the proteolytic core of the proteasome

[9].

Standard proteasomes (s-proteasome) assembled with β1, β2 and β5 subunits are ubiqui-

tously expressed, but specialized proteasomes also exist and are constitutively expressed by e.g.

immune cells [9], where they represent the dominant form. Formation of the proteolytic core

of these specialized proteasomes involves substitution of the constitutively expressed catalytic

β1, β2 and β5 subunits with the interferon (IFN)-γ-inducible β1i, β2i and β5i subunits (alterna-

tively termed Psmb9/LMP2, Psmb10/MECL-1/LMP10 and Psmb8/LMP7, respectively) [6, 10,

11]. The immune-proteasome (i-proteasome) has an alternative 20S catalytic core where all β-

subunits are replaced by IFN-γ inducible β-subunits and where the 20S-associated 19S can be

replaced by the 11S (also termed PA28αβ) proteasome regulator [9, 12, 13].

When standard and inducible subunits are present in cells, the latter are preferentially

incorporated into newly produced 20S proteasomes [14, 15]. Interestingly, co-expression of

standard and inducible β subunits enables cells to assemble a variety of distinct 20S complexes,

collectively referred to as intermediate proteasomes (int-proteasomes) [9]. The two most com-

mon int-proteasomes are composed of two inner rings containing either β1/β2/β5i or β1i/β2/

β5i. These int-proteasomes are not exclusive, as other combinations have been observed,

including 20S proteasome with one constitutive (β1/ β2/ β5) and one immune (β1i/ β2i/ β5i)

inner ring (also called asymmetric proteasomes, [16–18]).

Immune cells permanently and many other cells under conditions of oxidative stress,

inflammation, cytokine stimulation, or viral and bacterial infection express and assemble i-

and int-proteasomes [9, 19]. Recently, induction of expression of such proteasomes upon

exposure of human pancreatic islets and rat and mouse insulinoma cells to INFγ and β but not

high concentrations of IL-1β, was reported [18, 20]. Furthermore, int-proteasomes (but not i-

proteasomes) are constitutively expressed in various cells, including liver, heart, kidney, lung

or colon [16, 21–24]. They constitute between 1% (heart) to 50% (liver) of the total proteasome

pool [16, 21, 23, 24].

The proteasomal composition in cells has broad implications, as proteasomes exhibit

diverse substrate specificities. This affects the peptide repertoire generated for presentation on

major histocompatibility complex (MHC) class I molecules [13, 19, 25], signal transduction

via e.g nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) [26] and protein

degradation e.g. of proinsulin [27].

The s-proteasome is known to improve glucose-stimulated insulin secretion [28], regulate

intracellular proinsulin levels [27] or protect against lipotoxic endoplasmic reticulum stress

[29]. However, the functions of i- and int-proteasomes are poorly defined. Importantly, consti-
tutive expression of inducible proteasome subunits in pancreatic β cells has not been described,

but their induction upon INFγ and β treatment has been suggested to play a protective role

against cytokine-induced apoptosis [20] and during antiviral responses [18].
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Of special interest to type 1 and 2 diabetes pathogenesis is the constitutive profile of the β
cell proteasomes and their regulation. Type 1 diabetes (T1D) is an autoimmune disease, in

which tolerance to β cells is broken, with proinsulin serving as a major autoantigen. T1D is his-

tologically characterized by pancreatic islet inflammation with increased levels of cytokines i.e.

IL-1β, INF-γ/β and TNF-α, in the islet microenvironment [30]. Type 2 diabetes (T2D) arises

when insulin secretion fails to meet demands mainly due to impaired insulin sensitivity, with

β-cell oxidative and endoplasmic reticulum stress, lipotoxicity and glucotoxicity as conse-

quences causing progressive loss of β cell functional mass [31]. All these cellular stresses induce

an inflammatory response or are exacerbated by or associated with low-grade systemic inflam-

mation via production of interleukin 1β (IL-1β) and IL-6 and recruitment and activation of

innate immune cells [32, 33]. As i- and int-proteasomes can modify e.g. signal transduction

and MHC I peptide presentation, their constitutive and/or induced expression in β cells by

inflammatory cytokines is of high interest and therapeutic potential.

Here, we hypothesized that β cells constitutively express active non-standard proteasomes

and that the expression is upregulated by innate inflammatory signals at low levels. We there-

fore set out to analyze the composition of proteasomes in human and mouse islets as well as in

the commonly used β-cell model INS-1E cell line in non-stimulated or cytokine-stimulated

conditions. We report constitutive transcription and translation of inducible proteasome sub-

units (β1i/ β2i/ β5i) in β-cells, albeit with lower expression levels compared to immune cell-

lines. Of the inducible subunits, β5i is incorporated into active proteasomes in non-stimulated

INS-1E cells, forming intermediate proteasomes that constitute 14% of total proteasomes in

these cells. Furthermore, mRNA and protein expression of inducible subunits is upregulated

by low concentrations of IL-1β. β5i and β1i subunits were induced in all tested cellular models

while β2i was induced in mouse (but not human) islets and INS-1E cells. Consequently the

composition and both constitutive and stimulated activity of proteasomes in β cells has to be

considered when investigating degradation mechanisms and antigen presentation on MHC I

molecules of proinsulin and other β-cell proteins.

Materials and methods

Cell culture

The rat insulinoma INS-1E cell line, a gift from Claes Wollheim and Pierre Maechler, Univer-

sity Medical Center, Geneva, Switzerland, was maintained as previously described [11]. The

mouse insulinoma MIN6 cell line, was cultured in DMEM (Life Technologies, Nærum, Den-

mark) with 25 mM glucose, supplemented with 10% FBS, 0.1% Penicillin/Streptomycin (P/S),

50 uM β-mercaptoethanol and 2 mM L-glutamine. The mouse lymphocyte cell line A20,

donated by Prof. Søren Buus, Department of Immunology and Microbiology, University of

Copenhagen, Denmark, was cultured in RMPI-1640 (Life Technologies, Nærum, Denmark),

containing 10% FBS, 1% P/S, 10 mM HEPES, 50 uM β-mercaptoethanol and 4.5 g/L D-glu-

cose. The human T lymphocyte cell line Jurkat, also from Prof. Buus, was cultured in RPMI-

1640 with 10% FBS and 1% P/S. All cells were maintained at 37o C with 5% CO2. All cell-lines

were Mycoplasma negative.

Animal Care

B6 C57BL/6NRJ mice were housed, handled and sacrificed according to Danish legislation for

animal experimentation and with prior approval from the local animal ethics committee,

issued by the Department of Experimental Medicine, University of Copenhagen. Animal han-

dling and procedures were conducted by researchers with FELASA certification and super-

vised by veterinarians.
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Islet isolation and culture

Mouse islets were isolated by injection of LiberaseTM TL (Roche1, Hvidovre, Denmark)

through the common bile duct to digest exocrine tissue. Islets were handpicked and either

lysed immediately or cultured for 3–5 days in RPMI-1640 supplemented with 10% FBS and

1% P/S, at 37o C and 5% CO2. All data points represent separate islet collections (tested in tech-

nical triplicates) and thus denote biological variability.

Human islets were isolated from healthy, heart-beating donors by the European Consor-

tium for Islet Transplantation (ECIT) in Milan, Italy, with local ethical approval. The obtained

islets were ~ 90% pure and no apparent difference in their quality was observed. Details on

islet donors are included in the Table 1. Islets were cultured as previously described in [11].

Cytokine exposure

INS-1E cells were exposed to 10 ng/mL rat IFN-γ (R&D, Minnesota, USA) or 15 or150 pg/mL

rat IL-1β (BD Bioscience, Lyngby, Denmark) or control medium for 24h. Human islets were

exposed to 10 ng/ml human IFN-γ (BD Bioscience, New Jersey, USA) or 30 or 300 pg/ml rat

IL-1β, while mouse islets were exposed to either 10 ng/mL rat IFN-γ or 50 or 300 pg/mL rat

IL-1β or control medium, both for 24 hours prior to experiments.

Western blotting

Prior to experiments cells or islets were lysed in lysis buffer, consisting of 100 mM Tris (pH

8.0), 30 mM NaCl, 10 mM KCl, 10 mM MgCl2, 2% NP-40, 20 mM iodoacetamide and protease

inhibitor cocktail (Life Technologies, Nærum, Denmark). Protein concentrations were mea-

sured using Bio-Rad Protein Assay Dye Reagent (Bio-Rad, Copenhagen, Denmark). Indicated

amounts of proteins were loaded on Nu-Page 4–12% bis-tris gels (Thermo Fisher Scientific,

Hvidovre, Denmark), and proteins were separated by SDS-PAGE. Gels were transferred to

PVDF membranes using the iBLOT2 system (Thermo Fisher Scientific, Hvidovre, Denmark).

Membranes were cut prior to incubation with primary antibodies (Table 2) overnight. Primary

antibodies were diluted in 2% BSA in TBST (50 mM Tris pH 8, 150 mM NaCl, 0.1% Tween).

Table 1. Human islets donors information and islet preparations used during the investigation.

Islet donors information

Donor 1 2 3 4

Age 63 62 58 20

Gender (M/F) F F M M

BMI 19.5 29.3 27.8 21.8

blood group A+ A+ O+ B+

HLA (A:B) 2,11 : 18,57 26,29 : 7,18 2,26 : 35,55 11,24 : 18,51

HLA (DR) 11,17 4,15 14,16 1,11

Cold ischemia time (h) 9 5 8.5 8

Islets culture duration (h)� 16 14 20 42

Cause of death Cerebral bleeding Cerebral bleeding Cerebral bleeding Anoxia

Source of islets ECIT ECIT ECIT ECIT

Estimated viability (%) 95 95 95 95

Estimated purity (%) 90 90 90 90

Any additional note EBV positive EBV positive

�time from islets isolation to shipment

https://doi.org/10.1371/journal.pone.0222432.t001
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Membranes were blotted with appropriate secondary antibodies for 1 hour. Blots were devel-

oped using chemiluminescence and captured using the Azure1Saphire Biomolecular Imager.

Western blots were quantified using ImageJ software (v. 1.52a, [34]).

Proteasome activity

INS-1E, A-20 and Jurkat cells, human and mouse islets were plated in duplicates or triplicates

in 96-well plates and treated with 50 nM ONX-0914, a selective inhibitor of theβ5i subunit

activity (Selleck Chemicals, Rungsted, Denmark, IC50: ~10 nM for β5i, [35]) or 2 μM MG132,

a broad proteasome inhibitor (Sigma-Aldrich, Søborg, Denmark) or control medium for 2

hours prior to experiments. Chymotrypsin-, trypsin- and caspase-like activity was measured

through luminescent assay using commercially available Proteasome-GloTM Assay (Promega,

Nacka, Sweden) according to the manufacturer’s protocol. Depicted data are averages of either

technical duplicates or triplicates as indicated. The added trypsin-like, chymotrypsin-like and

caspase-like activity is referred to as total proteasome activity.

Bulk mouse islet RNA Sequencing

Five hundred mouse islets were plated and exposed to IL-1β (50 pg/mL) for 10 days or left

non-exposed for 10 days. Total mRNA was extracted from the islets by employing RNeasy1

Micro Kit (Qiagen, Vedbæk, Denmark). Single-stranded, single-end sequencing libraries were

generated using 35 ng of extracted RNA by means of TruSeq1 Stranded mRNA Library Prep

(Illumina1, Copenhagen, Denmark), and library sequencing was done with the HiSeq 4000

System (Illumina1, Copenhagen, Denmark). Sequence files were drawn to the UCSC mouse

genome NCB137/mm9. Further technical and analysis details in [36] and RNA-seq raw data

are accessible here: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110691. In brief,

expression levels of all genes were estimated by Cufflink (cufflinks v2.2.1,-p 6 -G $gtf_file—

max-bundle-frags 1000000000) using only the reads with exact matches. Since specific mRNA

levels were analyzed no correction for multiple testing was done. Results (RPKM) for the spe-

cific genes of 3 independent experiments were analyzed by Student’s paired t-test, n = 3.

RPKM for each gene is provided in Table 3.

Single-Cell RNA Sequencing of Pancreatic Islets

Each single-cell transcriptome was sequenced to *750,000 reads, sufficient for cell-type classi-

fication. Islet cell subpopulations were analyzed for PSMB8, PSMB9 and PSMB10 genes

expression using published human islet single-cell sequencing data [37]. FastQ files were

downloaded from ArrayExpress (accession: E-MTAB-5061). Data was analyzed with bcbio-

nextgen (https://github.com/chapmanb/bcbio-nextgen), using the hisat2 algorithm [38] to

Table 2. Primary and secondary antibodies used during the investigation.

Antibody target Company Cat# Dilution

β1i Abcam ab243556 1:10.000

β5i Abcam ab3329 1:5.000

β2i Abcam ab183506 1:1.000

Tubulin Sigma T6074 1:10.000

Actin Thermofisher Scientific MA5-11869 1:15.000

Insulin Cell signaling 8138S 1:5.000

Anti-mouse secondary Cell signaling 7076S 1:10.000

Anti-rabbit secondary Cell signaling 7074S 1:10.000

https://doi.org/10.1371/journal.pone.0222432.t002
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align sequence reads to human genome version hg38 and uniquely aligned reads within RefSeq

gene annotations were used to quantify gene expression with the Salmon algorithm [39]. Data

is then expressed as log2 of counts per million (CPM). Only cells that passed the quality con-

trol in the original study [37] were maintained for further analysis, and the cell type classifica-

tion from the original study was also maintained.

Mass spectrometry for proteasome composition analysis

INS-1E cells were grown to 90% confluence in T175 flasks. The cells were washed with HBSS

before incubation with pre-warmed culture media complemented with 0.1% formaldehyde for

cross-linking for 15 minutes. Next, 125 mM glycine was added for 10 minutes at 37˚ C to

quench the formaldehyde. The advantages of live cell cross-linking vs non-crosslinking step

has been evaluated in [40]. The cells were then washed three times with HBSS and centrifuged,

and pellets were stored at -80˚C for later proteasome composition analysis. Immuno-purifica-

tion of the proteasomes from the in-vivo cross-linked lysates, was performed as previously

described [41]. Briefly, proteasomes were purified by incubating the lysates with CNBr sephar-

ose beads (GE Healthcare) covalently bound to the antibody specific for the α2 subunit of the

proteasome (MCP21) (100 mg of beads for 0.8 mg antibody), using 150 million cells per 50 mg

of grafted beads. The supernatant was collected, and the beads were washed three times with

40 bead volumes of washing buffer (20 mM Tris-HCl pH 7.6, 1 mM EDTA, 10% glycerol, 150

mM NaCl, 0.1% NP-40, 2 mM ATP and 5 mM MgCl2). Finally, proteins were eluted with 0.5

ml of elution buffer (20 mM Tris-HCl pH 7.6, 1 mM EDTA, 10% glycerol, 3 M NaCl, 2 mM

ATP and 5 mM MgCl2). Two additional cycles of purification were conducted, reincubating

the collected supernatant with antibody-grafted beads. All fractions were pooled. LC-MS/MS

analysis was performed as previously described [21, 42]. Briefly, immuno-purified proteasome

samples were precipitated with 20% trichloroacetic acid (TCA), washed with cold acetone and

then denatured by boiling at 95˚C for 30 min in the Laemmli buffer, also reversing the cross-

links [41]. Proteins were alkylated and concentrated on 12% acrylamide SDS-PAGE gel as a

single band, which was cut and washed. Trypsin digestion was then performed overnight at

37˚C and the peptides were extracted from the gel. The digestion mixture was then dried in a

Speed-Vac and resuspended with 2% acetonitrile, 0.05% trifluoroacetic acid. The peptide

Table 3. Low concentrations of IL-1β induce β subunit mRNA expression in mouse islets.

Gene Ctrl 1 Ctrl 2 Ctrl 3 IL-1B

1

IL-1B

3

IL-1B

3

Ctrl

mean

IL-1β treatment

mean

P value

β5i (PSMB8) 9.38 8.54 9.03 28.13 24.57 26 8.98 26.23 0.0021

β1i (PSMB9) 6.70 5.41 6.59 13.31 16.02 15.79 6.23 15.04 0.0172

β2i (PSMB10) 12 11.75 9.57 33.99 36.21 32.18 11.11 34.13 0.001

β5

(PSMB5)

34.53 37 38.27 42.61 42.78 34.31 36.6 39.9 0.4657

β1

(PSMB6)

102.84 93.47 90.64 93.09 109.07 98.63 95.65 100.26 0.6015

β2

(PSMB7)

79.63 76.68 79.96 85.41 83.28 72.34 78.76 80.34 0.7634

Upregulation of inducible proteasome subunits upon prolonged, low-dose exposure to IL1-β. Five hundred mouse islets were cultured and exposed to IL-1β (50 pg/mL)

for 10 days. Total mRNA was extracted, and bulk (whole pancreatic islets) sequenced and genes identified using the UCSC mouse genome NCB137/mm9. mRNA levels

of PSMB8, PSMB9 and PSMB10 for inducible subunits β5i, β1i and β2i, respectively, were significantly (p = <0.0005 each) upregulated by IL-1β exposure while PSMB5,

PSMB6 and PSMB7 for corresponding standard proteasome subunits β5, β1 and β2 remained unchanged. Data presented as RPMK for individual islet collection

(biological replicates) in the respective conditions and their means. Results were analyzed by Student’s paired t-test, n = 3.

https://doi.org/10.1371/journal.pone.0222432.t003
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mixture was then analyzed by nano-LC-MS/MS using an UltiMate3000 system (Dionex) cou-

pled to Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, Bremen, Germany).

Proteins identification, validation and relative quantification were performed as previously

published [41].

Statistical analysis

All samples were selected without bias and represent biological not technical variations. Distri-

bution of islets, specifically, were randomized and independent of e.g. size and shape. As a

result, samples should be homogenous and represent biological variation, and both protein

expression and activity is therefore assumed to be normally distributed [43, 44]. Furthermore,

normality of all expression data was tested with a Shapiro-Wilk test and found normally dis-

tributed and tested using a student t-test. Meanwhile proteasome activity and cell viability

each data point is represented by a mean value of technical replicates, and as such should be

normally distributed according to the central limits theorem [45]. Differences between two

groups were assessed by a two-tailed Student’s t-test. All statistical analyses were done using

GraphPad Prism (v. 6, La Jolla, CA). Data is represented as means ± SD or SEM. P-values of

�0.05 were considered significant.

Results

Inducible proteasome subunits are constitutively expressed in pancreatic

islets and β-cell lines

To investigate whether proteasome inducible β subunits are expressed in non-stimulated β
cells we re-analyzed RNA-sequencing data of single-cells dispersed from pancreatic islets from

healthy individuals [37] and found that between 3.5 to 40% of β, α and δ cells express constitu-

tively mRNA of all inducible subunits (Fig 1A and 1B).

Next, we lysed human and mouse islets, INS-1E (β-cell insulinoma), A20 (B cell lymphoma)

and Jurkat (T cell leukemia) cells and analyzed their protein contents by SDS-PAGE and West-

ern blotting. As expected, immune cell lines (A20 and Jurkat) showed high expression of the

inducible subunits (Fig 1C–1E). Interestingly, we detected relatively low but consistent expres-

sion of all three inducible subunits (β1i, β2i and β5i) in human and mouse islets and INS-1E

cells (Fig 1C–1E).

INS-1E cells contain two major types of proteasomes

We next investigated the composition of proteasomes in INS-1E cells through immunoprecip-

itation (IP) of the 20S α2 proteasome subunit that is an obligatory member of all types of

assembled proteasomes [46].

In vivo gently cross-linked INS-1E cells proteasomes were immunoprecipitated and sam-

ples analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).

About 86% of the total proteasomes were found to be s-proteasomes with enzymatically active

rings composed of β1-β2-β5 subunits (Fig 2). However, almost 14% of the precipitated protea-

somes contained β5i replacing the standard β5 subunit, forming an intermediate proteasome

β1-β2-β5i. We found neither β1i nor β2i in protein complexes precipitated with α2 subunit.

Finally, our MS data indicated the presence of proteasomal regulatory particles 19S and 11S

(PA28αγ) within α2 proteasome complexes at the rate of 55.8% and 5.1%, respectively (Fig 2).

However, with our experimental approach we cannot assign proteasome types to the detected

specific regulatory particles. The remaining 39.1% of 20S corresponds to free (unactivated)

proteasome [21, 41].

The intermediate proteasome expression in pancreatic beta cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0222432 February 13, 2020 7 / 21

https://doi.org/10.1371/journal.pone.0222432


Fig 1. Constitutive expression of proteasome inducible subunits in islets and cell lines. (A-B) Single cell RNA

sequencing analysis of β1i, β2i and β5i gene expression in human pancreatic islet alpha, beta and delta cells from healthy

individuals (n = 6). The data is shown as means with SEM. (B) presents the percentage of cells with detectable levels of

inducible subunit mRNA. (C-D) SDS-PAGE and Western blot analysis of basal expression of proteasome inducible

subunits in immune cell lines A20 and Jurkat, in insulinoma beta cell line INS-1E, and human islets (H-islets) and

mouse islets (M-islets). Values on top of the Western blots show the amount of protein loaded. C and D are

representative blots of n = 3. (E) Quantification of relative expression levels of inducible proteasome subunits

normalized to tubulin (C) or actin (D) in tested cell lines/islets (n = 3, biological replicates). The data is shown as means

with SD.

https://doi.org/10.1371/journal.pone.0222432.g001

The intermediate proteasome expression in pancreatic beta cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0222432 February 13, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0222432.g001
https://doi.org/10.1371/journal.pone.0222432


The β5i-selective small-molecule inhibitor ONX-0914 reduces

chymotrypsin-like activity of the β cell proteasome

We next examined the profile of proteasome proteolytic activities: chymotrypsin-, trypsin-

and caspase-like. The proteolytic activities were tested in unstimulated live cells by addition of

specific substrates to the medium (Cell-Based Proteasome-Glo™ Assay). As shown in Fig 3A–

Fig 2. Identification of intermediate proteasomes in INS-1E cell line. Four x108 cells were cross-linked, lysed, their

proteasomes immunoprecipitated with mAb MCP21 and analyzed by LC-MS/MS. The absolute quantities of each of

the six catalytic subunits measured by the LC-MS/MS method were computed to calculate the stoichiometry of 20S

proteasome subtypes and the fractions of regulatory particles associated with the 20S core particle, as detailed in

Experimental Procedures. INS-1E cells were cultured at standard conditions and four biological replicates were

analyzed.

https://doi.org/10.1371/journal.pone.0222432.g002
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Fig 3. Total and proteolytic-specific enzymatic activities of proteasomes. (A) Proteasome activity in human (n = 3) and

mouse islets (n = 4), (B) beta cell lines: INS-1E (n = 6) and MIN6 (n = 3) and (C) immune cells: A20 and Jurkat (n = 3). All

presented data points are represent biological replicates. Proteolytic-specific activities exhibited by proteasomes subunits,

treated with β5i subunit specific inhibitor ONX-0914 (2 h, 50 nM) or non-specific proteasome inhibitor MG132 (2 h, 2 μM), in

(D) human islets (n = 3), (E) mouse islets (n = 4) and (F) INS-1E cells (n = 4). Proteasome activity was evaluated in cultured

cells/islets using Promega Proteasome Glo assay. The data is shown as luminescence per islet/cell. Statistical analysis was

performed by paired t-test of treatments versus control. The data is presented as means with SD.

https://doi.org/10.1371/journal.pone.0222432.g003
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3C intact human and mouse islets, INS-1E, MIN6 and Jurkat cells exhibited strikingly similar

profiles. Under basal conditions, chymotrypsin-like activity constituted 50–60% of total pro-

teasome activity, with the remaining 40–50% of activity almost equally divided between tryp-

sin- and caspase-like activities. In A20 cells, trypsin- and caspase-like activities constituted a

larger part of the proteasome activity than did chymotrypsin-like activity, despite the fact that

they expressed the highest amounts of β5i and β1i (both subunits have chymotrypsin-like

activities).

We next probed what portion of the observed proteasome chymotrypsin-like activity can

be attributed to the inducible subunit β5i. We took an advantage of a selective and potent β5i

subunit inhibitor, ONX-0914. Pretreatment of human and mouse islets and INS-1E cells with

50 nM ONX-0914 for 4 hours reduced chymotrypsin-like activity by 40%, indicating that β5i

is enzymatically active in those islets and cells (Fig 3D–3F). At the same time, trypsin- and cas-

pase-like activities were not affected by ONX-0914. As expected two μM of MG-132 treatment

(broad proteasome inhibitor) almost completely blocked all three types of enzymatic activities

in all tested cells and islets.

Low concentrations of IL-1β upregulate β1i, β2i and β5i subunit expression

in β cells

Previous work has shown that the β1i, β2i and β5i proteasome subunits are expressed in

response to IFN-γ/β in cells other than that of hematopoietic origin including β-cells [20, 21,

41] but their expression was not regulated by the high concentrations of IL-1β treatment [20].

Here we asked, if a similar to IFN-γ/β expression upregulation can be achieved by mimicking

low-grade inflammation with the application of a low stimulatory concentration of IL-1β [36].

Mouse islets exposed to 50 pg/ml of IL-1β for 10 days exhibited a significantly higher

mRNA expression of β5i (Psmb8), β2i (Psmb9) and β1i (Psmb10) compared to the untreated

islets (Table 3). The mRNA levels for β5 (Psmb5), β2 (Psmb6) and β1 (Psmb7) genes that

encode standard subunits remained unchanged after the same exposure.

Furthermore, exposure of human and mouse islets, as well as INS-1E cells, to low concen-

tration of IL-1β for 24 h (15 pg/ml for INS-1E, 30 pg/ml for human islets and 50 pg/ml for

mouse islets) induced expression of β1i, β2i and β5i (Fig 4A–4C) with the exception of β2i in

human islets. The high concentration of IL-1β (150 pg/ml for INS-1E and 300 pg/ml for

human/mouse islets) further induced β1i and β5i expression (but not β2i) in INS-1E cells, but

failed to induce upregulation in the subunit expression in human and mouse islets (Fig 4A and

4B). As expected, low IFN-γ treatment for 24 h induced expression of all inducible subunits

(Fig 4A–4C). Concentrations of IL-1β in the low range are known to increase insulin biosyn-

thesis [47, 48]. Interestingly, induction of inducible proteasome expression by low concentra-

tions of IL-1β or IFN-γ was associated with increased proinsulin expression levels in INS-1E

cells while high concentrations of IL-1β diminished proinsulin expression (S1A and S1BFig).

Furthermore, low concentration of IL-1β did not decrease the viability of mouse islets and

INS1-E cells over the 24 h exposure to the cytokine (S1C and S1D Fig).

Low concentrations of IL-1β increase proteasome activity in β cells

INS-1E cells exposed to either low concentrations of IL-1β or IFN-γ showed significant

increase in all three proteasome catalytic activities. Furthermore, high concentration of IL-1β
increased chymotrypsin-like and trypsin-like activity compared to controls, although the

increase was less significant than that observed for low concentration exposure (Fig 5A).

Mouse and human islets showed a similar pattern of increasing chymotrypsin-, trypsin- and

caspase-like activity, when exposed to low concentrations of IL-1β or IFN-γ (Fig 5B and 5C).
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A high concentration of IL-1β did not have a significant effect on any of the proteasome-based

catalytic activities in mouse and human islets.

Discussion

The present work shows that 1) inducible proteasome subunits are constitutively expressed in

human and rodent islets and a β-cell line, 2) β5i is incorporated into an active proteasome,

forming int-proteasomes and 3) inducible subunit expression is upregulated by low IL-1β con-

centrations. The cellular composition of proteasomes and their expressional regulation is of

particular interest, because different types of proteasomes degrade proteins and peptides with

different efficiency and specificity [49] influencing a variety of cellular processes including

antigen presentation and thereby maintenance of peripheral tolerance or induction of autoim-

munity [8, 13].

The presence of int-proteasomes as normal constituents in different tissues has been estab-

lished before as they have been reported to constitute up to 50% of the total proteasome pool,

depending on the tissue [16, 24], but a comprehensive investigation of proteasome composi-

tion in primary β cells or β cell models in non-stimulated conditions has not been performed.

Fig 4. Cytokines induce upregulation of inducible proteasome subunits in islets/cells. Human (A, n = 4) and mouse islets (B, n = 3)

and INS-1E cells (C, n = 4) were exposed for 24 h to IL-1β at low (50 pg/ml for mouse islets and 15 pg/ml for INS-1E) or high dose (300

pg/ml for human/mouse islets and 150 pg/ml for INS-1E) or IFN-γ (10 ng/ml). Islets/cells were lysed and protein content analyzed by

SDS-PAGE and Western blotting. Representative blots of four independent experiments (biological replicates) are shown (left) and

quantification of inducible subunit bands relative to the tubulin (A and C) or actin (B) is presented (right). Statistical analysis was

performed by paired t-tests of treatments versus control. Experiments done on individual islet donors (A and B) or biological cell

replicates (C) are connected by lines.

https://doi.org/10.1371/journal.pone.0222432.g004
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The Human Protein Atlas RNA-seq data indicated constitutive expression of the inducible β1i,

β2i and β5i subunits in human pancreas, with 10% of the RNA sequencing reads originating

from the islets of Langerhans and 75% coming from exocrine glandular cells [50]. Immuno-

staining of the islets for specific inducible subunits detected β5i protein by one of two

employed antibodies, while β1i and β2i proteins were not detected [50]. To clarify this issue,

we first investigated the expression of inducible proteasome subunits in unstimulated human

dispersed islet cells. Re-analysis of the previously published data set of single-cell RNA

sequencing [37] uncovered substantial subpopulations of α-, β- and δ-cells that constitutively

Fig 5. Basal and cytokine induced activity of proteasome subunits in (A) INS-1E, (B) mouse and (C) human islets (all n = 3). Cells

and islets were exposed to low IL-1β dose (30 pg/ml for human islets, 50 pg/ml for mouse islets and 15 pg/ml for INS-1E for 24

hours), high IL-1β dose (300 pg/ml for human islets, 300 pg/ml for mouse islets and150 pg/ml for INS-1E for 24 hours), INF-γ (10 ng/

ml for human islets, 10 ng/ml for mouse islets and INS-1E for 24 hours) or control media. Statistical analysis was performed by paired

t-tests of treatments versus control. Experiments done on individual islet donors (B and C) or biological cell replicates (A) are

connected by lines.

https://doi.org/10.1371/journal.pone.0222432.g005
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express all inducible subunits (Fig 1A and 1B) placing human islets on par with other tissues

that express those subunits constitutively [9, 16]. When testing β cell models, as well as human

and mouse islets, we found that all three inducible β-subunits were detectable at the protein

level without the need for cytokine stimulation (Fig 1C–1E), although the expression levels of

each subunit varied substantially between tested groups. β cells can therefore potentially

assemble i- and int-proteasomes containing one, two or three inducible subunits without

immune-stimulation. It is however important to stress that the number of β1i-positive β cells

is low in human islets (Fig 1B) thus substantially limiting the possibility to assemble i-protea-

some. This observation should be taken into account while investigating proteasome function

and composition in pancreatic β cells.

The similar profile of expression of inducible β subunits in β, α and δ cells indicates that

those subunits play parallel roles in degradation of the hormones abundantly handled by each

cell type ER: insulin, glucagon and somatostatin, respectively. The cellular localization of the i-

and int-proteasomes may also play a role in that process, as β5i and β1i subunits are found in

close proximity to the ER while the s-proteasomes are homogenously distributed in both

nucleus and cytoplasm [51].

Next, we used mass spectrometry to identify the proteasome subtypes in β cells. By immu-

noprecipitating the α2 subunit from INS-1E cell lysates, we purified active proteasomes.

Eighty-six % of total proteasomes contained standard β subunits forming s-proteasomes (Fig

2). The remaining 14% contained only β5i subunit, whereas β1i and β2i could not be detected.

Therefore, INS-1E cells constitutively express two types of proteasomes, the s-proteasome and

an int-proteasome, where at least one β- ring contains a β5i subunit. We neither detected i-

proteasomes nor int-proteasomes with incorporation of inducible subunits other than β5i,

despite their expression in unstimulated INS-1E cells. According to the rules of cooperative

assembly, β1i cannot be incorporated without β5i but the opposite is feasible [52] and thus it is

theoretically possible but biologically less plausible that β1i and β2i are expressed but do not

participate in the formation of a pool of active proteasomes. Alternatively, sensitivity of the

antibody used for the detection of β1i may be high relative to the sensitivity of the other anti-

bodies used for subunits detection, distorting the evaluation of the intracellular stoichiometry

of the inducible subunits. The MS data that failed to detect β1i and β2i incorporation into pro-

teasomes may thus be a more valid measure of the actual subunit stoichiometry in INS-1E

cells. Furthermore, according to the rules of proteasome assembly, the lack of incorporation of

β1i would prevent the incorporation of β2i subunit [52]. However, we cannot rule out that β1i

and β2i are incorporated but constitute the minor portion of active proteasomes, below the

detection limit of our MS method.

The enzymatically active proteasomes are generally capped on one or both ends of the cen-

tral 20S proteasomal core by regulatory particles 19S or 11S, but the method employed in our

study does not distinguish which type of proteasome is associated with a given regulatory par-

ticle. We have found that 56% of proteasomes in INS-1E cells contained the 19S particle

known to associate with all types of proteasomes [21, 46, 53, 54], while 5.1% proteasomes con-

tained 11S that preferentially associates with int- and i-proteasomes [12, 21, 46, 55]. This

would indicate that about one third of all INS-1E int-proteasomes are bound to 11S particles

while the other two third is associated with 19S particle, (hybrid int-proteasome) or not associ-

ated with any regulatory particle and thus presumably not active. Regulatory particles dictate

substrate availability and specificity with 19S recognizing client proteins marked by polyubi-

quitin chains and 11S being involved in the degradation of short and non-ubiquitinated pep-

tides and antigen processing for MHC I presentation [56]. As a result, their presence within

assembled and active proteasomes demonstrates that unstimulated β cells contain specialized

and mixed populations of proteasomes, possibly reflecting functional specificity.
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When profiles of proteasome substrate-specific activities were analyzed, we found that the

islets and cell lines (with the exception of A20) all showed similar proteolytic profiles. Chymo-

trypsin-like activity constituted between 50 and 60% of the total proteasome activity, while

trypsin- and caspase-like activities were responsible for the remaining 40–50% (Fig 3A–3C).

Immune cell lines have generally been reported to express a higher basal level of inducible sub-

units, and the i-proteasome constitutes a dominant form of their proteasomes [8]. The fact

that INS-1E cells and islets share a similar proteasomal catalytic activity profile indicates that

inducible subunits codetermine the activity profiles not only in immune cells.

Off note, we have observed clear differences in the proteasomal catalytic activities in two

tested immune cells models, Jurkat and A20. The latter cell profile indicates persistent if not

dominant incorporation of β1 subunit (with caspase-like activity) but not β1i (chymotrypsin-

like activity) and diminished activity of β5 and/or β5i subunits (chymotrypsin-like activity)

that are obligatory part of active proteasomes [56]. The reasons for observed differences are

not known but may indicate cancer-cell-specific adjustments, human (Jurkat) vs mouse (A20)

divergence or reflect more physiologically important differences between T (Jurkat) and B

(A20) cells. Finally, it is plausible that proteasome activity in A20 cells is additionally modified

by e.g. post-translational modifications or altered transcription of proteasomal activators, as

reviewed in [57].

We next pretreated islets and cells with a β5i selective small-molecule inhibitor, ONX-0194,

and found a 30 to 50% reduction in chymotrypsin-like activity, further indicating that the β5i

subunit is proteolytically active in β cells (Fig 3D–3F).

Interpretation of the pathophysiological consequences of the proteasomes diversity in β
cells requires better understanding of factors influencing its expression and composition. The

human genes coding for β5i and β1i map to chromosome 6 precisely between the DNA

sequences coding for human leucocyte antigen (HLA)-DQ, HLA-DM and Transporter 1 ATP

Binding Cassette Subfamily B Member (TAP) 1 and 2 (S2 Fig), genes known to be major deter-

minants of antigen presentation and predisposing to autoimmune diseases, including type 1

diabetes [58]. The promoter region of β5i contains binding sites for the NFκB transcription

factor (S2 Fig), but high concentrations of IL-1β, a strong inducer of NFκB [59], do not

increase β5i expression [20]. Accordingly, studies in neurons have shown that high concentra-

tion of IL-1β induces Early growth response 1 protein (Egr1) that strongly inhibits transcrip-

tional activity at the β5i promoter [60]. At the same time, Freudenburg et al. speculated that

since viral infections induce IL-1β synthesis, iNOS expression and nitric oxide production

impeding on mitochondrial function, the resulting reduction in ATP levels would trigger i-

proteasome activation and generation of altered peptides that may be immunogenic and

enable killing of infected target cells as an appropriate host antiviral response [18]. How can

these apparently disparate IL-1β functions be reconciled? We suggest that cytokine concentra-

tion and/or duration of exposure are a key determinants of cell fate. It has been reported that

low IL-1β concentrations (0.01–0.1 ng/ml) are stimulating and protective for β cells e.g. they

improve insulin biosynthesis and secretion and increase β cell proliferation, while higher con-

centrations (5–20 ng/ml) can induce cell apoptosis and necrosis through e.g. induction of

endoplasmic reticulum and mitochondrial stress [47, 48]. These two outcomes employ differ-

ent cellular pathways, the stimulatory pathway depending on PKC and phospholipases and the

toxic pathway on NFκB signaling. We therefore used 10–100 fold lower IL-1β concentrations

in our experiments compared to previous publications [20] as well as, in case of mouse islet

used for bulk sequencing (Table 3), we extended the islet exposure to IL-1β up to 10 days in

order to better mimic long-term low-grade inflammation. Indeed, we found that treatment of

human and mouse islets and INS-1E cells with low concentrations of IL-1β increased the

mRNA (Table 3) and protein expression of all inducible proteasome β subunits (except of β2i
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in human islets, Fig 4), while it had no impact on mRNA levels of standard subunits (Table 3)

and increased all substrate-specific proteolytic activities in human and mouse islets and INS-

1E cells (Fig 5). Off note, 10 day mouse islets exposure to low concentrations of IL-1β did

diminished their glucose induced insulin secretion but did not reduced islets insulin content

nor induced endoplasmic reticulum stress or cell death as reported in Ibarra et al. Mol Cell

Endocrinol. 2019.

Our results indicate that cytokine concentration is critical when evaluating the regulatory

role of cytokines in proteasome expression and activity.

Proteasomes process proteins of both endogenous and exogenous origin and produce pep-

tides that are complexed with MHC I. The shift in composition of proteasomes towards i-pro-

teasomes, changes the peptide repertoire from non-immunogenic to immunogenic [18, 61]

and can contribute to the progression towards autoimmune diabetes [18, 20, 62, 63]. Impor-

tantly, the observed differences in cytokine action may reflect changing conditions in the islet

microenvironment during inflammatory or metabolic stress. IL-1β is a central promoter of

low-grade inflammation and protection against certain viral infections, including influenza

[64]. One of the possible host protective mechanisms engaged by this cytokine could involve

expression and assembly of int- and i-proteasomes that would result in an increased presenta-

tion of viral antigens and/or modified self-antigens, thereby enabling T effector-cell dependent

eradication of infected cells. Similarly, low grade inflammation and local IL-1β production in

the islet microenvironment, could facilitate neoepitope presentation by β cells through prefer-

ential incorporation of inducible subunits to form int- or i-proteasomes. Interestingly, cells

deficient in β5i show lower MHC I expression and peptide presentation, and β5i pharmacolog-

ical inhibition slows disease progression in mouse models of inflammatory diseases such as

arthritis and lupus [35, 65]. Furthermore, β5i has also been implicated in type 1 diabetes, and

its inhibition has been shown to have a protective effect [35]. This could reflect the fact that the

MHC I peptides repertoire is at least in part dependent upon the activity of β5i subunit in β
cells expressing int- or i-proteasomes.

The role of immune- and, especially, intermediate proteasomes in β cell pathophysiology

remains to be uncovered in detail. The perspective that differential proteasome subunit expression

dictates the repertoire of β-cell neoepitopes presented by MHC I deserves future investigation.

Discoveries in this field could lead to targeted proteasome inhibition as treatment options in dis-

eases with an autoimmune component. In this study, we lay the groundwork for such future

investigations. For the first time, we show that int-proteasomes are constitutively expressed and

active in β cells and that inducible proteasome subunits can be upregulated in β cells in response

to stimulatory low concentrations of IL-1β along with increases in total proteasome activities.

Supporting information

S1 Fig. Cytokine induced increase in proinsulin levels in INS-1E cells. Lysates of cells

exposed to IL-1β at low (15 pg/ml) and high concentration (150 pg/ml), IFN-γ (10ng/ml) and

control medium, were run on SDS-PAGE and subjected to Western blotting in A) and proin-

sulin band intensity normalized to tubulin in B). C) and D) Mouse islets and INS1-E cell via-

bility was tested. Staining reagent (AlamarBlue) was added to the cell culture for 4 h, incubated

at 37oC, and the resulting fluorescence was read on a plate reader. Statistical analysis was per-

formed by paired t-tests of treatments versus control. The data is shown as means with SD.

(TIF)

S2 Fig. Genetic localization of β5i and β1i genes. Genes for β5i (PSMB8) and β1i (PSMB9)

reside in the MHC-II region on human chromosome 6. Presented transcription factors were

included in UCSC genome browser genome GRCh37 and visualized with integrated regulation
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from ENCODE-track option. For clarity and in relevance to the current publication, only

some transcription factors are presented.

(TIF)
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