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ABSTRACT

Context More than 400 000 workers annually receive
a measurable radiation dose and may be at increased
risk of radiation-induced leukaemia. It is unclear whether
leukaemia risk is elevated with protracted, low-dose
exposure.

Objective \We conducted a meta-analysis examining the
relationship between protracted low-dose ionising
radiation exposure and leukaemia.

Data sources Reviews by the National Academies and
United Nations provided a summary of informative
studies published before 2005. PubMed and Embase
databases were searched for additional occupational and
environmental studies published between 2005 and
2009.

Study selection We selected 23 studies that: (1)
examined the association between protracted exposures
to ionising radiation and leukaemia excluding chronic
lymphocytic subtype; (2) were a cohort or nested
case—control design without major bias; (3) reported
quantitative estimates of exposure; and (4) conducted
exposure—response analyses using relative or excess RR
per unit exposure.

Methods Studies were further screened to reduce
information overlap. Random effects models were
developed to summarise between-study variance and
obtain an aggregate estimate of the excess RR at

100 mGy. Publication bias was assessed by trim and fill
and Rosenthal’s file drawer methods.

Results \We found an ERR at 100 mGy of 0.19 (95% Cl
0.07 to 0.32) by modelling results from 10 studies and
adjusting for publication bias. Between-study variance
was not evident (p=0.99).

Conclusions Protracted exposure to low-dose gamma
radiation is significantly associated with leukaemia. Our
estimate agreed well with the leukaemia risk observed
among exposed adults in the Life Span Study (LSS) of
atomic bomb survivors, providing increased confidence in
the current understanding of leukaemia risk from ionising
radiation. However, unlike the estimates obtained from
the LSS, our model provides a precise, quantitative
summary of the direct estimates of excess risk from
studies of protracted radiation exposures.

INTRODUCTION

Each year, approximately 4 million US patients are
exposed to low-dose ionising radiation through
medical ~ diagnostic  procedures.!  Moreover,
according to estimates by the United Nations
Scientific Committee on the Effects of Atomic
Radiation (UNSCEAR), over 11 million workers
worldwide are exposed to ionising radiation each
year” Epidemiological evidence unequivocally
establishes ionising radiation as a human carcin-
ogen® % thus, safeguards have been established to
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What this paper adds

» Each year millions of people incur low doses of
protracted ionising radiation as a condition of
either employment or medical treatment.

» It is unclear whether cancer risks estimated in
this population reflect actual risks given that
current models are based principally on the
acutely exposed cohort of Japanese atomic
bomb survivors.

» A meta-analysis was conducted to synthesise
existing information in 23 studies of leukaemia
risk from protracted ionising radiation exposure.

» Although information on leukaemia risks varied,
a synthesis of this information revealed a signif-
icant association between leukaemia (excluding
CLL) and protracted exposure to low-dose
ionising radiation.

» Occupational and environmental studies of low-
dose ionising radiation exposure may individu-
ally lack the precision necessary for risk
estimation; however, information from meta-
analysis of these studies may be useful in
elucidating risks and ultimately play an impor-
tant role in the development of future protection
standards.

mitigate cancer risks in exposed populations. For
over 50 years, risk models forming the basis of
radiation protection standards have been based
almost exclusively on the Life Span Study (LSS)
cohort of Japanese atomic bomb survivors. It is
unclear whether cancer risks estimated from this
population reflect actual risks in populations
exposed to low-dose, protracted ionising radiation.

Leukaemia, excluding the chronic lymphocytic
subtype (CLL), is considered to be among the
cancers most susceptible to induction by ionising
radiation exposures; thus, leukaemia risk in envi-
ronmentally and occupationally exposed popula-
tions has been studied extensively. Therefore, our
goal was to synthesise available information from
observational studies of these populations to obtain
an aggregate estimate of the excess RR for persons
receiving a whole-body absorbed dose of 100 mGy.

Aggregate risks are typically estimated using
pooled or meta-analytical approaches. In the former
case, individual-level data are combined across
studies to estimate the effect size. In the latter, risk
estimates from individual studies are compared and
then combined into an aggregate estimate. While
both methods can provide an efficient summary
estimate, it is difficult to control for differences in
data quality across subpopulations in pooled
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studies. Moreover, obtaining raw data from multiple studies,
each with its own set of data protection requirements, can be
daunting. Thus, we conducted a meta-analysis of leukaemia risk
from ionising radiation using published data.

The study population was restricted to adults exposed to low-
dose ionising radiation in occupational and environmental
settings. Studies of medical therapy patients and childhood
leukaemias in populations near nuclear facilities were excluded.
We also limited our synthesis to populations exposed primarily
to low linear energy transfer (LET) radiations, and thus studies
of radon-exposed populations, uranium miners and millers, and
aircraft crews were excluded.

METHODS

Search

A review by the National Academies provided a comprehensive
summary of informative studies published prior to 2005.5 We
also reviewed the latest report by UNSCEAR for relevant
publications.” To add to existing information, two researchers
independently and systematically searched the PubMed and
Excerpta Medica (Embase) databases for additional studies
published between January 2005 and March 2010. The search
was completed using an English language restriction. The key
terms “lonising radiation”, “epidemiology”, “dose reconstruc-
tion”, “leukemia” and “leukaemia” were used in the initial
searches, which were later refined using additional terms such as

n o«

“cancer incidence”; “cancer mortality”, “Mayak”; “Techa River”,
“Chernobyl”, “Chornobyl”, “liquidators”, “radiological technolo-
gist”, “nuclear industry”, “occupational radiation” and “x-ray”.
Abstracts were reviewed to determine the applicability of arti-
cles under consideration. After consolidating the results of both
searches, the published articles were independently evaluated for
inclusion by each researcher. Citations within informative arti-

cles were then used to identify other informational sources.

Study selection

Criteria for identifying informative studies were adopted, with
modification, from methods used by the National Research
Council. For a study to be included in our analyses, it must: (1)
examine the association between protracted human exposures
to ionising radiation and leukaemia excluding CLL; (2) be
a cohort or nested case—control design without major identifi-
able bias (eg, significant exposure misclassification or
confounding by concomitant leukaemogen exposures); (3) use
individualised quantitative estimates of absorbed dose, or dose
equivalent, to the whole body or organ of interest (ie, active
bone marrow); and (4) report exposure—response analyses in
terms of excess RR per unit dose (D) whereby RR=1+ERR(D),
or RR at a given exposure level using within-cohort comparison.
The exposure term must be quantified in units of absorbed dose
in gray (Gy), or derived protection quantities in sievert (Sv).®?
We selected the effect size associated with low-LET external
radiation exposures, if reported separately. In other cases, the
differences between absorbed dose and the protection quantities
were considered minimal due to the relatively high contribution
of low-LET penetrating radiation to the total dose compared to
other sources of radiation exposure.

Many radiation-exposed populations have been studied
repeatedly and in pooled settings; therefore, we found numerous
instances of overlapping information. Publications were thor-
oughly examined for redundancy. Overlapping studies were then
vetted based on design, study coverage and relevancy. Studies
with recent follow-up and dosimetry were preferred. When
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follow-up periods were relatively equal, cohort studies were
preferred over case—control designs unless the case—control
study offered marked improvement in dose reconstruction and
control for confounding.

Statistical methods

Statistical analysis were conducted using the Mixed Procedure
in SAS V. 9.2'° and the Metafor Package in R.'! Effect size
and precision estimates were abstracted from each study
and used in hierarchical random effects models'? to obtain
a pooled estimate, 0, of the true effect size, f, from k studies,
where:

. N
~ ‘ 0,
0 = Z’Ziw with !

W =
Zf:l Wi 1

T+ 0

Pooling was accomplished using a weighted average of indi-
vidual study effect size estimates, 0, with weights, w;, defined
by the reciprocal of the sum of the between-study variance, 72,
and within-study variance, 07. As 75— 0, the model reduces to
a fixed effects model, thus 7 is a measure of heterogeneity
among studies. We also assessed heterogeneity by Cochran’s Q
test."> We pooled effect sizes at 100 mGy because log-linear and
linear models were expected to be similar at low doses. It is
a common practice to pool effect size estimates from observa-
tional studies (eg, OR, RR) in log-space."* We calculated the
standard error of the estimate, 0;, as the quotient of the log-
transformed RR confidence interval width divided by twice the
corresponding critical value of the standard normal distribution
[22(1_q/2)]. Log-scale symmetry was assumed when a lower
confidence bound was not estimable. Most studies reported
profile likelihood-based confidence intervals rather than Wald-
type,'” thus our approximated standard errors were compared to
available standard error values obtained from study authors.
Wald-type confidence intervals were calculated for 0 in all
models.

Both pooled and ‘stand-alone’ studies were available for meta-
analysis. Given expected difficulties in minimising information
overlap with varying combinations of studies, two general
combination schemes were used, whereby model I preferred
stand-alone studies while model II included pooled analyses.
Sensitivity analyses employed the quantity DFFITS, defined as
the difference between the effect size of the full model and the
effect size from the fitted model with the ith study removed,
divided by the standard error of the reduced model. Leave-one-
out sensitivity analyses were used to judge single study influ-
ence in both models whereby the DFFITS statistic for each
study was compared to a cut-off value (maxDFFITS).!! The cut-
off values were defined as =2vk=1. Models excluding influential
studies were identified as models Ib and IIb. Additional sensi-
tivity analyses were conducted to further examine study influ-
ence (Ic and Ilc) and the differences between mortality and
incidence studies (Id and IId) and environmental and occupa-
tional studies (le and Ile). We also examined the effect of
including studies that report results from log-linear models
(If and IIf).

Publication bias was assessed by funnel plot using Egger’s
regression'® and trim and fill methods.'” Rosenthal’s file
drawer’ method was used to estimate the fail-safe N, which is
the number of potentially unpublished null studies required for
the overall effect to be non-significant at the 95% level (one-
tailed).'® We considered publication bias to be extremely
unlikely when fail-safe N>5k+10. Effect sizes were adjusted to
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account for publication bias using trim and fill methods by
including the ‘missing’ studies in subsequent random effects
models.

RESULTS

Literature review

The BEIR VII Report provided 16 occupational studies that were
potentially informative for our analysis.® We examined another
55 studies published before 31 March 2010 (online figure 1). Of
the combined total (n=71), 33 studies did not meet our inclusion
criteria and 15 were superseded by other published information.
The remaining 23 studies, hereafter referred to as ‘primary’,
were found suitable for meta-analysis (table 1).

The primary studies were published between 1993 and 2009
and provided risk estimates for populations in occupational
(n=20) and environmental settings (n=3). Of the environmental
exposure studies, one examined the effects of exposures to
elevated natural background radiation. The two remaining
studies examined exposures from man-made sources. Occupa-
tional studies included cohorts from nuclear weapons facilities
(n=>6), the commercial power industry (n=6), clean-up and
restoration activities (n=2), nuclear shipyards (n=2), or
a combination of industry sectors (n=4).

Exposure distributions were highly skewed; the average
cumulative exposure ranged from 5.6 to 810 mGy. Exposure
information was obtained from personal monitoring data in
most occupational settings, although monitoring may have been
incomplete or highly uncertain in some studies.”? 2° Personal
monitoring data were not available for environmental
studies; thus, doses were estimated using complex dosimetry
systems.'? 21 28

Most studies evaluated leukaemia mortality risk; however,
five studies (study nos. 1, 4, 8, 10 and 21) reported leukaemia
incidence. Twenty studies reported risk estimates from linear
ERR models. The remaining three studies (nos. 1, 6 and 20)
estimated the leukaemia RR at 100 mGy exposure in which the
radiation effect was modelled as log-linear in dose. There were
19 retrospective cohort studies and four nested case—control
designs. All selected study endpoints excluded contributions
from CLL.

Assessment of overlap and combining studies

Of the 23 primary studies, 18 (IDs 1-5b, 6, 8—13, 15—20) were
included in model I, and model II comprised 11 studies (IDs
1-5a, 6, 7b, 8, 10, 13, 18). Several studies were not completely
independent; however, we were able to use combinations of
study information in all models that did not overlap. Studies of
particular importance and the steps taken to prevent duplicate
information are discussed herein. Study no. 5 examined
leukaemia mortality among nuclear workers from four US
weapons facilities and a naval shipyard.?® Study no. 7 reports
mortality in a cohort of approximately 400 000 nuclear workers
from 15 different countries.’® Forty-seven leukaemia deaths
among participants in study no. 5 were also included in study
no. 7. Model II, combining both studies, was restricted to the
full cohort of study no. 5 (ID 5a) and a subset of study no. 7 (ID
7b) that excluded US workers. Likewise, a subset of study no. 5
(ID 5b) was used to eliminate overlapping information on US
weapons workers reported by study no. 11.

Many subpopulations included in study no. 7 were also
individually examined in separate publications.?” 3 39 37 38 1
defining model I, we used stand-alone studies in preference to
available subpopulation information published in study no. 7.
Three studies (IDs 14, 16, 21) examined leukaemia risks among
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Canadian nuclear workers.®?> 3 3 These studies differed in
cohort definition and outcomes measured, but study no. 16 best
satisfied model I inclusion criteria.

Modelling results

The main statistical analyses are summarised in tables 2 and 3.
Forest plots of both full models are shown in figure 1. The model
I ERR at 100 mGy was significantly different from null (0.17;
95% CI 0.09 to 0.26) as was that for model II (ERR at 100
mGy=0.16; 95% CI 0.07 to 0.26). Leave-one-out sensitivity
analyses found one potential influential study (study no. 2).
Excluding this study resulted in a modest increase (<25%) in the
effect size for both models, resulting in ERR estimates of 0.21
(95% CI0.11 t0 0.33) and 0.21 (95% CI 0.09 to 0.35) for model Ib
and model IIb, respectively. Subsequent removal of the next
closest influential study (no. 1) resulted in ERR estimates of 0.25
(95% CI 0.08 to 0.46) and 0.34 (95% CI 0.04 to 0.72) for models
Ic and Ilc, respectively. Further excluding incidence studies
resulted in ERR estimates of 0.25 (95% CI 0.07 to 0.46) and 0.35
(95% CI 0.02 to 0.79) for models Id and IId, respectively.
Removing influential studies and restricting models to occupa-
tional studies provided similar results (model Ie: ERR at 100
mGy=0.24 (95% CI 0.06 to 0.44), model Ile: ERR at 100
mGy=0.30 (95% CI —0.01 to 0.70)). Removing influential
studies and excluding log linear models resulted in ERR esti-
mates of 0.24 (95% CI 0.06 to 0.45) and 0.34 (95% CI 0.01 to
0.77) for models If and IIf, respectively. There was little evidence
of study heterogeneity as evidenced by the lack of between-
study variance and Cochran’s Q test probabilities near unity for
all models (p value range: 0.73 for model Id to 0.98 for model
1Ib).

Publication bias

There was suggestion of publication bias in all models tested, as
evidenced by consistent non-zero regression intercepts and fail-
safe N values less than tolerance (table 2). Likewise, funnel plots
indicated asymmetry among published studies (figure 2, filled
circles). These plots also show the number and magnitude of
missing studies that are necessary for symmetry. Trim and fill
methods suggested that negative studies were missing from all
variations of model I and models II and IIb (table 3). These
methods suggested a slight adjustment in the opposite direction
for model IId. Nevertheless, including missing studies in any
model did not markedly affect estimates. Moreover, the fail-safe
N was very large relative to the number of missing studies as
well as the total number of studies in each modelling
scenario. Therefore, there was little evidence of substantial
publication bias.

DISCUSSION

Ionising radiation is a known and extensively studied human
carcinogen. However, its effects at doses encountered in occu-
pational and diagnostic medical settings remain a matter of
much debate.*® * In part, the disagreement stems from the
difficulties in quantifying small risks using observational data. It
is impractical in most settings to conduct a single epidemio-
logical study that is sufficiently large to directly obtain precise
estimates of risks at low doses.”” Furthermore, although the RR
may be statistically significant, the absolute risk in the low-dose
range is small and may be influenced by a host of external
factors. Nevertheless, systematically combining the available
information can reduce the effects of random error and provide
a precise aggregate estimate.
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Table 2 Meta-analysis results using random effects models

Model*
| Ib ] lib
Main analyses n 18 17 1" 10
Study IDs 1-5b, 6, 8—13, 1, 3—5b, 6, 8—13, 1-5a, 6, 7b, 8, 1, 3—5a, 6, 7b, 8,
15—20 15—20 10, 13, 18 10, 13, 18

Heterogeneity
(between study variance)

Influential study analyses

Publication bias
Egger’s regression
Trim and fill

File drawer

ERR estimate (95% Cl)
Residual: Tg (95% CI)
Cochran’s Q, df (p value)
mDFFITS

N>maxDFFITS (ID, DFFITS)

Next likely outlier ID (DFFITS,
maxDFFITS %)

Intercept=0 (p value)

Adjusted ERR (95% CI)
Studies added

Fail-safe
Tolerance

0.17 (0.09 to 0.26)
0 (<0 to 0.04)
10.67, 17 (0.87)
+0.47

1(2, —0.80)
1(0.25, 54%)

0.11 (0.031)
0.15 (0.07 to 0.23)
5

88
100

0.21 (0.11 to 0.33)
0 (<0 to 0.05)
8.96, 16 (0.91)
+0.49

0

1 (—0.43, 89%)

0.14 (0.026)

0.18 (0.08 to 0.29)
5

70
95

0.16 (0.07 to 0.26)
0 (<0 to 0.004)
3.92, 10 (0.95)
+0.60

1(2, —0.83)
1(0.38, 63%)

0.12 (0.019)
0.15 (0.06 to 0.24)
4

28
65

0.21 (0.09 to 0.35)
0 (not estimable)
2.36, 9 (0.98)
+0.63

1(1, —0.76)
3(0.12, 19%)

0.15 (0.032)

0.19 (0.07 to 0.32)
3

18
60

*Model | prefers single studies to pooled studies, while model Il prefers pooled studies to single reports. Model ‘b’ results exclude the outlying study (study no. 2).

We used a simple statistical approach to pool available infor-
mation on the dose—response relationship between leukaemia
and ionising radiation in a manner that is both quantitative and
reproducible. Our estimates of the ERR at 100 mGy ranged from
0.15 (95% CI 0.07 to 0.23) for full model I adjusted for publi-
cation bias to 0.37 (95% CI 0.03 to 0.81) for model IId restricted
to non-influential mortality studies also with bias adjustment.
These estimates were in reasonable agreement with the
leukaemia risk observed among males exposed as adults in the
LSS cohort (ERR at 100 mGy=0.15; 95% CI —0.11 to 0.53) using
the linear term in a linear-quadratic dose—response model.*®
Unlike the LSS which reports risks from acute exposure to
a wide range of doses, our models provided a precise and quan-
titative summary of the direct estimates of excess risk from
studies of protracted occupational and environmental radiation
exposures.

A possible explanation for the overall lack of between-study
variance is that most studies were occupationally based and
examined workers with similar jobs and eras of employment.
Measurement data from personal dosimetry systems are often
available for study participants from nuclear industries, leading
to reduced uncertainties in exposures and avoidance of exposure

Table 3 Results of planned sensitivity analyses

misclassification that may bias results. Finally, leukaemia is an
endpoint that has been shown to be relatively resistant to
confounding or effect modification by exposures to other
leukaemogens in epidemiological studies, as it has few known
risk factors.?® 42

Sensitivity analyses revealed that study no. 2 particularly
influenced the aggregate estimate because of its small standard
error compared to other studies in the analysis. Study no. 2
evaluated the leukaemia mortality risks associated with
protracted exposures in Russian nuclear workers (n=21557)
employed at the Mayak complex between 1948 and 1972. The
large study size and wide dose distribution increased the preci-
sion of risk estimates. The average cumulative external dose
among the Mayak workers (810 mGy) was about 20-fold higher
than most other studies under observation. Recent improve-
ments in Mayak exposure estimates’’ show a shift in the
external dose distribution away from the higher exposures found
in earlier studies,*® suggesting confirmation of exposure
misclassification that would bias risk estimates toward the null.
Other studies have made similar observations resulting in addi-
tional explanations for risk attenuation with moderate to high
exposures: a healthy worker survivor effect, a depletion of the

Model results from combining k studies

Unadjusted Adjusted*
Model Description Study IDs k ERR estimate (95% Cl) k ERR estimate (95% Cl)
| Full Prefers ‘stand alone’ to pooled studies 1—5b, 6, 8—13, 15—20 18 0.17 (0.09 to 0.26) 23 0.15 (0.07 to 0.23)

b Full excluding outlying study ID 2 1, 3—5b, 6, 8—13, 15—20 17 0.21 (0.11 to 0.33) 22 0.18 (0.08 to 0.29)
c Model ‘b’ excluding outlying study ID 1 3—5b, 6, 8—13, 15—20 16 0.25 (0.08 to 0.46) 20 0.18 (0.02 to 0.36)
d Model ‘c’ limited to mortality studies 3, bb, 6, 9, 11—13, 15—20 13 0.25 (0.07 to 0.46) 16 0.18 (0.01 to 0.37)
e Model ‘c’ limited to occupational studies 4, 5b, 6,8, 9, 11—13, 15—20 14 0.24 (0.06 to 0.44) 18 0.16 (0.00 to 0.35)
f Model ‘c’ limited to results from linear 3—5b, 8—13, 15—19 14 0.24 (0.06 to 0.45) 18 0.15 (—0.01 to 0.33)
modelling

Il Full Prefers pooled to ‘stand alone’ studies 1—5a, 6, 7b, 8, 10, 13, 18 1" 0.16 (0.07 to 0.26) 15 0.15 (0.06 to 0.24)
b Full excluding study ID 2 1, 3—5a, 6, 7h, 8, 10, 13, 18 10 0.21 (0.09 to 0.35) 13 0.19 (0.07 to 0.32)
c Model ‘b" excluding study ID 1 3—5a, 6, 7b, 8, 10, 13, 18 9 0.34 (0.04 to 0.72) 9 NA
d Model ‘c’ limited to mortality studies 3, 5a, 6, 7b, 13, 18 6 0.35 (0.02 to 0.79) 7 0.37 (0.03 to 0.81)
e Model ‘c’ limited to occupational studies 4, 5a, 6, 7b, 8, 13, 18 7 0.30 (—0.01 to 0.70) 7 NA
f Model ‘c’ limited to results from linear 3—ba, 7b, 8, 13, 18 8 0.34 (0.01 to 0.77) 8 NA

modelling

*Results adjusted for publication bias by trim and fill methods. The number of studies combined, k, represents the sum of the actual studies and the ‘pseudo’ studies required for the bias

adjustment.
NA, not applicable.
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Figure 1 Forest plots of model | (top) and model Il (bottom) random

effects models estimating RR at 100 mGy. Dotted line references no
effect (ie, RR=1). The effect point sizes (M) are drawn proportional to
the inverse of the sampling variances. Lower bound of confidence
intervals may differ from published values because of assumptions on
standard errors.

number of susceptible people in the population at high exposure
levels, confounding by other risk factors that vary across levels
of the main exposure, and saturation in the exposure—response
relationship for biological processes involved in disease devel-
opment.?® 4?7 Regardless of the cause, risk attenuation at high
doses may explain the reduction in the slope of the linear dose
response observed in the Mayak cohort compared to cohorts
with lower average cumulative exposures.

The next likely influential study was study no. 1. Hwang
et al*® examined leukaemia incidence in a cohort of Taiwanese
residents (n=6242) exposed between 1983 and 1992 from®
Co-contaminated reinforcing steel used to construct their

dwellings."” Only six incident leukaemias occurred in a cohort
whose average excess cumulative exposure was less than 50
mGy (range: <1-2363). The precision of this study is remark-
able given its size; studies of similar size and exposure charac-
teristics were much less precise. This population-based study
differs from most occupational studies in that the cohort is
relatively young (mean age at first exposure was
16.9+16.5 years) and individual exposures were estimated
without the availability of personal dosimetry measurements.
However, these differences are unlikely to fully explain the
observed disparity in study precision. The overall effect of
choosing whether to exclude one or both outlying studies was
small, suggesting that aggregate results are robust.

LIMITATIONS

Meta-analyses of cancer risk among low-dose radiation studies
must consider sources and magnitude of bias within each
contributing study. Each study possesses limitations in methods
and available data that may contribute to bias. The major sources
of bias for leukaemia risk in low-dose observational studies are (1)
dose error and uncertainty and (2) exposure to other leukaemogens
that is differentially distributed with respect to ionising radiation.
With regard to the former, most studies of nuclear workers involve
individual badge dosimetry, the magnitude of which has been
quantified in recent studies.”® These errors have generally been
found to be small ‘classical’ errors which would be more likely to
cause bias toward the null.>* Environmental studies, by contrast,
frequently involve exposures that are Berksonian in error and can
have uncertain effects on risk estimates.”® Regarding the latter
source, exposures to benzene, 1,3-butadiene, carbon tetrachloride,
ethylene oxide, formaldehyde, and trichloroethylene are known
(ie, benzene) or suspected to be linked to leukaemia.”® ° Of these
chemicals, benzene is the only known leukaemogen likely to be
associated with radiation exposures, and then only among worker-
based studies. A previous pooled study found that inclusion of
benzene slightly reduced radiation—leukaemia risk estimates.??
The risk estimate for this study (within this meta-analysis) is
benzene-adjusted. Other worker-based studies, particularly those
based on more recent employment, have found little evidence of
potential benzene exposures, as this substance was never used or
has been phased out of many workplaces.?” ** Unlike solid cancers,
leukaemia is advantageous for meta-analysis because it is not
strongly associated with lifestyle factors, although there is some
evidence of a moderate association (RR=1.4—2.0) between
smoking and some leukaemias.”’ "’ Given the small magnitude of
the observed association, occupational radiation exposure and
smoking would need to be highly correlated to account for even

Figure 2 Funnel plots for model | Panel A Panel B
(panel A) aqd model Il (panel B) showing o | o |
the effect size versus standard error = e
(log scale). Plot also shows the results’
trim and fill analyses, that is, the actual < | ; < |
studies (filled circles), the missing 5 ° / s 5 °
studies (open circles) and the 95% Cl i o e o i ole
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a modest effect on the dose—response trend for leukaemia.®

Nonetheless, the effects of smoking and concomitant leukaem-
ogen exposures are largely unaccounted for in most studies, which
is a limitation in our meta-analysis.””

Studies suitable for inclusion were limited to populations
primarily exposed to low-LET radiations; however, concomitant
exposures to neutrons and internally deposited alpha-emitters
were likely in many situations. Some studies included high-LET
exposures so that the effects due solely to low-LET exposures
could not be examined.?” ? Thus, there is a potential for bias
from limitations in adjusting for dose heterogeneity. However,
recent studies of the relationship between low-LET irradiation
and leukaemia have shown little effect from adjusting for
plutonium exposures 2° ?* and have also shown exposures to
neutrons and alpha-emitting radionuclides are typically small
relative to low-LET exposures.?3 24 27 29 32734 37 38 42 Therefore,
a substantial bias from dose heterogeneity in selected studies is
unlikely.

Three primary studies (13%) reported results from log-linear
dose—response modelling.'” ?* ® We assumed that risk estimates
from log-linear and linear models using these data would be
similar at low doses (ie, <100 mGy) because dose ranges did not
appear great. However, the uncertainty between these models
may substantially differ. Our sensitivity analyses revealed little
evidence that the log-linear model results had a strong effect on
the aggregate estimates as shown by models If and IIf. Thus, our
estimates of ERR at 100 mGy as a risk per 100 mGy may be
reasonable at exposures below this level, but caution should be
used when extrapolating above this level.

Obtaining sufficient information to estimate study precision
was problematic. It was common for studies to report uncer-
tainty using confidence intervals calculated from profile likeli-
hood methods, and the distribution of the likelihood function
was unknown. Reported confidence intervals were often asym-
metric and were sometimes reported as inestimable due to
parameter space constraints of the model. We were able to
obtain the original estimates of standard errors for seven studies.
Comparing our estimates to reported standard errors suggested
that our methods slightly overestimated standard errors.
Replacing our estimates with reported values or adjusting to
account for an observed bias did not noticeably change the
aggregate estimate (data not shown). Thus, there is little
evidence of a significant bias due to inadequate estimation of the
standard errors. However, more work is needed to examine the
coverage of confidence intervals for the aggregate estimates.

Although we observed little change in estimates following
adjustment, there was evidence of publication bias away from
the null. It is likely that smaller and earlier studies lacked the
statistical power needed to perform informative dose—response
analyses. Of 15 studies that were superseded by studies with
improved follow-up, seven (47%) reported negative ERR values.
Moreover, some larger studies included dose—response modelling
only if an elevation was observed in other comparisons (eg,
standardised mortality ratio (SMR), standardised rate ratio
(SRR)).®" Our analysis suggests that model II results were the
least affected by publication bias. We propose this bias was
minimised because the large pooled studies used in model II
included many small cohorts that likely had null or negative
values, which may not have been published individually with
dose—response estimates. We reported results following an
adjustment for publication bias in some models, although
publication bias cannot be confirmed without uncovering the
actual ‘negative’ unpublished studies. We advise cautious inter-
pretation of tests of heterogeneity and bias in our meta-analysis

Occup Environ Med 2011;68:457—464. doi:10.1136/0em.2009.054684

as there is no statistical test that can confirm or exclude bias
with certainty.

We excluded CLL from our analysis because information on CLL
risks was sparse among the studies examined. However, we note
that CLL radiogenicity is the subject of recent enquiry.%~% The
majority of information obtained for our analysis resulted from
mortality studies that may underestimate risks due to improved
survival in leukaemia patients. Furthermore, several studies
acknowledged difficulty in case ascertainment, most notably
among incident and environmental studies. Thus, a potential bias
may exist from underascertainment of incidence cases.

CONCLUSION

Occupational and environmental epidemiological studies are, in
principle, preferred over studies of high-dose exposures for esti-
mating the effects of low-dose protracted ionising radiation
exposures. Unfortunately, these studies have individually lacked
the precision necessary for the projection of population-based
risks. Using a simple meta-analytical approach to synthesise the
available information, we found that leukaemia (excluding CLL)
is significantly associated with exposure to protracted, low-level
ionising radiation. Our preferred estimate of leukaemia risk at
100mGy is 0.19 (95% CI 0.07 to 0.32), achieved by combining
information from existing pooled analyses and non-overlapping
studies, excluding one influential study, and adjusting for
publication bias.

We found between-study effects to be minimal, which
suggests that differences in study populations and epidemio-
logical methods were essentially unimportant. Although publi-
cation bias was indicated, subsequent adjustment did not
markedly change aggregate estimates. Likewise, excluding
influential studies resulted in only moderate effects on risk
estimates. In fact, all model results were in reasonable agreement
with the leukaemia risk observed in atomic bomb survivors,
which is regarded by most as the gold standard. Thus, our
results appear robust and strengthen our confidence in the
current understanding of leukaemia risk among populations
exposed to ionising radiation.
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