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Abstract: Osteoporosis is a disease characterized by low bone mass and an increased risk of fractures.
Although several cellular players leading to osteoporosis have been identified, the role of mesenchymal
stromal cells (MSC) is still not fully elaborated. The aim of this study was, therefore, to isolate
and characterize MSCs from vertebral body of healthy non-osteoporotic and osteoporotic patients,
with a particular focus on their osteogenic differentiation potential. Isolated MSCs were characterized
by their osteogenic, adipogenic, and chondrogenic differentiation, as well as surface marker expression,
proliferation behavior, and immunomodulatory capacity. The mineralization process was confirmed
using Alizarin Red S and alkaline phosphatase (ALP) stains and further evaluated by determining
ALP activity, mineral deposition, and free phosphate ion release. MSCs from both healthy and
osteoporotic patients showed common fibroblast-like morphology and similar proliferation behavior.
They expressed the typical MSC surface markers and possessed immunomodulatory capacity.
Both groups demonstrated solid trilineage differentiation potential; osteogenic differentiation was
further confirmed by increased ALP activity, deposition of inorganic crystals, phosphate ion release,
and expression of osteoblast marker genes. Overall, MSCs from osteoporotic and non-osteoporotic
patients showed neither a difference in general MSC features nor in the detailed analysis regarding
osteogenic differentiation. These data suggest that vertebral body MSCs from osteoporotic patients
were not impaired; rather, they possessed full osteogenic potential compared to MSCs from
non-osteoporotic patients.

Keywords: mesenchymal stromal cells; osteoporosis; immunomodulation; differentiation; proliferation
rate; surface markers

1. Introduction

Osteoporosis is a common skeletal disease that is defined by a systemic deterioration of bone mass
and increased fragility. Unfortunately, current therapies are still not satisfactory, with osteoporosis
increasingly recognized as a major public health issue [1]. Present treatments of osteoporosis are mostly
focused on preventing bone resorption and sustaining bone density, but unfortunately, also cause
serious side effects [2]. There is, therefore, an urgent need for alternative innovative therapies that
promote continuous bone sustainability and regeneration in patients with osteoporosis.
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In general, osteoporosis is the consequence of the dysregulation between bone resorption
and new bone formation [3,4], which is mediated by osteoblast and osteoclast cell lineages [5,6].
Growing evidence has indicated that bone marrow-derived mesenchymal stromal cells (BMSC),
the progenitors of osteoblasts, play a crucial role in osteoporosis [7]. These cells are multipotent,
and under physiological conditions, their precisely adjusted osteogenic and adipogenic properties
contribute to bone tissue homeostasis [8]. However, several factors, such as menopause or aging,
perturb this homeostatic equilibrium, eventually leading to a disbalanced production of bone marrow
adipocytes and bone mass loss [9].

Recent publications have shown that the osteogenic potential of mesenchymal stromal cells (MSC)
is significantly altered in osteoporosis [10]. Specifically, MSCs from osteoporotic patients possessed
a lower ability to differentiate into osteoblasts, as well as displaying a lower growth rate compared
to cells from healthy patients [11,12]. Most of these studies, however, did not consider the source of
MSCs. This is of particular importance as recent studies could show that tissue source and harvesting
technique have a great impact on MSC performance, which is clearly underestimated in the present
literature and requires further investigation [13–16].

Currently, there are many reports considering MSC-based therapy for osteoporosis as a novel
approach to overcome the limitations of the present treatments [2,17–19]. Different tissue sources for
stromal cell-based therapy for osteoporosis, including bone marrow, adipose tissue, perinatal-derived
MSCs, as well as small molecules for endogenous stromal cell recruitment, have been suggested [2,18–21].
Some of these led to a number of preclinical studies testing MSC transplantation in small animal models
for osteoporosis; however, these studies were met with divergent outcomes [17,19]. An explanation
for these inconsistent results may be the already mentioned lack of standardized protocols for MSC
isolation, expansion, and characterization, as well as the use of different tissue sources and species.
These parameters significantly influence MSC phenotype and functionality [13–16,22]. The present
literature shows that we are still at the beginning of decoding MSC features because of their heterogeneity
and that a more detailed analysis of their complex biology is needed to understand better how they
can be used in a clinical setting [23].

One important MSC niche in the context of osteoporosis is the spine. It is commonly
affected by osteoporosis, which is also evident from vertebral compression fractures, which are
a frequent occurrence in osteoporotic patients and heal poorly [24,25]. Although several animal
models of osteoporosis are available, experimental animals, such as ovariectomized rats or sheep,
develop osteoporosis that is not fully consistent with the pathogenesis of human osteoporosis [26].
Unfortunately, only comparatively few examinations of the human vertebral body as a source for MSCs
have hitherto been carried out because of its anatomically delicate position, which makes it a great
deal less accessible and attractive than other MSC niches. Consequently, the human vertebral body as
a stem cell niche is poorly studied: It is not only unclear whether dysfunction of MSCs contributes to
the pathogenesis of osteoporosis; even a simple fundamental characterization of MSCs from vertebral
bodies is nonexistent.

Therefore, the current study aimed to isolate MSCs from vertebral bodies of osteoporotic and
non-osteoporotic control patients, to characterize both MSC groups, and to investigate their osteogenic
differentiation activity using different approaches.

2. Results

2.1. Morphology and Proliferation Rate of BMSCs from Osteoporotic and Non-Osteoporotic Control Donors

Using bright-field microscopy, BMSCs from both groups showed typical bipolar spindle-shaped
and fibroblast-like morphology at passage 1 (Figure 1A). They also showed a similar cell morphology
after actin labeling at passage 3 (Figure 1B). We further addressed the question of whether MSCs
with osteoporotic and non-osteoporotic background exert different proliferation behavior. To this end,
an MTT assay was used to assess cell metabolic activity as an indirect measurement of cell proliferation
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by reflecting the number of viable cells. Of note, both groups showed continuous cell growth, and we
did not detect any significant difference between the cellular densities of osteoporotic MSCs (oMSCs)
and non-osteoporotic healthy MSCs (hMSCs) at any given time point (Figure 1C).

Figure 1. Mesenchymal bone marrow-derived stromal cells (BMSC) from vertebral bodies’ bone
marrow of osteoporotic donors (oMSC) and healthy control donors (hMSC) showed comparable growth
behavior and morphology. (A) BMSCs from both groups showed typical fibroblastic morphology
and comparable size at passage 1. (B) BMSCs at passage 3 were cultured as a monolayer and stained
for cytoskeleton-actin (red) and nuclei (blue). (C) Growth behavior of BMSCs from both groups was
assessed using MTT assay through absorbance measurement (570 nm) at indicated time points. Data are
expressed as average ± SD of 5 donors per group.

2.2. Phenotypic Analysis and Immunomodulatory Capacity

A basic surface marker characterization was performed using flow cytometry to further analyze
MSCs from osteoporotic and non-osteoporotic healthy controls. All MSCs were analyzed for the
surface markers CD11b, CD19, CD45, CD73, CD90, and CD105 (Figure 2A).

BMSCs from both groups positively expressed the common surface markers CD73, CD90,
and CD105, and were found to be negative for the CD11b, CD19, and CD45 (Figure 2A), which is
in line with the criteria defined by the International Society for Cellular Therapy (ISCT) [27].
Furthermore, we did not find any significant difference between hMSCs and oMSCs in relation
to their expression of common MSC surface markers.

BMSCs were analyzed for their immunomodulatory properties in accordance with the ISCT
criteria. To this end, hMSCs and oMSCs were tested for their capacity to inhibit the proliferation of
CD8+ T cells. Specifically, human CD8+ T cells were labeled with Carboxyfluorescein succinimidyl
ester (CFSE), then stimulated with αCD3/28-coated beads in the presence or absence of MSCs from both
groups, and T cell proliferation was flow cytometrically visualized by CFSE dilution after 3 days. In the
presence of αCD3/28, T cells strongly proliferated, as could be seen by a CFSE proliferation profile with
several peaks (Figure 2B). However, in the presence of both hMSCs and oMSCs, the proliferation of
αCD3/28-activated CD8+ T cells was completely abolished. We did not detect any significant difference
between the immunomodulatory capacity of hMSCs and oMSCs.
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Figure 2. Mesenchymal stromal cells (MSC) of healthy control donors (hMSC) and osteoporotic donors
(oMSC) exhibited comparable surface marker expression and immune-modulatory capacity. (A) Flow
cytometric surface marker expression analysis of MSCs from osteoporotic and non-osteoporotic donors
at passage 3–4. The percentage of positive cells is indicated in the top right corners. (B) hMSCs and
oMSCs were tested for their immunomodulatory capacity by suppressing the proliferation of CD8+ T
cells. Carboxyfluorescein succinimidyl ester (CFSE)-labeled human CD8+ T cells were stimulated with
αCD3/28-coated beads in the absence or presence of hMSCs or oMSCs, and proliferation profiles were
flow cytometrically analyzed. Division index (DI) as a measure of cell proliferation is depicted in the
top left corners. Data are expressed as average ± SD of five donors per group.

2.3. Osteogenic, Adipogenic, and Chondrogenic Differentiation

Next, we characterized the osteogenic and chondrogenic differentiation potential of MSCs from
osteoporotic and healthy control donors. First, we induced both BMSC groups towards the osteoblast
lineage, and the osteogenic differentiation was confirmed via Alizarin Red S staining (Figure 3A, left).

MSCs from both osteoporotic and non-osteoporotic donors showed strong mineralization
indicating their solid osteogenic capacity. BMSC control cultures from the corresponding groups were
cultured under the same conditions without any osteogenic supplement and were stained negative for
Alizarin Red S (Figure 3A, left, inserts in the top left corners). A direct comparison of the mineralization
of hMSCs and oMSCs revealed no difference in their mineralogenic potential, suggesting that BMSCs
from osteoporotic patients were not impaired. The osteogenic differentiation was further quantified
by evaluating the mineralization rate by setting a semi-quantitative score based on the intensity of
Alizarin Red S staining, which confirmed the successful and comparable osteogenic potential of both
groups (Figure 3A, right). The mineralogenic effect was additionally assessed during the linear phase
of extracellular matrix (ECM) mineralization, at day 7 and day 14, to avoid any possible overlooking of
delicate differences between hMSCs and oMSCs; however, no differences in ECM mineralization was
observed (Figure S1).

In the next step, we investigated the adipogenic differentiation potential of hMSCs and oMSCs.
During the adipogenic differentiation process, BMSCs from both groups accumulated significant
amounts of lipid-rich vacuoles that were confirmed via Oil Red O staining, indicating the successful
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differentiation towards the adipocyte lineage (Figure 3B, left). Both groups generated a great number
of lipid-storing cells, and we did not find any significant difference between hMSCs and oMSCs.
This result was also confirmed by a quantitative evaluation of the percentage of Oil Red O positive
cells (Figure 3B, right).

Figure 3. Comparable osteogenic, adipogenic, and chondrogenic differentiation potential. Mesenchymal
stromal cells (MSC) of healthy control donors (hMSC) and osteoporotic donors (oMSC) at passage 3–4
were induced towards (A) osteoblast (Osteo), (B) adipocyte (Adipo), and (C) chondrocyte (Chondro)
lineages. MSCs in culture medium without any osteogenic, adipogenic, or chondrogenic induction
supplement were used as controls (inserts in the top left corners). Differentiation success was confirmed
via (A) Alizarin Red S, (B) Oil Red O, and (C) Alcian Blue 8GX stains. (A,C, right) The extracellular
matrix (ECM) mineralization and glycosaminoglycan content were evaluated using a semi-quantitative
score based on the staining intensity and area (see Materials and Methods, 4.7 and 4.8). (B, right)
The Oil Red O staining was determined by measuring the percentage of cells stained positive for
Oil Red O using the cellSens Dimension software (see Section 4.6). The same magnification was
used for all analyses. Con: control, a.U.: arbitrary unit, ns: not significant. Data are expressed as
average ± SD of three donors (adipogenic and chondrogenic differentiation) and five to eight donors
(osteogenic differentiation) per group. *** p < 0.001, Student’s t-test.

As the last step, we also differentiated MSCs towards the chondrocyte lineage. At the end
of the chondrogenic induction period, BMSCs from both groups showed typical characteristics of
glycosaminoglycan matrix that were confirmed via Alcian Blue staining. This staining demonstrated
the capability of both MSC groups to differentiate towards the chondrocyte lineage (Figure 3C,
left) and further uncovered that both groups differentiated to the same extent. The chondrogenic
differentiation rate was further assessed by a semi-quantitative scoring, which verified the similar
differentiation potential (Figure 3C, right). In summary, hMSCs and oMSCs could be shown to possess
a solid multilineage differentiation potential, and at the end stage of the differentiation procedure,
no differences in their differentiation potential could be observed.
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2.4. Alkaline Phosphatase Intensity and Activity during Osteogenic Differentiation Process

To further analyze the osteogenic differentiation potential of both groups, hMSCs and oMSCs were
induced towards the osteoblast lineage and stained for alkaline phosphatase (ALP) at different time
points during the differentiation process (Figure 4A, Figure S2). In comparison to the corresponding
controls, the ALP staining indicated a steady increase in the ALP intensity in both MSC groups.

Figure 4. Alkaline Phosphatase (ALP) intensity and activity during the osteogenic differentiation
process. (A) Mesenchymal stromal cells (MSC) of healthy control donors (hMSC) and osteoporotic
donors (oMSC) at passage 3 were induced towards the osteoblast lineage for 21 days, and ALP
staining was performed at indicated time points. A culture medium without any osteogenic induction
supplement was used as control (inserts in the top left corners). The same magnification was used for
all analyses. (B) The relative ALP staining intensity of both BMSCs was evaluated by measuring the
percentage of cells stained positive using the cellSens Dimension software, and the delta of ALP positive
cells was determined by subtracting the non-induced controls from the induced MSCs. (C) ALP activity
of hMSCs and oMSCs was determined with the help of 4-Methylumbelliferyl phosphate disodium salt
substrate using a fluorometric assay at indicated time points. The delta ALP activity was determined
by subtracting non-induced from induced MSCs. Data are expressed as average ± SD of three to eight
donors per group. * p < 0.05, ** p < 0.01, *** p < 0.001, one-way ANOVA.

The ALP staining of MSCs from both groups was further evaluated by measuring the percentage
of cells stained positive for ALP. Interestingly, both hMSCs and oMSCs showed a comparable steady
increase in the percentage of cells stained positive for ALP, reaching their peak at day 14 (Figure 4B).
oMSCs seemingly represented a greater proportion of ALP positive cells; however, the control group
of oMSCs also presented more ALP positivity, suggesting that MSCs from osteoporotic patients might
exhibit higher ALP activity. When considering the real osteogenic potential, which is reflected by
the difference between induced and non-induced MSCs, both hMSCs and oMSCs did not show any
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significant difference (Figure 4B, right). Interestingly, the percentage of cells positive for ALP decreased
from day 14 to day 21 in both groups (Figure 4B).

In parallel to the ALP staining, we also assessed the ALP activity using the same experimental
setting (Figure 4C). At day 3 of induction, BMSCs from both groups already showed an increased
ALP activity compared to their corresponding controls. When induced towards the osteogenic
differentiation, oMSCs showed a stronger increase in ALP activity than hMSCs at all time points.
However, when normalized to the control samples, no significant differences could be seen between
both groups. The ALP activity peak was reached at day 7 for oMSCs and at day 14 for hMSCs,
but differences were not significant.

2.5. Assessment of Osteogenic Differentiation

The mineralization process was further assessed through mineral deposition and phosphate
ion release, as described previously [22]. hMSCs and oMSCs were induced to differentiate towards
the osteoblast lineage. Cell culture medium without any osteogenic induction supplement was
used as control. Mineralization of BMSCs was evaluated by optical density (OD) measurements
of MSC monolayer cultures at different time points during the osteogenic differentiation period,
thereby quantifying the deposition of inorganic crystals (Figure 5A).

Figure 5. Comparable mineralization and phosphate ion release during the osteogenic differentiation
process. Mesenchymal stromal cells (MSC) from osteoporotic (oMSC) and healthy non-osteoporotic
donors (hMSC) at passage 3–4 were induced towards the osteoblast lineage for 21 days. Culture medium
without any osteogenic induction supplement was used as control. (A) The mineralization process of
both groups was assessed by optical density (OD) measurement at the indicated time points, and (B)
the delta mineralization rate was determined by subtracting the non-induced controls from the induced
MSCs. (C) The overall mineralization fold change was calculated using the ratio day 21/day 1. (D) The
osteogenic differentiation process of MSCs from both groups was assessed by measuring the inorganic
free phosphate ion release into the cell culture supernatant at the indicated time points, and (E) the
delta phosphate ions release was determined by subtracting the values of non-induced controls from
the induced MSCs. (F) The fold change of the total phosphate ion release from both MSC groups was
determined using the ratio day 21/day 1. ns: not significant. Data are expressed as average ± SD of
three to five donors per group. * p < 0.05, *** p < 0.001, one-way ANOVA.

Both induced MSC groups showed a continuous increase in crystal deposition (OD) over time
compared to the corresponding non-induced controls. Induced MSCs from osteoporotic and healthy
patients indicated a similar tendency at all time points. A minor decrease in OD values in the controls
was observed between day 7 to day 21 in both hMSCs and oMSCs (Figure 5A). To better visualize
the absolute increase in the mineralization, delta values between induced and non-induced samples
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were calculated, which confirmed the continuous mineralization increase (Figure 5B). This was further
confirmed by calculating the fold change of the OD shift over time (Figure 5C).

In addition to the OD measurements, the osteogenic differentiation process was also monitored
through the determination of inorganic free phosphate ion release into the supernatant at different
time points. BMSCs from both groups, osteoporotic and non-osteoporotic, demonstrated a comparable
phosphate ion release at all time points during the osteogenic differentiation (Figure 5D+E). In general,
phosphate ion release peaked at day 14. The phosphate ion level decreased until day 21 but was still
elevated in comparison to the osteogenic initiation (day 1), which was further confirmed by the overall
fold change of the phosphate ion release (Figure 5F).

2.6. Osteoblast Marker Gene Expression

Finally, the osteogenic differentiation of BMSCs from both groups was assessed using RT-PCR
by investigating the relative mRNA expression of ALPL, COL1A1, RUNX2, and SOX9 at different
time points.

The early osteoblast marker ALPL showed a continuous increase from day 1 to day 7 in both groups.
From day 7 to day 21, hMSCs showed decreased ALPL expression, whereas oMSCs slightly, but not
significantly, increased gene expression from day 7 to day 21 (Figure 6). The osteoblast lineage-specific
gene, COL1A1, showed comparable expression during the whole osteogenic differentiation process
and decreased from day 7 to day 21 in both groups (Figure 6). RUNX2 was slightly upregulated at
the end of the osteogenic differentiation process in both groups (Figure 6). SOX9, which is a negative
osteogenic marker [28–31], was downregulated for most of the differentiation period. oMSCs showed
a slight but not significant increase in SOX9 expression at day 21 (Figure 6). In summary, hMSCs and
oMSCs presented a similar gene expression dynamic, and no significant differences could be detected
between both groups.

Figure 6. Expression dynamics of common osteogenic gene markers. Mesenchymal stromal cells (MSC)
from osteoporotic (oMSC) and non-osteoporotic healthy control donors (hMSC) at passage 3–5 were
induced towards the osteoblast lineage for 21 days. Culturing medium without any osteogenic induction
supplement was used as control. The relative mRNA expression of ALPL, COL1A1, RUNX2, and SOX9
was investigated at the indicated time points during the osteogenic differentiation. Data analysis was
performed using ddCT values normalized to GAPDH. Data are expressed as average ± SD of three
to four donors per group. For a direct comparison of the hMSC vs. oMSC groups (bottom panels),
non-induced samples were subtracted from induced MSCs to determine the delta expression level.
* p < 0.05, ** p < 0.01, Mann–Whitney U.
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3. Discussion

The vertebral body as a stem cell niche is, at most, sparsely described, and it is unclear whether
dysfunction of MSCs contributes to the pathogenesis of osteoporosis. Therefore, the current study
aimed to isolate and characterize MSCs from the lumbar spine vertebral body of non-osteoporotic
and osteoporotic patients. MSCs from both groups fulfilled the minimal MSC criteria in line with the
ISCT guidelines [27]. They demonstrated fibroblast-like morphology, similar proliferation tendencies,
typical MSC surface markers, immunomodulatory capacity, and comparable trilineage potential.
Interestingly, none of the parameters used to investigate vertebral body-derived MSCs from osteoporotic
and healthy patients demonstrated significant differences between these two groups. This is in contrast
to recently reported studies that showed an increased formation of adipocytes and a reduced production
of osteoblastic cells [32]. In a later study, it has been shown that muscle-derived MSCs are less deficient
than femur head-derived MSCs from osteoporotic patients compared to controls, indicating that the
MSC niche must be taken into consideration [33].

Most importantly, in our study, a close investigation of the osteogenic differentiation potential
indicated that MSCs from osteoporotic patients were not impaired when compared to MSCs from
non-osteoporotic patients. The obtained results confirmed that both hMSCs and oMSCs exhibited
a potent capacity to differentiate towards the osteoblastic lineage in vitro, reflected by a steadily
intensifying ALP staining from day 1 to day 14. We also noticed a decrease in ALP staining from day
14 to day 21. This effect, however, is not specific for vertebral MSCs. It has been reported before for
other MSCs, but no reasonable explanation for this decline was given [34]. Indeed, ALP is an early
marker of osteoblastic differentiation, whereas ECM mineralization is associated with late osteoblastic
differentiation and transition towards osteocytes [35,36]. Interestingly, the relative mRNA of ALPL
has been reported to be decreased at day 21 and day 28 in MSCs under osteogenic differentiation [37].
We also noticed a stagnation of ALP expression, which may explain the decrease in ALP staining at day
21 in our current study in both hMSCs and oMSCs. Further, the dynamic transition from osteoblasts
to osteocytes should also be taken into consideration. It has been reported that primary osteoblasts
from mice under osteogenic differentiation expressed osteocyte markers and showed decreased ALPL
expression [38]. Therefore, the decrease in ALP staining at day 21 could also be due to the transition of
osteoblasts to osteocytes, but this remains to be clarified.

Furthermore, we noticed a slight increase in ALP activity in osteogenically induced oMSCs and
their corresponding control compared to hMSCs (Figure 4C). However, this effect did not reflect
ECM mineralization determined via OD measurement, where no difference was observed (Figure 5B).
It has been reported in a comparative analysis using different cells, including BMSCs and a variety of
osteogenic and mineralizing media conditions, that ALP activity is not proportional to mineralization
levels [39]. It has been shown that ALP activity increases in confluent monolayer MSCs during the first
three weeks of differentiation [39], and in some cases, MSC cultures can produce high levels of ALP
in vitro which do not fully correlate with the extent of mineralization [40].

Alizarin Red S has been traditionally used as the golden standard to evaluate and quantify
ECM mineralization in vitro [41]. Nevertheless, this method presents a number of disadvantages,
including culture disruption for fixation, preventing further measurements [42]. In our current study,
therefore, we made use of alternative refined assays to quantitatively follow up the mineralization
process continuously and accurately. To this end, we employed a methodology to analyze the
mineralization process by monitoring crystal deposits by measuring the OD of monolayer cultures
of hMSCs and oMSCs during the osteogenic differentiation, as reported previously [37]. In previous
studies, the OD was found to correlate with Alizarin Red S quantification, which was further supported
by phosphate ion release in our current study [37].

The measured OD of the deposited crystals did not indicate any significant difference between
hMSCs and oMSCs; however, this does not exclude potential differences in crystal composition.
A qualitative analysis of the deposited crystals to determine their composition and crystal types should
be investigated further in the future. It has been shown that cultured BMSCs on collagen I/III gel
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led to hydroxyapatite/calcium crystal deposition, as well as ECM proteins, in a similar manner to
functional osteocytes and osteoblasts [43]. An accurate analysis to compare the chemical composition
and structural properties of the deposited crystals in hMSCs and oMSCs would be of great interest as
it would give deeper insights regarding the process of osteogenesis mediated by MSCs from healthy
versus osteoporotic donors.

Further, we assessed the osteogenic differentiation of hMSCs and oMSCs by monitoring the gene
expression of early osteogenic markers, such as ALPL, COL1A1, and RUNX2, utilizing RT-PCR at
different time points. It has been previously reported that the relative mRNA expression of ALPL
was elevated at day 7 with its peak at day 14, followed by a decrease at day 21 [37,44]. Our data
indicated a steady increase in ALPL from day 1, with its peak at around day 7 for both hMSCs
and oMSCs. The observed slight decrease in the relative mRNA expression of ALPL in hMSCs and
unchanged mRNA levels in oMSCs at day 14 may explain the slight decrease in ALP staining at day 21.
Additionally, the determined relative mRNA expression of COL1A1 showed a comparable increase
already at day 1 to day 7, and then a shift was observed showing a gradual downregulation towards
day 21 in both hMSCs and oMSCs compared to their corresponding controls. Similar findings have
been reported previously by assessing COL1A1 gene expression during osteogenic differentiation
of MSCs from healthy patients [34,37,45]. The transcription factor RUNX2 plays a major role in
osteoblast differentiation and bone formation and was shown to be expressed at a relatively similar
level during in vitro differentiation of primary human osteoblasts [46–49]. In accordance with the
previously reported findings, the expression of RUNX2 was found to be increased and comparable at
all time points in both hMSCs and oMSCs compared to their corresponding controls.

The transcription factor SOX9 is known to play a key role in chondrogenesis and endochondral
bone formation [50,51] and has been shown to be a major regulator in direct osteogenesis by
directly interacting with RUNX2 [29,51]. It has been reported that SOX9 mRNA expression was
higher in the control medium compared to MSCs under osteogenic differentiation on days 2, 7,
and 14, but not at day 21 [29]. Our current data indicated a clear downregulation of SOX9 mRNA
expression already at day 1 until day 14 in both hMSCs and oMSCs compared to their corresponding
undifferentiated controls. Loebel et al. showed the impact of SOX9 downregulation in mineralization
of human MSCs in vitro, demonstrating that SOX9 plays a major role in regulating direct osteogenesis.
Moreover, the RUNX2/SOX9 ratio has been proposed as an early indicator for osteoblastic differentiation
of human MSCs in vitro [29]. Further studies are required to assess the expression of SOX9 and its
relation with RUNX2 in the future. The comparable expression of ALPL, COL1A1, RUNX2, and SOX9
in both hMSCs and oMSCs additionally supports the similarity of their osteogenic differentiation
potential in vitro. Taken together, the current study presents similar differentiation properties of
vertebral bone marrow-derived mesenchymal stromal cells from osteoporotic and healthy patients
in vitro using different approaches.

This finding is in contrast to studies from other niches, which were performed in animal
models for osteoporosis and osteoporotic patients that showed a reduced MSC proliferation rate in
osteoporotic patients and, most importantly, an impaired osteogenic differentiation potential [10–12,52].
Taken together, these findings neatly show how diverse MSCs from different niches are and
how important it is to investigate tissue source-specific differences. Recent studies have already
demonstrated that MSCs derived from vertebrae can be maintained in vitro for a greater number of
steps [53]. They further showed that MSCs from vertebral bodies were able to differentiate even more
efficiently into all mesenchymal lineages under osteogenic, adipogenic, and chondrogenic conditions.
Another study demonstrated that vertebral body MSCs possessed a comparable phenotype and
proliferative capacity but higher chondrogenic and osteogenic properties than MSCs from the iliac
crest [54]. Basically, these studies demonstrate the superiority of vertebral MSCs in terms of their
osteogenic differentiation behavior. One could argue that vertebral MSCs indicate above-average
osteogenic differentiation behavior under homeostatic conditions, which is highly plausible considering
their anatomic location. Interestingly, in our study, we found that vertebral body MSCs from osteoporotic
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patients have similar proliferation and differentiation capability in comparison to MSCs from healthy
control donors, which is in contrast to previous reports from other MSCs niches, such as femur head,
iliac crest, and muscle [11,32,33].

Obviously, a remaining question is why vertebral MSCs are so different in comparison to MSCs
from other niches. One explanation could lie in the local microenvironment of the vertebral body bone
marrow, which could shape the fate of local MSCs. This local influence could be the cellular composition
that interferes with MSCs, or it could be a simple molecular trigger. A recent publication identified
the histone methyltransferase enhancer of Zeste homology 2 (EZH2), which regulates the lineage
commitment of MSCs and, therefore, contributes to the pathology of osteoporosis [55]. Although more
and more molecular mechanisms have been identified, we are still at the beginning of understanding
the fate determination of abnormal versus normal BMSCs. However, focusing on MSCs cannot be the
only solution to treat osteoporosis, as our in vitro data suggest that vertebral body osteoporosis may
not primarily be due to abnormal osteogenic properties of local MSCs. Certainly, ex vivo or in vivo
data will be needed to formally prove this hypothesis in a more physiological context, as in vitro
expanded MSCs potentially possess a different phenotype.

In summary, this study characterized MSCs from the lumbar spine vertebral body of non-osteoporotic
and osteoporotic patients and found that vertebral body MSCs from osteoporotic patients were not
impaired, but they rather possessed full osteogenic potential compared to MSCs from non-osteoporotic
patients. These results highlight the highly important influence of the tissue source and its local
microenvironment for the MSC phenotype.

4. Materials and Methods

4.1. Tissue Donors and Isolation of Bone Marrow-Derived MSCs

Recruitment of human subjects for collecting bone marrow aspirate was approved by the local ethics
committee (University Hospital Bonn, project ID: 102/10, approval date: 20 July 2010) and was conducted
in accordance with the approved guidelines as well as the declaration of Helsinki. BMSCs were harvested
from vertebral body aspirates of the lumbar spine of osteoporotic (oMSC) and non-osteoporotic
healthy control donors (hMSC), which were undergoing spondylodesis and kyphoplasty procedures,
respectively. All osteoporotic patients were diagnosed with grade II osteoporosis (n = 12) and had
an average age of 69 years (8 females, 4 males). Healthy patients (n = 5) had an average age of
62 years (2 females, 3 males). MSCs were isolated through gradient centrifugation using Biocoll
separating solution (Biochrom AG, Berlin, Germany) and their ability to adhere to tissue culture
plastic, as described previously [22]. Cells were cultured and expanded in polystyrene cell culture
flasks (Greiner Bio-One GmbH, Frickenhausen, Germany) using Dulbecco’s Modified Eagle Medium
(DMEM) (Gibco by Life Technologies, Darmstadt, Germany) containing 10% fetal bovine serum
(FBS), 1% l-glutamine, 1% penicillin–streptomycin (Biochrom AG, Berlin, Germany) under standard
conditions (37 ◦C, 95% humidity, atmospheric O2 and 5% CO2). After isolation, BMSCs were expanded
via subculturing for two passages and then stored at−150 ◦C until further use. All experiments reported
in this study were performed using BMSCs from passage 3 to passage 5.

4.2. Morphologic Analysis

For morphological analysis, MSCs from osteoporotic and healthy control donors were grown
to approximately 80% confluency and then fixed with 4% paraformaldehyde (PFA, pH 7) in PBS
(ThermoFisher Scientific, Karlsruhe, Germany) for 5 min. After the washing step, BMSCs were
permeabilized with 0.25% Triton X-100 (Sigma–Aldrich, Darmstadt, Germany) for 5 min, and an
anti-actin antibody (10 µg/mL) (Abcam plc, Cambridge, UK) was applied for 10 min as well as
4′,6-Diamidino-2-phenylindole (DAPI) nucleus counterstain.
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4.3. MTT Assay

The growth properties of hMSCs and oMSCs were indirectly measured by determining their
metabolic activity using an MTT assay. To this end, cells were cultured at a density of 2 × 103 cells/well
in a 96-well plate as monolayer culture under standard conditions for 21 days. The culture medium
was changed each third day, and the measurements were carried out at the indicated time points
according to the manufacturer’s protocol using the MTT assay kit (Boster Biological Technology Co.,
Ltd., Pleasanton, CA, USA).

4.4. Flow Cytometric Analysis

Analysis of the phenotypic surface marker expression of BMSCs from osteoporotic and healthy
donors was performed by flow cytometry using a BD FACS Canto II cell analyzer and FlowJo software
(BD Biosciences, Heidelberg, Germany). Briefly, MSCs were resuspended in PBS with 1% FBS/2
mM ethylenediaminetetraacetic acid (EDTA) and then incubated with saturating concentrations of
antibodies (ThermoFisher Scientific, Karlsruhe, Germany) for 20 min. MSCs were tested for CD11b,
CD19, CD45, CD73, CD90, and CD105. Unstained cells and isotype antibodies were used as controls.

4.5. Immunomodulatory Capacity

Peripheral blood mononuclear cells (PBMC) were isolated out of human whole blood (n = 5)
using a Ficoll gradient, and the resulting freshly isolated naive lymphocytes were enriched for
CD8+ T cells using human CD8 MicroBeads (Miltenyi, Bergisch-Gladbach, Germany). Naive CD8+

T cells were labeled with Carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, Leiden,
Netherlands) and then washed with PBS with 1% FBS to remove extracellular CFSE. Four times ten to
the fourth hMSCs or oMSCs per 24-well were cultured for 48 h to reach confluency, and then 1 × 106

CD8+ T cells and αCD3/38-coated beads (ThermoFisher Scientific, Karlsruhe, Germany) were added.
The proliferation of the CD8+ T cells was flow cytometrically assessed by analyzing the CFSE dilution
after 3 days, as described previously [56,57].

4.6. Adipogenic Differentiation

MSCs with a cell density of 1 × 104 cells/cm2 from osteoporotic and healthy donors were
differentiated towards the adipocyte lineage by adding 1 µM dexamethasone, 1 µM insulin, and 200 µM
indomethacin (Sigma–Aldrich, Darmstadt, Germany) to the cell culture medium, as described
previously [13,22]. MSCs cultured in an unsupplemented medium were used as undifferentiated cell
controls. After 21 days, cells were washed with Dulbecco’s phosphate-buffered saline (DPBS), fixed in
4% formalin (pH 7) (Carl Roth GmbH, Karlsruhe, Germany) at 37 ◦C for 30 min and then stained with
0.1% Oil Red O staining (Sigma–Aldrich, Darmstadt, Germany) for 30 min. The staining solution was
removed, samples were kept in PBS, and pictures of several high-power fields were taken with a light
microscope within 30 min. The adipogenic differentiation rate was evaluated by analyzing the captured
images and quantifying the percentage of cells stained positive for Oil Red O using the cellSens
Dimension software (Olympus Corporation, Hamburg, Germany), as described previously [22].

4.7. Chondrogenic Differentiation

Differentiation of BMSCs towards the chondrocyte lineage was performed as described
previously [13,22]. In detail, three dimensional (3D) pellets consisting of 2.5× 105 cells were resuspended
in a culture medium and centrifuged at 500× g in a 15 mL conical tube. Pellets were cultivated in
chondrogenic medium with loosened cap under standard conditions (37 ◦C, 95% humidity, atmospheric
O2, and 5% CO2) for 21 days using high-glucose DMEM medium supplemented with 1 µg/mL insulin,
1 ng/mL transferrin, and 1 ng/mL sodium selenite, 0.1µM dexamethasone, 50µM 2-phosphate-l-ascorbic
acid trisodium salt, and 10 ng/mL transforming growth factor beta-1 (Sigma–Aldrich, Darmstadt,
Germany). MSCs cultured in an unsupplemented medium were used as undifferentiated cell controls.
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3D pellets were fixed with 4% PFA (pH 7), cut into 12 µm cryosections, and stained with Alcian Blue
dye (1% w/v Alcian blue 8GX, in 3% acetic acid solution, containing 0.1 M CaCl2, pH 1) (Sigma–Aldrich,
Darmstadt, Germany). After staining, a selection of images was taken of all cryosections from the
pellet cultures, and the glycosaminoglycan content was analyzed using a semi-quantitative score
based on the intensity of Alcian Blue staining, as reported before [22,58]. Undifferentiated cells served
as control. The Alcian Blue staining-based scoring scale was as following: (0) negative, (1) weakly
positive, (2) moderately positive, (3) markedly positive, or (4) strongly positive.

4.8. Osteogenic Differentiation

BMSCs from osteoporotic and healthy donors were seeded at a density of 1 × 104 cells/cm2

and induced towards the osteoblast lineage by using a culture medium supplemented with 0.1 µM
dexamethasone, 10 mM β-glycerophosphate disodium salt hydrate, and 50 µM 2-phosphate-l-ascorbic
acid trisodium salt (Sigma–Aldrich, Darmstadt, Germany). A culture medium without any osteogenic
induction supplement was used as control. After 7, 14, and 21 days, differentiated cells were fixed with
4% formalin (in PBS, pH 7) (Carl Roth GmbH, Karlsruhe, Germany) and stained with 40 mM Alizarin
Red S (pH 4.2) (Sigma–Aldrich, Darmstadt, Germany). The ECM mineralization was determined
using a semi-quantitative score based on the intensity of Alizarin Red S staining of images taken from
different high-power fields, as described before [22,34]. Scoring scale: (0) negative, (1) weakly positive,
(2) moderately positive, (3) markedly positive, (4) strongly positive.

4.9. Alkaline Phosphatase Measurement, Optical Density Measurement, and Free Phosphate Assay

MSCs from both groups were induced towards the osteoblast lineage using a cell density of
104 cells/cm2 in 96-well plates. A culture medium without any osteogenic induction supplement was
used as control. The differentiation process was investigated through different approaches.

At different time points during the osteogenic induction, BMSCs were stained with ALP
(Dako, Hamburg, Germany), and the relative ALP staining intensity was evaluated by analyzing the
percentage of cells stained positive for ALP using the cellSens Dimension software (Olympus Corporation,
Hamburg, Germany).

ALP activity was determined through 4-Methylumbelliferyl phosphate disodium salt substrate
using a fluorometric assay kit (BioVision Inc., Milpitas, CA, USA). The resulting absorbance was
measured at 360 nm using a microplate reader (TECAN, Magellan, Switzerland) according to the
manufacturer’s instructions.

The mineralization process was further assessed by optical density (OD) measurements at 450 nm
(TECAN, Magellan, Switzerland) adapted from Loebel et al. [37]. The OD absorbance was used to
assess the mineralization process during the osteogenic differentiation at different time points of the
same monolayer cultures. The collected OD values were corrected by subtracting the measured values
of the corresponding culture medium and osteogenic induction medium without cells. After each OD
measurement, supernatants were collected, and fresh corresponding medium was added to cultures
during the differentiation period.

Inorganic phosphate ion release was measured in cell culture supernatants, including media
without cells, at the indicated time points using the Malachite Green Phosphate Assay Kit according to
the manufacturer’s instructions (Sigma–Aldrich, Darmstadt, Germany) [59].

4.10. Real-Time Polymerase Chain Reaction

To analyze the gene expression of common osteoblast markers, hMSCs and oMSCs were induced
towards the osteoblast lineage, and real-time polymerase chain reaction (RT-PCR) was performed,
as described previously [22]. Briefly, TRIzol reagent (Ambion, Life Technologies, Darmstadt, Germany)
and chloroform:isoamyl alcohol (24:1) (PanReac AppliChem, Darmstadt, Germany) were used for
mRNA extraction. Then, 1 µg mRNA was reverse transcribed using a Transcriptor First Strand cDNA
Synthesis Kit (Roche Diagnostics GmbH, Mannheim, Germany), and RT-PCR was conducted using
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LightCycler 480 SYBR Green I Master according to the manufacturer’s instructions (Roche Diagnostics
GmbH). Amplifications ran at 95 ◦C for denaturation, 60 ◦C for primer annealing, and 72 ◦C for primer
extension 10 s each for 45 cycles. Primer sequences are listed in Table 1. Data analysis was performed
using the ddCT method [60] determined by normalization to GAPDH [44].

Table 1. Real-Time Polymerase Chain Reaction (RT-PCR). Accession numbers, size of the products,
and primer sequences used for determining the relative gene expression of ALPL, COL1A1, RUNX2,
and SOX9 in mesenchymal stromal cells (MSCs) during osteogenic differentiation.

Gene Primer Sequence Product Length Accession Number

GAPDH fwd: 5′CTCTGCTCCTCCTGTTCGAC3′

rev: 5′ACCAAATCCGTTGACTCCGA3‘ 109 bp NM_002046.5

ALPL fwd: 5′TTTATAAGGCGGCGGGGGTG3′

rev: 5′AGCCCAGAGATGCAATCGAC3′ 198 bp NM_000478.5

COL1A1 fwd: 5′TGCTCGTGGAAATGATGGTG3′

rev: 5′CCTCGCTTTCCTTCCTCTCC3′ 449 bp NM_000088.3

RUNX2 fwd: 5′GCGCATTCCTCATCCCAGTA3′

rev: 5′GGCTCAGGTAGGAGGGGTAA3′ 176 bp NM_001024630.3

SOX9 fwd:5′AGGAAGTCGGTGAAGAACGG3′

rev: 5′AAGTCGATAGGGGGCTGTCT3′ 275 bp NM_000346.3

4.11. Statistics

Data are expressed as average ± SD of 3–8 biological replicates (donors per group) as indicated.
Statistical analysis was carried out using GraphPad Prism 7 (GraphPad, La Jolla, CA, USA).
The Shapiro–Wilk test was used to test for normal distribution. For data with Gaussian distribution,
a two-tailed Student’s t-test or one-way analysis of variance (ANOVA) were used. For non-Gaussian
distributed data, the Mann–Whitney U testing was used. Significance levels are marked as * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure S1: Mineralization of extracellular matrix (ECM) during the osteogenic differentiation process of
mesenchymal stromal cells of healthy (hMSC) and osteoporotic (oMSC) donors visualized via Alizarin Red S
staining at day 7, 14, and 21; Figure S2: Control samples for alkaline phosphatase (ALP) staining during the
osteogenic differentiation process of mesenchymal stromal cells of healthy (hMSC) and osteoporotic (oMSC)
donors at day 0, 1, 3, 7, 14, and 21.
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Abbreviations

ALP Alkaline phosphatase
ALPL Alkaline phosphatase gene
BMSC Bone marrow-derived mesenchymal stromal cells
CD Cluster of differentiation
cDNA Complementary deoxyribonucleic acid
CFSE Carboxyfluorescein succinimidyl ester
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COL1A1 Collagen, type I, alpha 1
DAPI 4′,6-Diamidino-2-phenylindole
ddCT Delta-delta-Ct
DMEM Dulbecco’s modified Eagle’s medium
DPBS Dulbecco’s phosphate-buffered saline
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetic acid
FBS Fetal bovine serum
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
hMSC Healthy mesenchymal stromal cells
ISCT International Society for Cellular Therapy
mRNA Messenger ribonucleic acid
MSC Mesenchymal stromal cells
OD Optical density
oMSC Osteoporotic mesenchymal stromal cells
PBMC Peripheral blood mononuclear cell
PBS Phosphate-buffered saline
PFA Paraformaldehyde
RT-PCR Real-time polymerase chain reaction
RUNX2 Runt-related transcription factor 2
SOX9 SRY-Box Transcription Factor 9

References

1. Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1243–1251.
[CrossRef] [PubMed]

2. Antebi, B.; Pelled, G.; Gazit, D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep. 2014, 12, 41–47.
[CrossRef] [PubMed]

3. Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Invest. 2005, 115, 3318–3325.
[CrossRef] [PubMed]

4. Guder, C.; Gravius, S.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. Osteoimmunology: A Current Update of the
Interplay Between Bone and the Immune System. Front. Immunol. 2020, 11, 58. [CrossRef] [PubMed]

5. Teitelbaum, S.L. Stem cells and osteoporosis therapy. Cell Stem Cell 2010, 7, 553–554. [CrossRef] [PubMed]
6. Rosen, C.J. The Epidemiology and Pathogenesis of Osteoporosis. In Endotext; Feingold, K.R., Anawalt, B.,

Boyce, A., Chrousos, G., De Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, H.J.,
Kaltsas, G., et al., Eds.; MDText.com Inc.: South Dartmouth, MA, USA, 2000.

7. Bianco, P.; Robey, P.G. Skeletal stem cells. Development 2015, 142, 1023–1027. [CrossRef] [PubMed]
8. Hu, L.; Yin, C.; Zhao, F.; Ali, A.; Ma, J.; Qian, A. Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or

Adipocyte and Application in Osteoporosis Treatment. Int. J. Mol. Sci. 2018, 19, 360. [CrossRef] [PubMed]
9. Tokuzawa, Y.; Yagi, K.; Yamashita, Y.; Nakachi, Y.; Nikaido, I.; Bono, H.; Ninomiya, Y.; Kanesaki-Yatsuka, Y.;

Akita, M.; Motegi, H.; et al. Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch
promoting osteoblast differentiation. PLoS Genet. 2010, 6, e1001019. [CrossRef]

10. Wang, Q.; Zhao, B.; Li, C.; Rong, J.S.; Tao, S.Q.; Tao, T.Z. Decreased proliferation ability and differentiation
potential of mesenchymal stem cells of osteoporosis rat. Asian Pac. J. Trop. Med. 2014, 7, 358–363. [CrossRef]

11. Rodriguez, J.P.; Garat, S.; Gajardo, H.; Pino, A.M.; Seitz, G. Abnormal osteogenesis in osteoporotic patients is
reflected by altered mesenchymal stem cells dynamics. J. Cell. Biochem. 1999, 75, 414–423. [CrossRef]

12. Wang, Z.; Goh, J.; Das De, S.; Ge, Z.; Ouyang, H.; Chong, J.S.; Low, S.L.; Lee, E.H. Efficacy of bone marrow-derived
stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng. 2006, 12, 1753–1761. [CrossRef]

13. Walter, S.G.; Randau, T.M.; Hilgers, C.; Haddouti, E.M.; Masson, W.; Gravius, S.; Burger, C.; Wirtz, D.C.;
Schildberg, F.A. Molecular and Functional Phenotypes of Human Bone Marrow-Derived Mesenchymal
Stromal Cells Depend on Harvesting Techniques. Int. J. Mol. Sci. 2020, 21, 4382. [CrossRef]

14. Paebst, F.; Piehler, D.; Brehm, W.; Heller, S.; Schroeck, C.; Tarnok, A.; Burk, J. Comparative immunophenotyping
of equine multipotent mesenchymal stromal cells: An approach toward a standardized definition. Cytom. A
2014, 85, 678–687. [CrossRef]

http://dx.doi.org/10.1093/gerona/glt093
http://www.ncbi.nlm.nih.gov/pubmed/23902935
http://dx.doi.org/10.1007/s11914-013-0184-x
http://www.ncbi.nlm.nih.gov/pubmed/24407712
http://dx.doi.org/10.1172/JCI27071
http://www.ncbi.nlm.nih.gov/pubmed/16322775
http://dx.doi.org/10.3389/fimmu.2020.00058
http://www.ncbi.nlm.nih.gov/pubmed/32082321
http://dx.doi.org/10.1016/j.stem.2010.10.004
http://www.ncbi.nlm.nih.gov/pubmed/21040895
http://dx.doi.org/10.1242/dev.102210
http://www.ncbi.nlm.nih.gov/pubmed/25758217
http://dx.doi.org/10.3390/ijms19020360
http://www.ncbi.nlm.nih.gov/pubmed/29370110
http://dx.doi.org/10.1371/journal.pgen.1001019
http://dx.doi.org/10.1016/S1995-7645(14)60055-9
http://dx.doi.org/10.1002/(SICI)1097-4644(19991201)75:3&lt;414::AID-JCB7&gt;3.0.CO;2-C
http://dx.doi.org/10.1089/ten.2006.12.1753
http://dx.doi.org/10.3390/ijms21124382
http://dx.doi.org/10.1002/cyto.a.22491


Int. J. Mol. Sci. 2020, 21, 8309 16 of 18

15. Mushahary, D.; Spittler, A.; Kasper, C.; Weber, V.; Charwat, V. Isolation, cultivation, and characterization of
human mesenchymal stem cells. Cytom. A 2018, 93, 19–31. [CrossRef]

16. Khan, H.; Mafi, P.; Mafi, R.; Khan, W. The Effects of Ageing on Differentiation and Characterisation of Human
Mesenchymal Stem Cells. Curr. Stem Cell Res. Ther. 2018, 13, 378–383. [CrossRef]

17. Kiernan, J.; Davies, J.E.; Stanford, W.L. Concise Review: Musculoskeletal Stem Cells to Treat Age-Related
Osteoporosis. Stem Cells Transl. Med. 2017, 6, 1930–1939. [CrossRef] [PubMed]

18. Phetfong, J.; Sanvoranart, T.; Nartprayut, K.; Nimsanor, N.; Seenprachawong, K.; Prachayasittikul, V.;
Supokawej, A. Osteoporosis: The current status of mesenchymal stem cell-based therapy. Cell Mol. Biol. Lett.
2016, 21, 12. [CrossRef]

19. Aghebati-Maleki, L.; Dolati, S.; Zandi, R.; Fotouhi, A.; Ahmadi, M.; Aghebati, A.; Nouri, M.; Kazem Shakouri, S.;
Yousefi, M. Prospect of mesenchymal stem cells in therapy of osteoporosis: A review. J. Cell. Physiol.
2019, 234, 8570–8578. [CrossRef]

20. Bieback, K.; Brinkmann, I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell
therapy. World J. Stem Cells 2010, 2, 81–92.

21. Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol.
2008, 8, 726–736. [CrossRef]

22. Haddouti, E.M.; Randau, T.M.; Hilgers, C.; Masson, W.; Walgenbach, K.J.; Pflugmacher, R.; Burger, C.;
Gravius, S.; Schildberg, F.A. Characterization and Comparison of Human and Ovine Mesenchymal Stromal
Cells from Three Corresponding Sources. Int. J. Mol. Sci. 2020, 21, 2310. [CrossRef] [PubMed]

23. Schildberg, F.A.; Donnenberg, V.S. Stromal cells in health and disease. Cytom. A 2018, 93, 871–875. [CrossRef]
24. Tome-Bermejo, F.; Pinera, A.R.; Alvarez-Galovich, L. Osteoporosis and the Management of Spinal Degenerative

Disease (I). Arch. Bone Jt. Surg. 2017, 5, 272–282.
25. Chin, D.K.; Park, J.Y.; Yoon, Y.S.; Kuh, S.U.; Jin, B.H.; Kim, K.S.; Cho, Y.E. Prevalence of osteoporosis in

patients requiring spine surgery: Incidence and significance of osteoporosis in spine disease. Osteoporos. Int.
2007, 18, 1219–1224. [CrossRef]

26. Lelovas, P.P.; Xanthos, T.T.; Thoma, S.E.; Lyritis, G.P.; Dontas, I.A. The laboratory rat as an animal model for
osteoporosis research. Comp. Med. 2008, 58, 424–430.

27. Horwitz, E.M.; Le Blanc, K.; Dominici, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Deans, R.J.;
Krause, D.S.; Keating, A.; International Society for Cellular Therapy. Clarification of the nomenclature
for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005, 7, 393–395.
[CrossRef] [PubMed]

28. Voss, J.O.; Loebel, C.; Bara, J.J.; Fussinger, M.A.; Duttenhoefer, F.; Alini, M.; Stoddart, M.J. Effect of Short-Term
Stimulation with Interleukin-1beta and Differentiation Medium on Human Mesenchymal Stromal Cell
Paracrine Activity in Coculture with Osteoblasts. BioMed Res. Int. 2015, 2015, 714230. [CrossRef]

29. Loebel, C.; Czekanska, E.M.; Bruderer, M.; Salzmann, G.; Alini, M.; Stoddart, M.J. In vitro osteogenic potential
of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio. Tissue Eng. Part A 2015, 21, 115–123.
[CrossRef] [PubMed]

30. Tam, W.L.; Luyten, F.P.; Roberts, S.J. From skeletal development to the creation of pluripotent stem cell-derived
bone-forming progenitors. Philos. Trans. R Soc. Lond. B Biol. Sci. 2018, 373, 20170218. [CrossRef]

31. Dalle Carbonare, L.; Mottes, M.; Cheri, S.; Deiana, M.; Zamboni, F.; Gabbiani, D.; Schena, F.; Salvagno, G.L.;
Lippi, G.; Valenti, M.T. Increased Gene Expression of RUNX2 and SOX9 in Mesenchymal Circulating Progenitors
Is Associated with Autophagy during Physical Activity. Oxid. Med. Cell Longev. 2019, 2019, 8426259. [CrossRef]

32. Pino, A.M.; Rosen, C.J.; Rodriguez, J.P. In osteoporosis, differentiation of mesenchymal stem cells (MSCs)
improves bone marrow adipogenesis. Biol. Res. 2012, 45, 279–287. [CrossRef]

33. Camernik, K.; Mihelic, A.; Mihalic, R.; Haring, G.; Herman, S.; Marolt Presen, D.; Janez, A.; Trebse, R.;
Marc, J.; Zupan, J. Comprehensive analysis of skeletal muscle- and bone-derived mesenchymal stem/stromal
cells in patients with osteoarthritis and femoral neck fracture. Stem Cell Res. Ther. 2020, 11, 146. [CrossRef]

34. Chen, D.; Shen, H.; He, Y.; Chen, Y.; Wang, Q.; Lu, J.; Jiang, Y. Synergetic effects of hBMSCs and hPCs
in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects.
Mol. Med. Rep. 2015, 11, 1111–1119. [CrossRef]

35. Igarashi, M.; Kamiya, N.; Hasegawa, M.; Kasuya, T.; Takahashi, T.; Takagi, M. Inductive effects of
dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of
cultured primary rat osteoblasts. J. Mol. Histol. 2004, 35, 3–10. [CrossRef]

http://dx.doi.org/10.1002/cyto.a.23242
http://dx.doi.org/10.2174/1574888X11666160429122527
http://dx.doi.org/10.1002/sctm.17-0054
http://www.ncbi.nlm.nih.gov/pubmed/28834263
http://dx.doi.org/10.1186/s11658-016-0013-1
http://dx.doi.org/10.1002/jcp.27833
http://dx.doi.org/10.1038/nri2395
http://dx.doi.org/10.3390/ijms21072310
http://www.ncbi.nlm.nih.gov/pubmed/32230731
http://dx.doi.org/10.1002/cyto.a.23600
http://dx.doi.org/10.1007/s00198-007-0370-8
http://dx.doi.org/10.1080/14653240500319234
http://www.ncbi.nlm.nih.gov/pubmed/16236628
http://dx.doi.org/10.1155/2015/714230
http://dx.doi.org/10.1089/ten.tea.2014.0096
http://www.ncbi.nlm.nih.gov/pubmed/24980654
http://dx.doi.org/10.1098/rstb.2017.0218
http://dx.doi.org/10.1155/2019/8426259
http://dx.doi.org/10.4067/S0716-97602012000300009
http://dx.doi.org/10.1186/s13287-020-01657-z
http://dx.doi.org/10.3892/mmr.2014.2883
http://dx.doi.org/10.1023/B:HIJO.0000020883.33256.fe


Int. J. Mol. Sci. 2020, 21, 8309 17 of 18

36. Park, B.W.; Hah, Y.S.; Kim, D.R.; Kim, J.R.; Byun, J.H. Osteogenic phenotypes and mineralization of cultured
human periosteal-derived cells. Arch. Oral Biol. 2007, 52, 983–989. [CrossRef]

37. Loebel, C.; Czekanska, E.M.; Staudacher, J.; Salzmann, G.; Richards, R.G.; Alini, M.; Stoddart, M.J.
The calcification potential of human MSCs can be enhanced by interleukin-1beta in osteogenic medium.
J. Tissue Eng. Regen. Med. 2017, 11, 564–571. [CrossRef]

38. Sawa, N.; Fujimoto, H.; Sawa, Y.; Yamashita, J. Alternating Differentiation and Dedifferentiation between
Mature Osteoblasts and Osteocytes. Sci. Rep. 2019, 9, 13842. [CrossRef]

39. Hoemann, C.D.; El-Gabalawy, H.; McKee, M.D. In vitro osteogenesis assays: Influence of the primary cell
source on alkaline phosphatase activity and mineralization. Pathol. Biol. Paris 2009, 57, 318–323. [CrossRef]

40. Evans, J.F.; Yeh, J.K.; Aloia, J.F. Osteoblast-like cells of the hypophysectomized rat: A model of aberrant
osteoblast development. Am. J. Physiol. Endocrinol. Metab. 2000, 278, 832–838. [CrossRef]

41. Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent
cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84.
[CrossRef]

42. Serguienko, A.; Wang, M.Y.; Myklebost, O. Real-Time Vital Mineralization Detection and Quantification
during In Vitro Osteoblast Differentiation. Biol. Proced. Online 2018, 20, 14. [CrossRef]

43. Schneider, R.K.; Puellen, A.; Kramann, R.; Raupach, K.; Bornemann, J.; Knuechel, R.; Perez-Bouza, A.;
Neuss, S. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells
and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials 2010, 31, 467–480. [CrossRef]

44. Wiraja, C.; Yeo, D.C.; Chong, M.S.; Xu, C. Nanosensors for Continuous and Noninvasive Monitoring of
Mesenchymal Stem Cell Osteogenic Differentiation. Small 2016, 12, 1342–1350. [CrossRef]

45. Kaneto, C.M.; Lima, P.S.; Zanette, D.L.; Prata, K.L.; Pina Neto, J.M.; De Paula, F.J.; Silva, W.A., Jr. COL1A1 and
miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from
Osteogenesis Imperfecta patients. BMC Med. Genet. 2014, 15, 45. [CrossRef]

46. Shui, C.; Spelsberg, T.C.; Riggs, B.L.; Khosla, S. Changes in Runx2/Cbfa1 expression and activity during
osteoblastic differentiation of human bone marrow stromal cells. J. Bone Miner. Res. 2003, 18, 213–221.
[CrossRef]

47. Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A.L.; Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast
differentiation. Cell 1997, 89, 747–754. [CrossRef]

48. Zhang, Y.; Xie, R.L.; Croce, C.M.; Stein, J.L.; Lian, J.B.; Van Wijnen, A.J.; Stein, G.S. A program of microRNAs
controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. USA
2011, 108, 9863–9868. [CrossRef]

49. Nakashima, K.; De Crombrugghe, B. Transcriptional mechanisms in osteoblast differentiation and bone
formation. Trends Genet. 2003, 19, 458–466. [CrossRef]

50. Murakami, S.; Lefebvre, V.; De Crombrugghe, B. Potent inhibition of the master chondrogenic factor Sox9
gene by interleukin-1 and tumor necrosis factor-alpha. J. Biol. Chem. 2000, 275, 3687–3692. [CrossRef]

51. Lefebvre, V.; Smits, P. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res.
C Embryo Today 2005, 75, 200–212. [CrossRef] [PubMed]

52. Zhang, Z.M.; Jiang, L.S.; Jiang, S.D.; Dai, L.Y. Osteogenic potential and responsiveness to leptin of
mesenchymal stem cells between postmenopausal women with osteoarthritis and osteoporosis. J. Orthop. Res.
2009, 27, 1067–1073. [CrossRef] [PubMed]

53. Barbanti Brodano, G.; Terzi, S.; Trombi, L.; Griffoni, C.; Valtieri, M.; Boriani, S.; Magli, M.C. Mesenchymal
stem cells derived from vertebrae (vMSCs) show best biological properties. Eur. Spine J. 2013, 22, S979–S984.
[CrossRef]

54. Fragkakis, E.M.; El-Jawhari, J.J.; Dunsmuir, R.A.; Millner, P.A.; Rao, A.S.; Henshaw, K.T.; Pountos, I.; Jones, E.;
Giannoudis, P.V. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells:
Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine
fusion. PLoS ONE 2018, 13, e0197969. [CrossRef]

55. Jing, H.; Liao, L.; An, Y.; Su, X.; Liu, S.; Shuai, Y.; Zhang, X.; Jin, Y. Suppression of EZH2 Prevents the Shift
of Osteoporotic MSC Fate to Adipocyte and Enhances Bone Formation During Osteoporosis. Mol. Ther.
2016, 24, 217–229. [CrossRef]

56. Schildberg, F.A.; Hegenbarth, S.I.; Schumak, B.; Scholz, K.; Limmer, A.; Knolle, P.A. Liver sinusoidal endothelial
cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol. 2008, 38, 957–967. [CrossRef]

http://dx.doi.org/10.1016/j.archoralbio.2007.04.007
http://dx.doi.org/10.1002/term.1950
http://dx.doi.org/10.1038/s41598-019-50236-7
http://dx.doi.org/10.1016/j.patbio.2008.06.004
http://dx.doi.org/10.1152/ajpendo.2000.278.5.E832
http://dx.doi.org/10.1016/j.ab.2004.02.002
http://dx.doi.org/10.1186/s12575-018-0079-4
http://dx.doi.org/10.1016/j.biomaterials.2009.09.059
http://dx.doi.org/10.1002/smll.201502047
http://dx.doi.org/10.1186/1471-2350-15-45
http://dx.doi.org/10.1359/jbmr.2003.18.2.213
http://dx.doi.org/10.1016/S0092-8674(00)80257-3
http://dx.doi.org/10.1073/pnas.1018493108
http://dx.doi.org/10.1016/S0168-9525(03)00176-8
http://dx.doi.org/10.1074/jbc.275.5.3687
http://dx.doi.org/10.1002/bdrc.20048
http://www.ncbi.nlm.nih.gov/pubmed/16187326
http://dx.doi.org/10.1002/jor.20846
http://www.ncbi.nlm.nih.gov/pubmed/19215023
http://dx.doi.org/10.1007/s00586-013-3028-6
http://dx.doi.org/10.1371/journal.pone.0197969
http://dx.doi.org/10.1038/mt.2015.152
http://dx.doi.org/10.1002/eji.200738060


Int. J. Mol. Sci. 2020, 21, 8309 18 of 18

57. Schildberg, F.A.; Wojtalla, A.; Siegmund, S.V.; Endl, E.; Diehl, L.; Abdullah, Z.; Kurts, C.; Knolle, P.A.
Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology
2011, 54, 262–272. [CrossRef] [PubMed]

58. Langenbach, F.; Berr, K.; Naujoks, C.; Hassel, A.; Hentschel, M.; Depprich, R.; Kubler, N.R.; Meyer, U.;
Wiesmann, H.P.; Kogler, G.; et al. Generation and differentiation of microtissues from multipotent precursor
cells for use in tissue engineering. Nat. Protoc. 2011, 6, 1726–1735. [CrossRef]

59. Kalaszczynska, I.; Ruminski, S.; Platek, A.E.; Bissenik, I.; Zakrzewski, P.; Noszczyk, M.; Lewandowska-Szumiel, M.
Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media:
How to explain and how to manage? Biores. Open Access 2013, 2, 356–363. [CrossRef]

60. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/hep.24352
http://www.ncbi.nlm.nih.gov/pubmed/21488077
http://dx.doi.org/10.1038/nprot.2011.394
http://dx.doi.org/10.1089/biores.2013.0029
http://dx.doi.org/10.1006/meth.2001.1262
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Morphology and Proliferation Rate of BMSCs from Osteoporotic and Non-Osteoporotic Control Donors 
	Phenotypic Analysis and Immunomodulatory Capacity 
	Osteogenic, Adipogenic, and Chondrogenic Differentiation 
	Alkaline Phosphatase Intensity and Activity during Osteogenic Differentiation Process 
	Assessment of Osteogenic Differentiation 
	Osteoblast Marker Gene Expression 

	Discussion 
	Materials and Methods 
	Tissue Donors and Isolation of Bone Marrow-Derived MSCs 
	Morphologic Analysis 
	MTT Assay 
	Flow Cytometric Analysis 
	Immunomodulatory Capacity 
	Adipogenic Differentiation 
	Chondrogenic Differentiation 
	Osteogenic Differentiation 
	Alkaline Phosphatase Measurement, Optical Density Measurement, and Free Phosphate Assay 
	Real-Time Polymerase Chain Reaction 
	Statistics 

	References

