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Background
Veno-venous extracorporeal membrane oxygenation (VV-ECMO) has become the 
standard of care in cases of severe acute respiratory distress syndrome (ARDS) and 
extreme respiratory failure [1–3]. Even though the precise criteria for initiation of 
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Background:  The bicaval drainage under veno-venous extracorporeal membrane 
oxygenation (VV ECMO) was compared in present experimental study to the inferior 
caval drainage in terms of systemic oxygenation.

Method:  Two mathematical models were built to simulate the inferior vena cava-
to-right atrium (IVC → RA) route and the bicaval drainage-to-right atrium return 
(IVC + SVC → RA) route using the following parameters: cardiac output (QC), IVC 
flow/QC ratio, venous oxygen saturation, extracorporeal pump flow (QEC), and pulmo-
nary shunt (PULM-Shunt) to obtain pulmonary artery oxygen saturation (SPAO2) and 
systemic blood oxygen saturation (SaO2).

Results:  With the IVC → RA route, SPAO2 and SaO2 increased linearly with QEC/QC until 
the threshold of the IVC flow/QC ratio, beyond which the increase in SPAO2 reached a 
plateau. With the IVC + SVC → RA route, SPAO2 and SaO2 increased linearly with QEC/QC 
until 100% with QEC/QC = 1. The difference in required QEC/QC between the two routes 
was all the higher as SaO2 target or PULM-Shunt were high, and occurred all the earlier 
as PULM-Shunt were high. The required QEC between the two routes could differ from 
1.0 L/min (QC = 5 L/min) to 1.5 L/min (QC = 8 L/min) for SaO2 target = 90%. Correspond-
ing differences of QEC for SaO2 target = 94% were 4.7 L/min and 7.9 L/min, respectively.

Conclusion:  Bicaval drainage under ECMO via the IVC + SVC → RA route gave a 
superior systemic oxygenation performance when both QEC/QC and pulmonary shunt 
were high. The VV-V ECMO configuration (IVC + SVC → RA route) might be an attractive 
rescue strategy in case of refractory hypoxaemia under VV ECMO.
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extracorporeal therapy are still debated, its efficacy in cases of refractory hypoxae-
mia has been largely demonstrated [3, 4]. However, VV-ECMO may fail to restore 
a satisfactory level of oxygen saturation despite a significant extracorporeal blood 
flow. Direct determinants of systemic oxygenation are nowadays well known: pul-
monary shunt, effective extracorporeal blood flow, cardiac output, and theoretical 
value of mixed venous oxygen saturation (“SvO2”) [5, 6]. Thus, effective extracorpor-
eal blood flow, which is directly determined by the extracorporeal settings and recir-
culation phenomena, is the cornerstone of blood reoxygenation under VV-ECMO. 
Two recirculation mechanisms have imperatively to be distinguished; the structural 
recirculation that mainly depends on the chosen extracorporeal route, and on the 
other hand the direct recirculation that depends on many technical factors (position, 
orientation, size, length and pattern of cannulas, extracorporeal pump flow, local 
impedance…) as physiological factors (cardiac output, cardiac rhythm, tricuspid 
regurgitations, venous impedance, intrathoracic pressure, blood volume status…). 
[7, 8]

Since a 20 years, the most commonly used extracorporeal route under VV-ECMO 
is the inferior vena cava-to-right atrium (IVC → RA) route, with two main configu-
rations: femoro-jugular and femoro-femoral [2, 4]. This IVC → RA route is reputed 
simple and efficient [9]. However, despite extensive use, the IVC → RA route has two 
main limitations: the structural recirculation and the superior cava shunt (i.e., deoxy-
genated venous blood from superior vena cava [SVC] directly heading to pulmonary 
artery) [6–8]. These structural limits in relation to the reinfusion of reoxygenated 
blood in the superior vena cava (SVC) are inevitable when extracorporeal blood flow 
is higher than the blood flow into the IVC and cannot be avoided by a simple modi-
fication of cannulas position [6]. These two phenomena may explain extracorporeal 
therapy failures in cases of major pulmonary shunt.

Another extracorporeal route has been proposed to limit the phenomenon of struc-
tural recirculation and superior cava shunt: the bicaval drainage-to-right atrium 
return (IVC+SVC → RA) route [10]. The IVC+SVC → RA route may be performed 
using either a single dual-lumen cannula (e.g., Avalon Elite cannula, Getinge, Ger-
many) or three separate single-lumen cannulas (VV-V configuration) [10–12]. Using 
bicaval drainage and a proximal extracorporeal return, the IVC+SVC → RA route 
should be considered as a serial configuration, which should theoretically reduce 
structural recirculation. More important, the superior caval shunt, which is the 
main factor responsible for refractory hypoxaemia under V-V ECMO, would be also 
reduced; this is not possible with the IVC → RA route [6]. However, despite a strong 
physiological rational to limit the superior caval shunt, evidences on the superior-
ity of the IVC+SVC → RA route to reoxygenate systemic blood is lacking. Therefore, 
we wanted to compare the IVC → RA route with the IVC+SVC → RA route in terms 
of blood reoxygenation performance using a recently published ECMO mathematical 
model [6].

The main objective of present study was to compare the IVC → RA route (V−V 
configuration) to the IVC+SVC → RA route (VV−V configuration) using mathemati-
cal modelling (systemic oxygenation, required extracorporeal blood flow) and to iden-
tify clinical situations, where bicaval drainage might be a relevant strategy.
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Methods
Physiological bases of the two models

Two mathematical models were built on XLSTAT 7.5.2 software (Addinsoft, New York) 
considering the presence of two central venous systems, the IVC and the SVC [6].

The main abbreviations used in our two models are as follows:
QC, cardiac output.
QSVC, blood flow in the superior vena cava.
QIVC, blood flow in the inferior vena cava.
kIVC, proportion of cardiac output coming from the inferior vena cava.
QEC, extracorporeal pump flow.
QEff, effective extracorporeal pump flow.
PULM-Shunt, proportion of flow crossing the pulmonary shunt.
“SVO2”, theoretical value of mixed venous blood oxygen saturation, which is the prod-

uct of IVC, SVC and coronary sinus blood re-entering the heart. “SVO2” value could 
theoretically be assessed in absence of ECMO therapy in the pulmonary artery, but 
becomes unmeasurable under ECMO therapy.

SPAO2, blood oxygen saturation in the pulmonary artery.
SaO2, arterial blood oxygen saturation.
The first model uses one only site of extracorporeal drainage into the IVC (the 

IVC → RA route), the other uses two extracorporeal drainage sites into the IVC and the 
SVC (the IVC+SVC → RA route). These two models are based on blood flows continuity 
and integrate blood flow and oxygen saturation for each anatomic compartment (Fig. 1). 
The admixture of blood produced by the ECMO reinfusion in the RA was considered to 
be homogeneous in these models [12, 13]. To better apprehend structural phenomena 
induced by these configurations, no direct recirculation was considered in the two mod-
els, leading to ideal situations for each of them. The IVC+SVC → RA route was, moreo-
ver, considered as a serial design without any structural recirculation when QEC ≤ QC. 
When QEC/QC > 1, QEff was equal to QC and QEC could only increase due to structural 
recirculation.

The main equations for the two models are presented in the Additional file 1.

Modelling clinical situations

The settings for four parameters (kIVC, “SvO2”, QC, PULM-Shunt) were determined a pri-
ori for the two models to represent different clinical scenarios: kIVC constant and arbi-
trary defined at 0.67 [14, 15]; “SvO2” constant and arbitrary defined at 60%; QC constant 
and arbitrary defined at 5 or 8  L/min; PULM-Shunt ranging from 5 to 100% in steps 
of 5%. For each analysis, once these clinical conditions were defined, QEC was gradually 
increased to determine SaO2 for each route. The QEC value was expressed by the QEC/QC 
ratio in steps of 0.1 (ranging from 0 to 2).

Study design

The consequences of PULM-Shunt on SaO2 were first represented according to the value 
of SPAO2 to better understand this pathophysiological concept under VV-ECMO, as well 



Page 4 of 12Charbit et al. Intensive Care Medicine Experimental           (2022) 10:10 

as the SPAO2 objectives of extracorporeal therapy, knowing that SPAO2 is the “SvO2” in 
the absence of extracorporeal therapy. A specific analysis was also performed for differ-
ent target levels of SaO2 (90%, 94%, 98%).

Oxygenation performance of ECMO therapy was also determined for each route 
according the QEC/QC ratio, which was proven to be a robust reflect of extracorporeal 
therapy (QEC component) on oxygenation while integrating physiological conditions and 
tissue needs (QC component). SPAO2 was thus obtained according to different “SvO2” 
levels, whereas SaO2 was obtained according to PULM-Shunt (“SvO2” constant at 60%).

Finally, the difference in required QEC to obtain the SaO2 targets (90%, 94%, 98%) 
between the IVC → RA and IVC+SVC → RA routes was calculated according to PULM-
Shunt. These results were expressed using the QEC/QC ratio but also as crude values of 
QEC (L/min) to better reflect clinically current situations (QC = 5 and 8 L/min).

Results
PULM‑Shunt and extracorporeal therapy

For a given SPAO2, SaO2 was linearly and inversely associated with PULM-Shunt (Fig. 2). 
At the two extremes: SaO2 = 100% when PULM-Shunt = 0% and SaO2 = SPAO2 when 
PULM-Shunt = 100%. As expected, the higher the SPAO2, the higher the SaO2 was for a 
given PULM-Shunt, highlighting the direct influence of extracorporeal therapy.

When PULM-Shunt was low, a large range of SPAO2 values allowed to obtain an SaO2 
target of 90% or more: with a PULM-Shunt = 20%, an SPAO2 value comprised between 50 
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Page 5 of 12Charbit et al. Intensive Care Medicine Experimental           (2022) 10:10 	

and 90% allowed to obtain an SaO2 target between 90 and 98% (Fig. 2B). Corresponding 
boundaries values of SPAO2 for a PULM-Shunt = 40% were 75% and 95%.

In contrast, when PULM-Shunt was high, only a high SPAO2, close to 90%, allowed 
to obtain an SaO2 target of 90% or more: with a PULM-Shunt = 60%, an SPAO2 value 
comprised between 83 and 97% allowed to obtain an SaO2 target between 90 and 98%. 
Corresponding boundaries values of SPAO2 for a PULM-Shunt = 80% were 88% and 98% 
(Fig. 2B).

Oxygenation performance and extracorporeal routes

Using the IVC → RA route, SPAO2 increased linearly with QEC/QC until the thresh-
old of 0.67. Beyond this threshold, the increase in SPAO2 rise was strongly reduced 
and reached a plateau (Fig. 3). SaO2 showed the same behaviour as SPAO2, with a value 
directly dependent on PULM-Shunt. Despite a clinically important QEC/QC, SaO2 < 94% 
may occur when PULM-Shunt is significant: QEC/QC = 0.6 with a PULM-Shunt > 35% 
for example, QEC/QC = 0.8 with a PULM-Shunt > 50%, or and QEC/QC = 1 with a 
PULM-Shunt > 60%.

In contrast, with the IVC+SVC → RA route, SPAO2 and SaO2 increased linearly with 
QEC/QC until it reached 1, corresponding to a value of 100%. With a QEC/QC > 0.86, SaO2 
was ≥ 94% regardless of the importance of PULM-Shunt.

Comparison of the IVC → RA and IVC+SVC → RA routes

The higher the SaO2 target, the more the difference in required QEC between the two 
routes was observed for low values of PULM-Shunt: 80% for an SaO2 target of 90%, 45% 
for an SaO2 target of 94%, and 12% for an SaO2 target of 98%. Similarly, the higher the 
SaO2 target, the higher this difference was for a given PULM-Shunt (Fig. 4).

The difference in required QEC between the two routes for an SaO2 target of 90% could 
reach 1.0 L/min when QC = 5 L/min, and 1.5 L/min when QC = 8 L/min (Fig. 5). For an 
SaO2 target of 94%, this difference in required QEC could reach 4.7 L/min and 7.9 L/min, 
respectively. A target SaO2 of 98% could not be obtained with the IVC → RA route when 
PULM-Shunt was 28% or more.

Discussion
Present study compared the oxygenation performance of the IVC → RA route versus the 
IVC+SVC → RA route using mathematical ECMO models. First, our work has demon-
strated that a significant pulmonary shunt imposes a high SPAO2 to maintain physiologi-
cal systemic oxygenation. Second, SaO2 under the IVC → RA route inevitably reaches a 
plateau despite increasing QEC, whereas SaO2 under the IVC+SVC → RA route increases 
linearly with QEC until 100%. The difference between these two routes occurs indeed in 
parallel with structural recirculation, corresponding to QEC > QIVC. Third, the present 
study highlights that the higher the SaO2 target, the earlier is the difference in required 
QEC/QC between the IVC → RA and IVC+SVC → RA routes, and the greater this differ-
ence for low pulmonary shunt. Our analysis has also revealed that several SaO2 levels 
cannot be obtained under the IVC → RA route when pulmonary shunt was high because 
of structural recirculation and superior caval shunt. Bicaval drainage could, therefore, be 
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a part of a rescue therapy when pulmonary shunt induces refractory hypoxaemia under 
the IVC → RA route.

Understanding the pulmonary shunt and clinical implications

The expression of pulmonary shunt as a simple percentage may appear abstract in clini-
cal practice, especially in cases of heterogeneous ARDS or unsystematized alveolar 
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damage. Definition of pulmonary shunt indeed is not only defined by the volume of 
aerated lung/alveolar collapse, but rather by the percentage of pulmonary blood circu-
lation that will not be oxygenated through the lung; two theoretical flows into the pul-
monary venous return may thus be distinguished: reoxygenated blood (SO2 = 100%) 
and deoxygenated blood (SO2 = SPAO2). This definition includes redistribution of the 
pulmonary circulation, as well as anatomic and functional pulmonary shunts [17, 18]. 
In clinical practice without ECMO therapy, SPAO2 and “SvO2” are logically equal [19]. 
Pulmonary shunt is simply accessible with SaO2, when the value of “SvO2” is known 
(SaO2 = 100 × (1 − PULM-Shunt) + “SvO2” × PULM-Shunt).

Under VV-ECMO, the “SvO2” becomes a theoretical value translating cellular extrac-
tion that cannot be measured. Moreover, the relationship between PULM-Shunt and 
SaO2 becomes more complex, because it is strongly influenced by the variations of 
SPAO2 induced by extracorporeal support (Fig. 2). Effects of VV-ECMO on oxygenation 
may indeed be simply summarized by an increase in SPAO2, which, combined with the 
PULM-Shunt, directly determines SaO2. For these reasons, we focused the first part of 
our analysis on the inter-relationship between these determinants. Thus, our work dem-
onstrates innovatively that for a low PULM-Shunt, a large range of SPAO2 values will 
generate a physiological SaO2; in other words, a large range of QEC values will generate 
a physiological SaO2. In contrast, in the case of significant PULM-Shunt, only a high 
SPAO2 target obtained by high QEC will allow an acceptable SaO2 to be maintained. In 
this case, a small reduction in SPAO2 may induce a strong decrease in systemic oxygena-
tion, highlighting the importance of extracorporeal rheological conditions in the most 
critical situations (Fig.  2). The present analysis allows, therefore, better understanding 
of the interactions between ECMO therapy and the clinical pulmonary situation. In 
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addition, Fig. 2 shows that a high SPAO2 generated by ECMO could mask significant pul-
monary impairment, which will not be visible on SaO2. This observation explains why 
the SaO2 target under ECMO therapy should not be maximal to better understand the 
clinical worsening and the status of alveolar recruitment.

Structural recirculation and extracorporeal routes

Direct recirculation under VV-ECMO is well known by clinicians, unlike structural recir-
culation, which is less understood [7, 20, 21]. However, structural recirculation is inevi-
table under the IVC → RA route when QEC exceeds QIVC. [6] The direct consequence 
is that effective QEC, extracorporeal blood well oxygenated, becomes lower than the set 
QEC. In parallel, the superior cava shunt caused by the admixture of extracorporeal rein-
fusion in SVC will favour hypoxaemia despite a high value of QEC. All these mechanisms 
are intrinsic and inevitable limits of this route that cannot be reduced by any reposi-
tioning of cannulas. Thus, refractory hypoxaemia is possible using the IVC → RA route 
when the pulmonary shunt is massive despite optimized ECMO therapy (Fig.  3) [22]. 
This has been demonstrated by our “ideal” model that does not integrate direct recir-
culation. Other routes such as to right atrium-to-inferior vena cava were also proposed, 
but they showed a higher rate of structural recirculation [9, 12, 23]. In contrast, the 
IVC+SVC → RA route using bicaval extracorporeal drainage behaves like a serial design, 
without structural recirculation and with a QEff close to the QEC. The direct consequence 
is that the superior cava shunt may be reduced allowing systemic oxygenation to be 
maintained in the case of a massive PULM-Shunt (Fig. 3). Three conclusions can thus be 
drawn from the comparison between IVC → RA and IVC+SVC → RA routes. First, the 
difference between these two routes in terms of oxygenation is mainly observable when 
PULM-Shunt is severe (Fig. 4). Second, this difference of performance is higher when 
SaO2 target and/or PULM-Shunt are high. Third, the IVC+SVC → RA route becomes 
superior only when structural recirculation occurs under IVC → RA route.

Clinical indications of bicaval drainage

Our study explores, therefore, the clinical situations, where the IVC+SVC → RA route 
may be superior to the IVC → RA route in terms of blood reoxygenation. The perfor-
mances of these two routes may be considered as comparable in the absence of structural 
recirculation (i.e., QEC < QIVC) or when PULM-Shunt is moderate. In the case of refrac-
tory hypoxaemia, the first step of management should be an increase in the QEC/QC 
ratio, either increasing QEC and/or decreasing QC (β-blockers, sedation, etc.…) [24, 25]. 
However, the change of QEC/QC ratio may also increase direct recirculation leading to an 
uncertain result. Furthermore, ELSO recommendations consider that as SaO2 around 
85% could be an acceptable clinical value [26]. Anyway, in the presence of significant 
structural recirculation under IVC → RA route, the IVC+SVC → RA route appears to be 
superior in terms of systemic oxygenation. These assumptions are only valuable if direct 
recirculation phenomenon does not increase with the change of route. Our analysis sup-
ports thus that, in the case of refractory hypoxaemia, the IVC+SVC → RA route should 
be used when other optimization measures have failed. It is nevertheless important to 
understand that its added value depends on the target SaO2. Differences are particularly 
visible for high target of SaO2 (Fig. 4); the reduction in QEC using bicaval drainage may 
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rapidly reach 1–2 L/min, which may make a real difference in clinical practice (Fig. 5). 
Moreover, several SaO2 targets will not be attainable with the IVC → RA route, because 
required QEC is too high.

Technical considerations for the VV‑V configuration

Bicaval drainage can be realized as soon as implantation of ECMO using a dual-lumen 
cannula via the SVC and positioned across the RA [27]. However, a bicaval dual-lumen 
cannula imposes large diameters (≥ 27 Fr) to obtain an acceptable QEC and its position 
is reputed instable. Furthermore, direct recirculation may widely increase in cases of 
moderate shifting [11]. Finally, this kind of device may hardly be proposed as second 
step when clinical situation remains critical, because a change of configuration at this 
phase would be too risky. A second option could be to use a multi-staged interrupted 
drainage cannula upon ECMO implantation [28]. However, this configuration requires 
transatrial cannulation, which may be technically challenging during its placement. Fur-
thermore, as dual-lumen cannula, repartition between superior and inferior drainage is 
not known and probably strongly varies with several factors (i.e., QEC, local impedance, 
drainage pressure, cannula size…). Finally, a cannula change in case of critical situation 
does not appears without risk. A third option is the use of a triple cannulation, the VV-V 
ECMO configuration: two drainage cannulas (IVC and SVC) and one reinfusion cannula 
(RA) [10]. VV-V ECMO allows a choice of optimal and sufficient diameters for each can-
nula and a better precision and stability of their positioning. Superior/inferior drainage 
ratio may be adjusted by cannulas mobilization and external compression of the tubing 
to favour one or the other of the drainages to limit direct recirculation. Moreover, this 
attractive configuration may be proposed as a stepwise procedure if the IVC → RA route 
has failed (Fig. 5). For example, conversion from the femoro-jugular V-V configuration 
to a VV-V configuration is easy, keeping the two cannulas previously placed as drain-
age cannulas and repositioning a third cannula for the return of extracorporeal blood 
into the RA (Fig.  6). An accurate positioning in the RA and a single-stage design are, 
however, indispensable to limit direct recirculation. In addition to the reduction in the 
superior cava shunt and optimization of the QEff, this configuration would also allow 
improvement in the impedance of venous blood drainage and maximal pump flow [10]. 
We strongly believe that this sequenced strategy of extracorporeal respiratory support 
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is the most appropriate way to adapt to the clinical needs of patients and their delayed 
worsening; a gradual response when necessary! However, prospective studies must be 
done to prove the safety and efficacy of this kind of strategy.

Potential limitations of the present study

First, direct recirculation was not considered in our analysis. A bad positioning of 
a cannula may indeed significantly increase recirculation phenomena, especially 
under the IVC+SVC → RA route or when QEC is high. Furthermore, the heart cycle 
and tricuspid valve closure may reinforce these phenomena. Thus, behaviour of VV-V 
configuration, more at risk of direct recirculation and more dependent from cannula 
positioning, could be less efficient in term of oxygenation than the ideal model used 
in our works. However, it seems to us essential to understand the differences in struc-
tural recirculation according to different extracorporeal routes to identify the limita-
tions and disadvantages of each ECMO configuration. Second, our IVC+SVC → RA 
model was built as previously detailed without any structural recirculation when 
QEC ≤ QC. This simulates obviously an ideal situation that in clinical conditions 
depends on many parameters, such as position of each cannulas, theirs patterns, their 
diameters, local impedances, and thoracic or abdominal pressures. In clinical prac-
tice, a structural recirculation may exist under IVC+SVC → RA route, which logi-
cally alters performance of this configuration. Third, our model did not consider the 
influence of dissolved oxygen in the reoxygenated blood. A strong increase in the par-
tial pressure of oxygen (e.g., oxygen fraction crossing the oxygenator close to 100%) 
may increase the mass of oxygen transferred into the extracorporeal circulation by 
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Fig. 6  Changing the configuration from VV ECMO to VV-V ECMO. After clamping the 2 initial cannulas, 
tubings can be cut in conserving some length. An Y-piece connector is then positioned to reunite these 
2 tubings. This Y-piece is also connected to the drainage tubing of ECMO system. Oxygenator used in V-V 
configuration may be conserved or changed if its performance is too altered. All tubings must be totally 
purged of air before connection. A complementary tubing may be necessary on return line between ECMO 
system and returning cannula if oxygenator is conserved. Once totally purged of air, returning cannula may 
be connected to the ECMO system and VV-V extracorporeal circulation may be started. In our experience, the 
femoral/jugular couples (29Fr–55 cm)/(22Fr–15 cm) and (27Fr–61 cm)/(20Fr–15 cm) have good balance in 
term of drainage, with flow percentages frequently comprised between 60%/40% and 70%/30%, respectively
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increasing the mass of dissolved oxygen. However, we assume that this analysis bias 
exists similarly for each route and has a modest influence on the SaO2 [29, 30]. Any-
way, to better understand structural recirculation phenomena, it appears more rel-
evant to apprehend extracorporeal oxygenation determinants without mechanisms of 
solubility of gases. Fourth, pulmonary shunt may vary during the respiratory cycle or 
by a change in the airway pressure level by modifying West’s lung zones [31]. Many 
clinical factors influencing the pulmonary shunt could indeed be integrated into the 
model. However, we believe that this simplified approach offers a global understand-
ing of the clinical situation and balance between lung and extracorporeal oxygena-
tion, which is the central question during VV-ECMO management.

Conclusion
Our mathematical modelling has allowed us to compare the differences between the 
IVC → RA and IVC+SVC → RA routes in terms of oxygenation performance. The usual 
IVC → RA route generates inevitably a structural recirculation and a superior cava 
shunt, which may lead to refractory hypoxaemia in extreme cases. The IVC+SVC → RA 
route would not suffer from these structural limitations. The present study suggests, 
therefore, that the VV-V ECMO configuration might be an attractive therapeutic option 
when VV-ECMO does not allow sufficient oxygenation, provided that the configuration 
change is not associated with a significant increase of direct recirculation.
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