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Gastric cancer (GC) is a malignant tumor with high mortality and poor prognosis. Immunotherapies, especially immune
checkpoint inhibitors (ICI), are widely used in various tumors, but patients with GC do not benefit much from
immunotherapies. Therefore, effective predictive biomarkers are urgently needed for GC patients to realize the benefits of
immunotherapy. Recent studies have indicated that long noncoding RNAs (lncRNAs) could be used as biomarkers in the
immune landscape of multiple tumors. In this study, we constructed a novel immune-related lncRNA (irlncRNA) risk model
to predict the survival and immune landscape of GC patients. First, we identified differentially expressed irlncRNAs
(DEirlncRNAs) from RNA-Seq data of The Cancer Genome Atlas (TCGA). By using various algorithms, we constructed a risk
model with 11 DEirlncRNA pairs. We then tested the accuracy of the risk model, demonstrating that the risk model has good
efficiency in predicting the prognosis of GC patients. Inner validation sets were further used to confirm the effectiveness of the
risk model. In addition, our risk model has a preferable performance in predicting the immune infiltration status of tumors,
immune checkpoint status of the patients, and immunotherapy score. In conclusion, our risk model may provide insights into
the prognosis of and immunotherapy strategy for GC.

1. Introduction

Gastric cancer (GC), one of the most common malignant
tumors globally, ranks as the fifth and fourth most common
cause of cancer incidence and mortality, respectively [1].
The morbidity of GC has decreased year by year in many
areas, but the incidence of gastric cancer in Asia, especially
in eastern Asia, remains the highest [1]. Although great
progress has been made in the diagnosis and treatment of
GC in the last decade, the overall survival of patients after
treatment with conventional first-line chemotherapy and
second-line chemotherapy remains poor, especially given
that the median survival of advanced gastric cancer (AGC)
is less than one year [2].

In recent years, increasing research on immunity, immu-
notherapy, and immune checkpoint-related treatment has
made effective treatment possible [3]. Immunotherapy pro-
longs the overall survival (OS) of patients with a variety of
cancers [4–7]. Most types of tumors that benefit from
immunotherapy have increased somatic mutations [8].
Patients with GC also have a higher somatic mutation rate,
indicating that immunotherapy might be effective for GC
patients [9]. At present, immunotherapy for gastric cancer
mainly includes anti-CTLA-4, anti-PD-1/PD-L1, or the
combination of anti-CTLA-4 and anti-PD-1 antibodies
[10]. A phase II clinical study including 18 patients has indi-
cated that tremelimumab, a monoclonal antibody targeting
CTLA-4, is effective in the treatment of late-stage GC [11].

Hindawi
International Journal of Genomics
Volume 2022, Article ID 4105280, 23 pages
https://doi.org/10.1155/2022/4105280

https://orcid.org/0000-0003-1238-6126
https://orcid.org/0000-0001-5265-9745
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4105280


However, another phase II clinical study has revealed that
ipilimumab (another inhibitor of CTLA-4) does not prolong
the OS of patients [12]. Several clinical trials have reported
that anti-PD-1 monoclonal antibodies prolong the OS of
GC patients [13, 14]. However, another phase III trial has
demonstrated that pembrolizumab does not significantly
prolong the OS of patients with GC [15]. Immunotherapy
is not effective for all patients; it is only for some patients.
Therefore, it is of great significance to select the proper
patients to receive immune therapy. At present, the role
and type of immune landscape in the prognosis of GC
remain largely unknown. Identification of infiltrating
immune cells is associated with cancer prognosis and new
immune therapeutic targets, which might provide meaning-
ful clues for the future treatment of gastric cancer, especially
for immunotherapy.

lncRNAs are defined as noncoding RNAs with a length
greater than 200 nucleotides [16]. lncRNAs account for up
to 97% of RNA in the cell and were once considered as insig-
nificant “noise” [17, 18]. Recent studies have revealed that
various lncRNAs are abnormally expressed in many cancers
and regulate numerous biological processes associated with
tumorigenesis [19–22]. Some lncRNAs have been identified
as potential biomarkers for diagnosis, prognosis, and thera-
peutic targets in multiple human cancers [23–25]. Moreover,
lncRNAs have been reported to play vital roles in cancer
immunity [26]. Recent evidence has demonstrated that
lncRNAs could also be used as biomarkers in predicting
the immune landscape of multiple cancers [27, 28]. How-
ever, the correlation between lncRNAs and the immune
landscape in GC remains largely unknown.

In the present study, we constructed a novel prognostic
model based on immune-related lncRNA (irlncRNA) pairs.
Compared with the single-gene prognostic model, the two-
biomarker combination prognostic model is superior in pre-
dicting the survival of GC patients obtained from the TCGA
databases. In addition, we explored the relationship between
the risk model and immune cell infiltration, immune check-
points, and immunotherapy. We demonstrated that our
model shows advanced efficiency in predicting the survival
of patients, the infiltration of immune cells, and the effec-
tiveness of immunotherapy.

2. Materials and Methods

2.1. Data Acquisition, Processing, and Differentially
Expressed Analysis. The transcriptome data of gastric cancer
(GC) and matched clinical information were obtained from
TCGA-STAD project (https://tcga-data.nci.nih.gov/tcga/).
Patients with survived less than 30 days and incomplete clin-
ical information were excluded. The human GTF file was
downloaded from Ensembl (http://asia.ensembl.org) and
used to obtain lncRNA expression data from transcriptome
data. The certified immune-related genes in the ImmPort
database (http://www.immport.org) were obtained and used
to identify immune related lncRNAs (irlncRNAs) by using
coexpression strategy. We used 1706 certified immune-
related genes to identify immune-related lncRNAs (irlncR-
NAs) using a screening based on Pearson’s correlation anal-

ysis (threshold of ∣R2 ∣ >0:4; P < 0:001). Then, limma
package of R software was utilized to screen differential
irlncRNAs (DEirlncRNAs) between tumor tissue and adja-
cent normal tissues (FC > 2, P < 0:05). This study was
approved by the Ethics Committee of the first affiliated hos-
pital of Chongqing medical university.

2.2. Definition of Pairing DEirlncRNAs. The DEirlncRNAs
were cyclically paired (such as lncRNA A and lncRNA B)
to construct a new matrix. In this matrix, the value of each
pair is calculated as follows: if the expression level of
lncRNA A is higher than lncRNA B, the value of this
lncRNA pair (V) will be defined as V = 1; if the expression
level of lncRNA A is lower than lncRNA B, the value of this
lncRNA pair will be defined as V = 0. If the V value of a
paired lncRNA is 0 or 1 in more than 80% of the samples,
this paired lncRNA will be removed. The rest lncRNA pairs
were considered as valid match and used for further analysis.

2.3. Construction and Prognosis of the Risk Model. We per-
formed univariate analysis to identify prognostic lncRNA
pairs. Then, the least absolute shrinkage selection operator
(LASSO) was conducted for 1000 cycles to acquire risk
model (frequency more than 100 times). Next, the lncRNA
pairs in risk model were used for the Cox regression analysis
to acquire the risk score. The calculation of risk score is as
follows: Risk scoreðpatientsÞ =∑K

i=1 βi ∗ S i. The accuracy of
the prognostic model was assessed by a time-dependent
receiver operating characteristic (ROC). The maximum
inflection point of the ROC curve was identified and consid-
ered as the cut-off point to distinguished high or low-risk
patients. By using survival package and survminer package
of R software, we performed Kaplan-Meier analysis to visu-
alize the survival difference between the high-risk group and
the low-risk group.

2.4. Validation of the Risk Model. To further verify the accu-
racy of our risk model, we randomly divided all samples into
two sets: validation set 1 and validation set 2 at a ratio of
5 : 5. A total of 153 samples and 152 samples were enrolled
into validation set 1 and validation set 2, respectively. By
using time-dependent ROC curve, we validated the accuracy
of our risk model in two validation sets. The maximum
inflection point of the ROC curve was identified and visual-
ized. The survival status of high-risk group patients and low-
risk group patients was visualized using Kaplan-Meier curve.

2.5. Clinical Application Value of the Risk Model. A chi-
square test was performed to analyze the relationship
between the risk model and clinicopathological characteris-
tics. Univariate analysis was used to identify whether risk
score and clinical features were associated with the prognosis
of patients. Multivariate analysis was used to analyze
whether risk score has independent prognostic function.
ROC curve and decision curve analysis (DCA) were per-
formed to validate the clinical application accuracy of the
risk model. In addition, the “regplot” and “survival” R pack-
ages were used to construct a nomogram for predicting sur-
vival time of patients. The calibration curve was plotted to
assess the accuracy of the nomogram.
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2.6. Correlation between the Risk Model and Immune
Infiltration Cells. An integrated TCGA immune infiltration
data including TIMER, CIBERSORT, XCELL, QUANTI-
SEQ, MCPcounter, EPIC, and CIBERSORT was down-
loaded from TIMER2.0 (https://timer.comp-genomics.org).
The Wilcoxon test was performed to analyze the difference
of immune infiltrating status between the high-risk group
and low-risk group. Spearman correlation analysis was uti-
lized to analyze the relationship between the immune infil-
trating cells and risk score. In above analysis, the R
packages of “limma,” “pheatmap,” “scales,” “ggplot2,”
“ggtext,” and “ggpubr” were used. Single-sample gene set
enrichment analysis (ssGSEA) was utilized to evaluate the
difference of immune pathways between the high-risk group
and the low-risk group.

2.7. Asses the Clinical Significance of the Risk Model in
Immune Treatment. Human leukocyte antigen (HLA) and
immune check point genes’ expression difference between
high-risk group and low-risk group were assessed by using
“limma,” “reshape2,” “ggplot2,” and “ggpubr” package of R
software. In addition, the immunotherapy score data were
downloaded from (https://tcia.at/). Tumor immune dys-
function and exclusion prediction score were acquired from
(http://tide.dfci.harvard.edu/). The potential sensitivity of
high and low-risk group patients to immunotherapy was
evaluated to further verify the prognosis function of our risk
model.

2.8. Statistical Analyses. All data were processed with Perl
(5.30.1) or R (version 4.1.0) software. The Wilcoxon rank-
sum test was used for differential expressed irlncRNAs.
Spearman correlation test and chi-square test were used for
the correlation analysis. Survival analyses were performed
using the Kaplan-Meier method with log-rank test.

3. Results

3.1. Identification of Differentially Expressed irlncRNAs in
Gastric Cancer. The workflow of the present study is sum-
marized in Figure 1. First, we obtained transcription profil-
ing data and corresponding clinical information from The
Cancer Genome Atlas (TCGA) database, including 30 nor-
mal samples and 343 tumor samples. We then annotated
the gene symbols to identify lncRNAs and mRNAs accord-
ing to the human GTF files. After acquiring the lncRNAs,
we performed coexpression analysis between certified
immune-related genes and lncRNAs, identifying 1030
immune-related lncRNAs (irlncRNAs). Among these
irlncRNAs, 107 were revealed to be differentially expressed
irlncRNAs (DEirlncRNAs). Twelve DEirlncRNAs were
downregulated, and 95 DEirlncRNAs were upregulated
(Figures 2(a) and 2(b)).

3.2. Construction of the Risk Model Using DEirlncRNA Pairs.
The DEirlncRNAs were cyclically paired to construct a new
matrix containing DEirlncRNA pairs. A total of 4333
DEirlncRNA pairs were considered valid matches and used

RNA seq of STAD in TCGA (Normal = 30, Tumor = 343) Human GTF file

Anootated lnRNAs

Tumor patients with survival >30 Days 

Univariate analysis

Immune related lnRNAs (1030) 

Differential immune related lnRNAs (107) 

DEirlncRNA pairs (4333) 

DEirlncRNA pairs Risk Model (11) 

Prognosis related DEirlncRNA pairs (29)

Immnue related genes

R>0.4, P<0.001 

Diff analysis (FC>2, P<0.05) 

Cyclically single paired 0/1 >80% were exclude

P<0.005

Improved Lasso regression analysis

Prognosis analysis Inner validation Correlation with immune

Figure 1: Work flow of this study.
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for further analysis. After excluding the patients whose sur-
vival time was less than 30 days, a total of 305 tumor samples
were enrolled to conduct univariate analysis. Twenty-nine
DEirlncRNA pairs were identified to be related to the sur-
vival of the patients (Figure 2(c)). Next, Lasso regression
analysis was performed to determine the DEirlncRNA pairs
with the best prognostic value (Figures 3(a) and 3(b)). We
obtained a risk model based on 11 DEirlncRNA pairs
(Figure 3(c)). A time-dependent receiver operating charac-
teristic (ROC) curve was constructed to verify the accuracy
of the risk model. The AUC value confirmed that the identi-
fied prognostic model was efficient in predicting the survival
of GC patients (Figures 3(d)–3(f)).

According to the risk model, we divided patients into a
high-risk group and a low-risk group. We observed that
there were more deaths among patients in the high-risk
group than those in the low-risk group (Figures 4(a) and
4(b)). In addition, Kaplan-Meier analysis showed that
patients in the high-risk group had poorer survival than
those in the low-risk group (Figure 4(c)).

3.3. Inner Validation of Risk Model. To further validate the
predictive efficiency of the risk model, we randomly divided
305 patients into two validation sets as follows: validation set
1 (153 patients) and validation set 2 (152 patients). We then
tested the accuracy of the risk model by using a time-
dependent ROC curve (Figures 5(a)–5(f)) and found that
our risk model had a preferable prognostic performance in
the two validation sets. The best AUC values in validation
set 1 and validation set 2 were 0.817 and 0.898
(Figures 5(a) and 5(b)), respectively. After sorting the
patients according to risk score, we observed that more
patients died in the high-risk group than in the low-risk

group (Figures 6(a) and 6(c)). Patients with high risk in
the two validation sets had a poorer survival probability than
low-risk patients (Figures 6(b) and 6(d)). Our results dem-
onstrated that the risk model has reliable predictive perfor-
mance in patients with GC.

3.4. Independent Prognostic Value of the Risk Model. To
explore the correlation between the risk model and clinical
characteristics of the patients, we divided the patients into
high- and low-risk groups. We found that our risk model
had a positive correlation with patient tumor stage and T
stage (Figures 7(a) and 7(c) and 7(d)). In addition, the risk
model had a negative correlation with patient age
(Figures 7(a) and 7(b)). These results indicated that patients
with a higher tumor stage and T stage or with younger age
might have poor survival. To further define the independent
prognostic value of the risk model, we conducted univariate
analysis and multivariable analysis. The results demon-
strated that the risk score could be used as an independent
prognostic index (Figure 7(f)). ROC curve and decision
curve analysis (DCA) were performed to validate the clinical
application accuracy of the risk model (Figures 7(e) and
7(g)). These results indicated that our risk model has good
performance in independent prognosis.

To verify the prognosis of our risk model, we con-
structed a nomogram for predicting the survival time of
patients (Figure 8(a)). The calibration curves at one year,
three years, and five years were also plotted to assess the
accuracy of the nomogram. The predicted survival time of
patients at one, three years, and five years was almost consis-
tent with the actual survival time (Figures 8(b)–8(d)), which
further proved the accuracy of the risk model.
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Figure 2: DEirlncRNAs were identified to obtain prognosis-related irlncRNAs. Heatmap was used to visualize the expression of
DEirlncRNAs (a). Volcano map was utilized to visualize upregulated and downregulated DEirlncRNAs (b). Univariate analysis was
performed to identify prognosis-related DEirlncRNA pairs (c).
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Figure 3: Continued.
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3.5. Association between the Risk Model and Immune
Infiltration Cells. Our risk model was constructed using
DEirlncRNA pairs. The status of immune cells in tumors
has been reported to be associated with the effectiveness of
immunotherapy [29–31]. To better understand whether the
prognostic function of our model is related to the tumor
immune microenvironment, we obtained the immune infil-
tration status of GC from TIMER2.0 and compared the dif-
ference in infiltrating immune cells between the high-risk
group and the low-risk group (Figures 9(a) and 9(b)). The
immune infiltration of most T cells was negatively correlated
with the risk score (Figure 9(b)), indicating that patients
with more T cell infiltration have a lower risk and thus a bet-
ter prognosis. However, the immune infiltration of most
macrophages was positively correlated with the risk score
(Figure 9(b)). We also evaluated the infiltration status of T
cell follicular helper cells and activated memory CD4+ T
cells (Figures 9(c) and 9(d)), and the result agreed with the
bubble graph (Figure 9(b)). These results indicated that the

risk model can also be used to predict the immune infiltra-
tion status of immune cells.

3.6. Clinical Significance of the Risk Model in Immune
Landscape. Then, we evaluated the expression differences
of 24 HLA-related genes between low-risk group and high-
risk group. Results demonstrated that HLA-F, HLA-DRB5,
HLA-L, HLA-E, HLA-H, HLA-DQB1, HLA-J, HLA-DRB1,
and HLA-DMA were elevated in low-risk signature group
(Figure 10(a)), which indicated that low-risk patients might
have a better immune response. The status of the immune
checkpoint genes is also associated with the effectiveness of
immunotherapy [32], and patients with high expression of
immune checkpoint genes might have a better immunother-
apy effectiveness [33]. To verify the clinical significance of
the risk model, we compared the expression of immune
checkpoint genes between high-risk patients and low-risk
patients. The results demonstrated that low-risk patients
showed a relatively higher expression of most immune
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Figure 3: Construction of the risk model. Lasso regression analysis was performed to construct the prognosis ((a) and (b)). A total of 11
DEirlncRNAs pairs were included in the risk model (c). Roc curves were plotted to assess the accuracy of the risk model in predicting
patients’ survival ((d)–(f)).
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checkpoint genes (Figure 10(b)). Furthermore, the ssGSEA
method was used to evaluate the difference in enrichment
of immune-related pathways between low-risk group and
high-risk group. We observed that patients with low-risk
exhibited a higher enrichment score of most immune-
related pathways (Figure 10(c)). All these results indicated

that low-risk group patients might be more sensitive to
immunotherapy.

Based on this hypothesis, we downloaded the immuno-
therapy score data from TCIA (https://tcia.at/) and com-
pared the immunotherapy score between low-risk patients
and high-risk patients. We observed that low-risk group
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Figure 5: Inner validation of the risk model. Patients were random divided into two validation sets at a ratio of 5 : 5. The maximum AUC
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patients with single positivity for CTLA4 or PD-1 and dou-
ble positivity for CTLA4 and PD-1 had higher immunother-
apy scores (Figure 10(d)). In addition, we acquired the TIDE
prediction score by using tumor immune dysfunction and
exclusion website (http://tide.dfci.harvard.edu/). Result also
indicated that low-risk group might be more sensitive to
immunotherapy (Figure 10(e)). These results confirmed that

our risk model has a good performance in predicting the
effectiveness of immunotherapy.

4. Discussion

Gastric cancer (GC) is a malignant tumor with high mortality
that threatens human life and health [2]. Immunotherapies,
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especially immune checkpoint inhibitors, are new treatments
that possess great potential in the treatment of multiple can-
cers [33–35]. However, patients with GC cancers do not ben-
efit much from immunotherapies compared with
chemotherapy and other treatments. Therefore, the identifica-
tion of effective predictive indicators is urgently needed for
GC. Recent studies have shown that long noncoding RNAs
(lncRNAs) play crucial roles in tumorigenesis and immune
regulation [36, 37]. Many lncRNAs have been identified as sig-
natures of prognosis and immunotherapy in various cancers
[27, 38]. Several irlncRNAs have been largely reported to reg-
ulate the immunemicroenvironment or the activation of some
immune cells [39, 40]. Investigating the function of irlncRNAs
involved in GC is fundamental to the progress of GC immu-
notherapy. However, current risk models for predicting or
evaluating the prognosis of patients with malignant tumors
are mainly based on the expression levels of coding and non-
coding RNAs [41–43]. Before the application of this type of
risk model to other types of gene expression data, the expres-
sion data of the genes need to be normalized, which may
reduce the accuracy of the model.

In the present study, we established a risk model of
immune-related lncRNA (irlncRNA) pairs by a method not
based on exact gene expression. First, we obtained the RNA-
seq expression profiles of 373 patients from the TCGA data-
base. To identify irlncRNAs, we annotated the RNA-seq matrix
using a human GTF file and certified immune-related genes,

which resulted in a total of 1030 irlncRNAs. By using the limma
package of R software, 107 irlncRNAs were revealed to be dif-
ferentially expressed between normal tissue and tumor tissue.

For the construction of the risk model, we utilized an
improved method of cyclical single pairing along with a 0-
or-1 matrix [44], which resulted in 4333 DEirlncRNA pairs.
Univariate analysis, multivariate analysis, and lasso penalty
regression were conducted to screen the prognosis-related
DEirlncRNA pairs. Finally, 11 DEirlncRNA pairs were
selected for the construction of the risk model. Some of the
DEirlncRNAs (11/22) in the risk model have been previ-
ously demonstrated to exert crucial roles in various malig-
nant tumors, including GC, while others were revealed for
the first time. For example, linc01980 has been reported to
promote esophageal squamous cell carcinoma progression
[45]. RHPN1-AS1 has been demonstrated to accelerate the
deterioration of gastric cancer and ovarian cancer [46, 47].
C5orf66-AS1 has been defined as a prognostic biomarker
in GC and has been shown to promote the proliferation of
cervical cancer cells [48, 49]. Linc01614 has also been iden-
tified as a prognostic biomarker for GC patients [50]. These
findings proposed by other studies further validate that the
DEirlncRNAs in our risk model are involved in cancer pro-
gression and may be used as prognostic biomarkers.

To test the efficiency of the model, we divided 305
patients into a high-risk group and a low-risk group. As
expected, patients in the low-risk cohort had better survival
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outcomes. A time-dependent receiver operating characteristic
(ROC) curve was constructed to validate the accuracy of the
risk model. The AUC value of the ROC curve confirmed that
our risk model efficiently predicts the survival of GC patients.
To further prove the applicability of the model, the total pop-
ulation was randomly divided into two validation sets as fol-
lows: validation set 1 (153 patients) and validation set 2 (152
patients). Kaplan-Meier analyses were then conducted, dem-
onstrating that high-risk patients based on the risk model have

poor survival probability. The AUC value of the ROC curve
exceeded 0.8 in five years. In addition, we performed univari-
ate and multivariate regression analyses and found that our
risk model could be an independent prognostic biomarker in
predicting patient survival outcomes. Based on the risk model,
a nomogram was plotted to obtain the predicted survival
probability at one year, three years, and five years, and the
results were similar to the actual survival time, further verify-
ing the accuracy of the risk model.
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The immune system plays an important role in the
development of cancer. Recent studies have demonstrated
that immunotherapy prolongs the overall survival (OS) of
patients with a variety of cancers [4–7]. The status of
immune cell infiltration in tumors is associated with the
effectiveness of immunotherapy [29–32]. Patients with more
CD4+ and CD8+ T cell infiltration experience a better treat-
ment response from pembrolizumab than those with less
infiltration [51, 52]. Infiltration of macrophages in solid
tumors is associated with poor prognosis and may enhance
tumor progression and metastasis [53]. To explore the rela-
tionship between our risk model and the immune landscape,
we compared the immune infiltration status of the high-risk
group to that of the low-risk group, which demonstrated
that patients at high risk had a higher immune infiltration
proportion of macrophages but a lower immune infiltration
proportion of CD4+ T cells and CD8+ T cells. These results

indicated that patients with higher infiltration of CD4+ T
cells and CD8+ T cells have a better prognosis and that
patients with higher infiltration of macrophages have a poor
prognosis, which is consistent with a previous study [51–53].
Human leukocyte antigen- (HLA-) related genes were
reported to exert critical function in immune surveillance
and response. The human MHC encodes a glycoprotein,
HLA, plays a crucial role in T-cell antigen presentation
[54]. We observed that patients with lower risk score have
a higher expression of most HLA-related genes, indicating
a better immune response. Immune checkpoint genes
expression level is another indicator of the immune land-
scape. Patients with higher expression of immune check-
point genes might have better immunotherapy effectiveness
[33]. Our results revealed that patients in the low-risk group
had a higher gene expression of various checkpoint genes.
Thus, we speculated that low-risk group patients might have
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a higher immunotherapy score. Subsequently, we acquired
immunotherapy score data and tumor immune dysfunction
and exclusion prediction score to assess the potential sensi-
tivity of high- and low-risk group patients to immunother-
apy. We observed that low-risk patients with double
positivity for CTLA4 and PD-1 or single positivity for
CTLA4/PD-1 had higher immunotherapy scores. Low-risk
group patients have a lower level of TIDE prediction score.
These results indicated that our risk model predicts the
immune infiltration status and potential sensitivity of immu-
notherapy in GC patients.

In the present study, a novel prognosis signature con-
structed by a method not based on exact gene expression
was proved to exert an undeniable role in GC. Interestingly,
we found that some of the methods in our study are similar
to the methods used in another one [26]. However, there
were several differences between our study and another
one. First, the tumor type is different between two studies.
We constructed a novel signature for prognosis predicting
and immune landscape in gastric cancer (GC) patients.
Another study established a prognostic signature for human
hepatocellular carcinoma (HHC) patients. Second, the
methods used to validate the function of the signature are
quite different. In another study, they only constructed the
signature and validated the prognosis function of the signa-
ture in the entire patients’ samples. They did not perform
inner validation. After we obtained the signature in our
study, we divided all patients into two subgroups (validation
set 1 and validation set 2) and verified prognosis predicting
function of our signature in two validation sets, respectively.
Third, the author did not determine the clinical application
efficiency of their signature in their study. In our study, we

constructed a ROC curve and a decision curve analysis
(DCA) curve to prove our signature has a better perfor-
mance in independent prognosis compared with other clin-
ical characteristics. In addition, we also constructed a
nomogram for the overall survival predicting in GC patients.
We determined that our nomogram could accurately predict
survival time of GC patients by using calibration curves.
This is another difference between two studies. Finally, the
author only detected the immune cells infiltration and
expression of immune checkpoint genes as for immune
landscape in another study. In our study, we have discussed
the function of our signature in immune landscape more
depth. Apart from immune cells infiltration and expression
of immune checkpoint genes, we determined the difference
of 24 HLA-related genes between low-risk group and high-
risk group. We also evaluated the difference in enrichment
of immune-related pathway between low-risk group and
high-risk group by using ssGSEA. In addition, we acquired
the immunotherapy score data from TCIA (https://tcia.at/)
and TIDE prediction score from tumor immune dysfunction
and exclusion website (http://tide.dfci.harvard.edu/) to
assess the performance of the signature in predicting the
effectiveness of immunotherapy.

Despite the positive findings, the present study has sev-
eral shortcomings and limitations. The newly developed risk
model requires external validation due to the different
expression levels of samples in different databases. We failed
to acquire data containing mRNA, lncRNA, and clinical data
of patients in other databases. Despite the validation in two
inner validation sets, external validation from other datasets
would be beneficial. Thus, larger samples in multiple centers
are needed to verify our results.
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Figure 10: Clinical significance of the risk model in immune landscape. Boxplot was used to visualize the difference of HLA and immune
check points between the high-risk group and the low-risk group ((a) and (b)). Enrichment of 13 immune-related pathway was evaluated by
using ssGSEA (c). Patients in low-risk group with positive status of CTLA4 or PD-1 have superior immunotherapy scores than high-risk
group (d). TIDE prediction score indicated that low-risk patients might be more sensitive to immunotherapy (e).
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5. Conclusions

In summary, using DEirlncRNA pairs in GC, we constructed
a risk model that accurately predicts the prognosis as well as
the immune infiltration status and immunotherapy scores in
GC patients. These results provide insights for prognosis
prediction of GC patients and important information for
immunotherapy in GC.
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