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Abstract

Cyanobacteria can form biofilms in nature, which have ecological roles and high potential

for practical applications. In order to study them we need biofilm models that contain healthy

cells and can withstand physical manipulations needed for structural studies. At present,

combined studies on the structural and physiological features of axenic cyanobacterial bio-

films are limited, mostly due to the shortage of suitable model systems. Here, we present a

simple method to establish biofilms using the cyanobacterium Synechocystis PCC6803

under standard laboratory conditions to be directly used for photosynthetic activity measure-

ments and scanning electron microscopy (SEM). We found that glass microfiber filters

(GMF) with somewhat coarse surface features provided a suitable skeleton to form Syne-

chocystis PCC6803 biofilms. Being very fragile, untreated GMFs were unable to withstand

the processing steps needed for SEM. Therefore, we used polyhydroxybutyrate coating to

stabilize the filters. We found that up to five coats resulted in GMF stabilization and made

possible to obtain high resolution SEM images of the structure of the surface-attached cells

and the extensive exopolysaccharide and pili network, which are essential features of bio-

film formation. By using pulse-amplitude modulated variable chlorophyll fluorescence imag-

ing, it was also demonstrated that the biofilms contain photosynthetically active cells.

Therefore, the Synechocystis PCC6803 biofilms formed on coated GMFs can be used for

both structural and functional investigations. The model presented here is easy to replicate

and has a potential for high-throughput studies.

Introduction

Cyanobacteria were responsible for the transformation of an anoxic to oxygenic atmosphere

about 2–3 billion years ago [1]. They tend to form biofilms on natural surfaces along with free-
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living forms in nature [2] and have been found to be one of the influential organisms in shap-

ing up the surrounding environment they thrive in [3, 4].

Cyanobacteria have enormous potential to produce fuels [5, 6], value-added compounds [7,

8] and to be utilized in wastewater treatment [5, 9] in a sustainable way. However, the utiliza-

tion of this potential needs special arrangement of the cells, in order to ensure optimal light

penetration, CO2 supply and access to the waste products which should be eliminated. Appli-

cation of biofilms can be very useful in realizing this potential as in the case of biofilm photo-

bioreactors [10–12].

For any bacterial biofilm formation the first step is the attachment of bacterial cells to a sur-

face followed by gradual morphological changes [13, 14]. The main characteristic of biofilm

formation is secretion of exopolysaccharides, which finally form an extensive net-like structure

that serves as both protection and source of nutrition for the surviving cells. Since bacteria

undergo extensive morphological changes in a biofilm, one of the best ways to study this pro-

cess is using scanning electron microscopy (SEM) which can reveal the surface structure of the

biofilm-forming bacteria in detail, conserving the spatial arrangement on the attached surface

[15, 16]. However, so far only few studies have utilized this approach for cyanobacterial bio-

films, in a large part due to the lack of efficient methods to produce cyanobacterial biofilms

under well-reproducible laboratory conditions.

For laboratory studies it is very useful to use well-characterized model organisms with

known genetic background. In this context, characterizing biofilms of a model cyanobacte-

rium named Synechocystis PCC6803 (Synechocystis from now on) would be beneficial, and

recent trends in cyanobacterial studies are moving in this direction [17–22]. Synechocystis is a

freshwater photosynthetic cyanobacterium which was isolated first from a freshwater lake in

Oakland, California, USA in 1968 and was identified as a unicellular organism with coccoid

cells [23, 24]. Its genome was the first among cyanobacteria to be fully sequenced and anno-

tated in 1996 [24, 25]. Studies on Synechocystis have resulted in deep insights into its genetics

and further biotechnological manipulation, and it has now been considered as a green E. coli
for plant biologists [26]. It has been developed as a phototrophic cell factory for modelling

physiological properties, production of various metabolic products, such as biofuels etc. [27].

As plastids are believed to have evolved from cyanobacteria [25], Synechocystis has been the

model organism to understand photosynthesis by utilizing its simple genetic background and

easily measurable photosynthetic parameters [28, 29]. On this background Synechocystis
should be a good model organism to understand and manipulate cyanobacterial biofilms. For

this reason, there are studies being made using Synechocystis biofilms for scientific and techno-

logical endeavours using outdoor facilities or special equipment [17, 19–22]; however, the pro-

duced biofilms have not been studied by SEM, or if so, well-resolved characteristic structural

features of the biofilm have not been observed [30].

Here, we represent for the first time a simple method for developing a photosynthetically

active Synechocystis biofilm on a glass microfibre filter with standard BG11 medium under

normal laboratory conditions, which can be used directly for SEM studies and photosynthetic

activity measurements. We believe that this method could yield a suitable model for high-

throughput studies on Synechocystis biofilms.

Materials and methods

Cyanobacterial cultures, growth media and conditions

Synechocystis PCC6803 cells were grown in BG11 medium under 40 μmol photons m-2 s-1

intensity white light, in 3% CO2-enriched atmosphere at 30˚C. For the experiments cells were

adjusted to 5μg/mL chlorophyll-a concentration.
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Biofilm formation on different membranes under laboratory conditions

Synechocystis was grown till mid-log phase in liquid cultures and then the cultures were

adjusted to 5μg/mL chlorophyll-a concentration. Respective membranes (Millipore Isopore

Membrane Filter, and Whatman glass microfibre GF/C filters further called as GMF) were cut

into small pieces of about 5mm2 area suitable for SEM and sterilized. Finally, the sterilized fil-

ter paper pieces were placed in standard-sized Petri dishes filled with 10 mL of sterile BG11

medium. Approximately 10 pieces of filter paper were placed in each dish. On top of each

GMF piece 5 μL of Synechocystis culture was spotted. The whole system was then kept in an

incubator at 30˚C for 7 days under 40 μmol photons m-2 s-1 white light intensity without any

disturbance. The membranes were next fixed and studied under SEM to visualize the biofilm.

For coating the GMFs, a single granule (approximate weight 2.8 mg) of polyhydroxybutyrate

(PHB, from GoodFellow Cambridge Limited) was dissolved in hot chloroform (70˚C) and the

autoclaved membrane pieces were dipped into it one by one with a forceps and subsequently

dried. For multiple coating, membrane pieces were allowed to dry before another dipping for

another coat.

Scanning electron microscopy

The filters covered by biofilms of Synechocystis cells were fixed in phosphate buffer (pH 7.4)

containing 2.5% glutaraldehyde (Sigma-Aldrich) and 0.15% Alcian blue 8GS (ROTH) for 4

hours. Following post-fixation in 1% OsO4 for 1 hour, the samples were dehydrated in aqueous

solutions of increasing ethanol concentrations, critical point dried, covered with10 nm gold by

a Quorum Q150T ES sputter and observed in a JEOL JSM-7100F/LV scanning electron micro-

scope using 5 kV accelerating voltage under different magnifications.

Measuring the photosynthetic activity of biofilms grown on GMF

The above mentioned methodology was repeated to form the biofilm on GMF membranes

three times coated by PHB. To investigate the photosynthetic efficiency, 4 membrane pieces

with Synechocystis biofilm were taken out aseptically into a Petri-dish on day seven and photo-

synthetic activity was measured by using an Pulse-Amplitude Modulation (PAM) fluorescence

imaging system (Imaging-PAM M-series Chlorophyll Fluorometer Heinz Walz GmbH, Ger-

many) equipped with a IMAG-MAX/K2 camera and IMAG-MAX/L LED-Array Illumination

Unit (Heinz-Walz GmbH, Effeltrich, Germany). The membranes carrying the biofilm were

dark-adapted for three minutes before the measurement. The minimum fluorescence in the

dark-adapted state (Fo) was measured by applying a weak measuring light (PPFD <0.3 μmol

photons m-2 s-1), and maximum fluorescence in the dark-adapted state (Fm) was recorded

upon the application of a saturation pulse (with a length of 0.8 s and a PPFD of approx.

2000 μmol photons m-2 s-1). The maximal quantum yield of Photosystem II (Fv/Fm) was calcu-

lated as:

Fv=Fm ¼ ðFm � FoÞ=Fm ð1Þ

The relative electron transport rate of PSII (ETR-II) as a function of irradiance was deter-

mined using a pre-programmed rapid light curve protocol (using 20 s illumination steps with

progressively increasing actinic irradiance). ETR-II was calculated as:

ETR � II ¼ YðIIÞ � PAR � 0:84 � 0:5 ð2Þ

where Y(II) is the effective quantum yield of PSII at a given irradiance, PAR is the photosyn-

thetically active radiation (in μmol photons m-2 s-1), the factors 0.84 and 0.5 are the assumed
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values of absorptivity and the fraction of the absorbed light distributed to PSII, respectively.

Non-photochemical quenching (NPQ) was determined using a pre-programmed fluorescence

induction-recovery protocol. After determination of Fm in darkness, samples were illuminated

with actinic light (450 μmol photons m-2 s-1) for 8 min, during which saturation pulses were

given at every 30 s to determine Fm’, the maximum fluorescence during illumination. Samples

were kept in darkness in the recovery phase, during which saturation pulses were given at pro-

gressively increasing time intervals to monitor the recovery of Fm’ (and the relaxation of NPQ)

after the illumination period. NPQ was calculated as:

NPQ ¼ ðFm=Fm’Þ � 1 ð3Þ

Results and discussion

As mentioned earlier, complete understanding of cyanobacterial biofilms is at its inception

and much needed within the current cyanobacterial research trends. Therefore, this work was

initiated to establish a simple, efficient and rapid method to generate Synechocystis biofilms

under controlled laboratory conditions that can be easily used for SEM and other studies. In

order to avoid structural damage of the biofilms during transfer from their growth site to a

SEM-compatible membrane, we aimed to grow the biofilm directly on a membrane which is

suitable for physiological, SEM and other investigations. We also wanted to take advantage of

this approach to investigate whether surface physicochemical properties could affect biofilm

formation. To achieve this, we modified some existing protocols that had been used to study

biofilms using SEM [31, 32].

Although it is known that surface physicochemical properties have an influence on bacterial

adhesion, so far only a few studies have been carried out to investigate microalgal/cyanobacter-

ial biofilm formation on different materials [33, 34]. In the first step, we aimed to use the Milli-

pore Isopore Membrane Filter with small pore size (0.2μM) for biofilm growth. Small, ca. 5

mm2 membrane pieces were autoclaved and then inoculated with Synechocystis and kept in a

Petri dish under normal growth conditions in an incubator under 3% CO2 enriched atmo-

sphere. After seven days, the membranes were subjected to SEM. Fig 1A and 1B (different

Fig 1. SEM image of Synechocystis cells grown on Millipore Isopore Membrane Filter after 7 days of incubation. (A) pili formation at

10000X magnification, (B) pili formation at 15000X magnification (Bar is 1 μm in each panel).

https://doi.org/10.1371/journal.pone.0236842.g001
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magnifications) show that the cells remained attached on the membrane even after the process

used for SEM fixation. Although pili structures were visible for the attachment to other cells or

to the surface, the exopolysaccharide network, which is a crucial feature of biofilm formation,

was absent. It was hypothesized that the inability of Synechocystis to form a biofilm was related

to the improper adherence of cells to the surface used, as suggested by the study of Barros

et al., 2019 [33].

Since we hypothesized that the cause of the failure of biofilm formation might be the

smoothness of the surface, which is not suitable for cell adhesion, we wanted to test other

membranes with different surface characteristics. Glass microfibre filters (GMFs) were tested

for this purpose, as they have a visible roughness. With the method described above, after

seven days of incubation we could observe formation of Synechocystis biofilms on GMFs that

were durable enough for SEM studies. Fig 2B–2D show that Synechocystis forms a biofilm on

the GMF membrane, since the electron micrographs display a well-built exopolysaccharide

network along with pili among the cells. The figure shows images with different magnifications

to demonstrate the mesh-like structures around the Synechocystis cells formed due to

Fig 2. SEM of biofilm formation by Synechocystis on glass microfiber filters after 7 days of incubation. (A) control filter at 1100X

magnification, (B) biofilm structure formation at 500X magnification, (C) at 1200X magnification, (D) at 2200X magnification (Bar is

10 μm in each panel).

https://doi.org/10.1371/journal.pone.0236842.g002
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exopolysaccharide secretion. Although the roughness of the GMF filter surface provided

proper support to adhering Synechocystis cells, the stability of the GMFs was a matter of con-

cern for the whole process. It is evident from the images (Figs 2A and 3B) that the GMF mem-

brane was very fragile and it could not withstand harsh treatments during sample preparation

for SEM, leading to damage of the biofilm structures.

Fig 3. SEM of membrane surfaces coated with various layers of PHB. The Isopore Membrane Filter is shown in the

native, uncoated state (A). GMF filters are shown either without coating (B), or with 1 (C), 2 (D), 3 (E), 5 (F), 10 (G)

and 15 (H) layers of PHB. Each picture is shown at 900X magnification, with 10 μm bar.

https://doi.org/10.1371/journal.pone.0236842.g003
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The objective of the next step was to find ways to stabilize the GMF membrane so that it

could withstand the treatments for SEM sample preparation and still provide sufficiently

rough surface for adequate cell attachment. Therefore, we used a stabilizing coating on the

membrane to increase the integrity of the surface. Polyhydroxybutyrate (PHB) is a well-known

biopolymer which can form a water-resistant coating on different surfaces with a biocompati-

ble nature [35]. Importantly, Synechocystis can synthesize and accumulate PHB globules

intracellularly as a carbon and energy storage compound when grown under nitrogen- and

phosphorus-starved conditions [36–38], which proves its biocompatibility. Therefore PHB

coating appeared to be a safe option for stabilizing membranes, considering the natural affinity

of Synechocystis for PHB.

For this reason, we coated the sterilized GMF membranes with one to fifteen PHB layers

aseptically, which were then used to test Synechocystis biofilm formation. The electron micro-

graphs show that coating of GMFs with PHB preserved membrane stability during the sample

preparation step for SEM, but also resulted in an increasing extent of smoothness, especially

above 10 coating layers (Fig 3C–3H for 1, 2, 3, 5, 10 and 15 layers, respectively). For

Fig 4. SEM of biofilm formation by Synechocystis on glass microfiber filter coated with PHB after 7 days of incubation. (A) 1

layer at 2200X magnification, (B) 2 layers at 1900X magnification, (C) 3 layers of PHB coating at 2200X magnification (Bar is 10 μm

in each panel).

https://doi.org/10.1371/journal.pone.0236842.g004
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comparison, the uncoated Isopore Membrane Filter is shown (Fig 3A), which had the highest

level of smoothness.

Incubation of 1, 2 and 3 times PHB coated GMF membranes with Synechocystis cells dem-

onstrated biofilm formation with extensive exopolysaccharide and pili network (Fig 4).

Based on the above results, we wanted to check if further improvement of biofilm formation

could be made by increasing the number of coating layers, which increases the stability of the

surface but at the same time increases its smoothness as well (Fig 3F–3H). The electron micro-

graphs in Fig 5 show that when the GMFs were coated with up to five layers of PHB, Synecho-
cystis was able to form biofilms (Fig 5A). However, when ten (Fig 5B) or 15 layers (Fig 5C)

were used, there was no visible biofilm formation, as the cells could not attach to the film sur-

faces. For Fig 5B and 5C, magnifications lower than that in Fig 5A were used in order to dem-

onstrate that most of the surface was empty, lacking any attached cells or biofilm layer. We

concluded that, due to excessive coating by PHB, the surface of GMFs were much more than

adequately smoothened, resulting in suboptimal attachment of Synechocystis for biofilm

formation.

Fig 5. SEM of biofilm formation by Synechocystis on glass microfiber filter coated with PHB after 7 days of incubation. (A) 5

layers at 2700X magnification, (B) 10 layers at 1800X magnification, (C) 15 layers of PHB coating at 900X magnification (Bar is

10 μm in each panel).

https://doi.org/10.1371/journal.pone.0236842.g005
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Natural cyanobacterial biofilms are important communities of living cells [3, 4], therefore it

was important to verify if the Synechocystis cells attached to the surface of the coated GMFs are

photosynthetically active. Chlorophyll fluorescence imaging is a powerful tool to investigate

spatial heterogeneity of photosynthetic performance non-invasively on plant leaves and bio-

films of cyanobacteria and microalgae; moreover, it is also applicable for screening procedures

to identify altered regulation of photosynthesis in the generated mutants [39–41]. For this rea-

son, we used variable chlorophyll fluorescence imaging of PHB-coated membranes, which

were incubated with a Synechocystis culture for seven days to form a biofilm (Fig 6A). A total

of eight membranes were imaged simultaneously (four technical replicates in two biological

Fig 6. Pulse-Amplitude Modulation (PAM) chlorophyll fluorescence imaging of the GMF carrying Synechocystis biofilm. (A) Colour photograph

of the Synechocystis biofilms grown on 3X PHB coated GMF membranes in a Petri dish (representing one biological experiment with four technical

replicates, which were subjected to PAM measurement). The white bar represents 1 cm length. (B) False-colored chlorophyll fluorescence image

showing the maximum quantum yield of PSII (Fv/Fm) values in the selected areas of interest (black circles). The color bar in panel B represents the

color coding of Fv/Fm values (black: Fv/Fm = 0, magenta: Fv/Fm = 1). Measurements of Fv/Fm were performed on two independent biological replicates,

each representing four biofilms as technical replicates. (C) Electron transport rate through Photosystem II (ETR-II) vs. irradiance curves of the

Synechocystis biofilms (n = 4, mean±S.D.), (D) representative fluorescence induction-recovery curves of the Synechocystis biofilms (black trace) and

the calculated non-photochemical quenching (NPQ, red traces, (n = 4, mean±S.D.). Black bars represent the dark phases, white bar represents the

illumination phase using actinic light (450 μmol photons m-2 s-1 photon flux density).

https://doi.org/10.1371/journal.pone.0236842.g006
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replicates). The Fv/Fm values were measured on the selected areas of interest from the mem-

branes (black circles in Fig 6B). The results obtained showed Fv/Fm values in the range of

0.344–0.41 for the biofilm layers, with an average of 0.385 ± 0.024 (n = 8) (representative

Fv/Fm images of the biofilms are shown in Fig 6). The Fv/Fm values obtained correspond well

with the reported range of 0.3–0.4, which is characteristic for liquid Synechocystis cultures [42,

43]. This result shows that the biofilms formed on the GMF membranes are photosynthetically

active, and therefore have a potential to be used for studying the photosynthetic properties of

Synechocystis using this model. In order to show the potential of GMF supported biofilms for

photosynthesis studies the light intensity dependence of the electron transport rate through

Photosystem II (ETR-II) was also measured (Fig 6C). In addition, the widely used fluorescence

quenching analysis was also performed, and the non-photochemical quenching parameter

(NPQ) was determined during dark-light-dark transitions (Fig 6D) [40, 41].

Conclusion and future perspectives

The importance of this study is that it presents for the first time an easy and fast method to

establish Synechocystis biofilm models under standard laboratory conditions that can be used

for both physiological and SEM investigations. Besides providing well-resolved details of the

exopolysaccharide and pili network in the biofilm by SEM, our model system also made possi-

ble to measure various parameters of photosynthetic activity by Pulse-Amplitude Modulation

(PAM) chlorophyll fluorescence imaging. The advantage of our method is that it is not depen-

dent on any special equipment, and utilizes simple GMF filters that are readily available in

most laboratories. Furthermore, this method has the potential to be adapted for studying mul-

tiple mutants of Synechocystis and various surface modifications in a high-throughput manner

using multiple chambered plates instead of a single Petri dish. By utilizing this approach, a

better understanding of biofilm formation as well as optimization of biofilm growth can be

achieved for various biotechnological applications in future studies.
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