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Nicotinic acetylcholine signaling is required for motor 
learning but not for rehabilitation from spinal cord 
injury

Abstract  
Therapeutic intervention for spinal cord injury is limited, with many approaches relying on strengthening the remaining substrate and driving recovery through 
rehabilitative training. As compared with learning novel compensatory strategies, rehabilitation focuses on restoring movements lost to injury. Whether 
rehabilitation of previously learned movements after spinal cord injury requires the molecular mechanisms of motor learning, or if it engages previously trained 
motor circuits without requiring novel learning remains an open question. In this study, mice were randomly assigned to receive intraperitoneal injection with 
the pan-nicotinic, non-competitive antagonist mecamylamine and the nicotinic α7 subunit selective antagonist methyllycaconitine citrate salt or vehicle (normal 
saline) prior to motor learning assays, then randomly reassigned after motor learning for rehabilitation study post-injury. Cervical spinal cord dorsal column 
lesion was used as a model of incomplete injury. Results of this study showed that nicotinic acetylcholine signaling was required for motor learning of the single 
pellet-reaching task but it was dispensable for the rehabilitation of the same task after injury. Our findings indicate that critical differences exist between the 
molecular mechanisms supporting compensatory motor learning strategies and the restoration of behavior lost to spinal cord injury.
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Introduction 
Spinal cord injury (SCI) results in the lasting impairment of the motor and 
sensory functions that underlie movement. The majority of clinical cases 
of SCI are incomplete, allowing for a limited capacity for spontaneous or 
rehabilitation-mediated functional recovery (Fawcett et al., 2007). This 
capacity for partial recovery may be achieved through reinforcement 
of spared sensory and motor axons, compensatory activities of indirect 
pathways, or reorganization of supraspinal command centers (Hollis et 
al., 2016; Li and Hollis, 2017). The corticospinal tract is critical to restoring 
supraspinal command of voluntary movement. Following stroke, the extent 
of spared corticospinal tract is proportional to the amount of spontaneous 
recovery that individuals experience (Stinear et al., 2007). In chronic SCI, the 
use of rehabilitation and epidural electrical stimulation to restore voluntary 
locomotion likely leverages preserved corticospinal circuitry (Wagner et al., 
2018). These spared circuits can be activated by cortical stimulation even in 
motor complete, chronically injured individuals (Edwards et al., 2013).

Both rodent and non-human primate models have been used to demonstrate 
the innate plasticity of corticospinal axons after injury (Rosenzweig et al., 
2010; Mosberger et al., 2017). Within the injured spinal cord, corticospinal 
axons sprout locally and form novel axon collaterals, many of which are 
pruned back over time (Bareyre et al., 2004). The removal of intrinsic 
brakes on axon regeneration can enhance corticospinal axon plasticity and 
connectivity; however, the contribution of such connections to behavioral 

recovery is not always apparent (Liu et al., 2010; Hollis et al., 2016; 
Jayaprakash et al., 2016). Rehabilitative training drives recovery of previously 
trained, corticospinal tract-dependent, single pellet reach behavior in animal 
models of corticospinal tract injury (Wahl et al., 2014; Hollis II et al., 2016). 
Clinically, training after SCI can be used to either rehabilitate movements 
lost to injury, or to train compensatory strategies to improve mobility and 
independence (Behrman and Harkema, 2007). Animal models used to study 
recovery from SCI often rely on trained behavior; however, questions remain 
as to whether rehabilitation-mediated recovery represents novel learning, or 
a re-emergence of patterned movements using the remaining motor circuitry. 

Motor learning requires contributions from various brain areas, including 
motor cortex, cerebellum, striatum, and brainstem. Basal forebrain 
cholinergic neurons release acetylcholine in distinct targets and modulate a 
diverse array of functions, such as motor control, attention, cognition, and 
perception coding (Zaborszky et al., 2018; Boskovic et al., 2019). The cerebral 
cortex receives cholinergic input from nucleus basalis of Meynert (NBM). 
Primary motor cortex (M1) depends upon these basal forebrain cholinergic 
neurons for the maturation of cortical motor representations, or motor 
maps (Ramanathan et al., 2015). Ablation of NBM cholinergic neurons in 
rats attenuates skill acquisition in the single pellet-reaching task as well as 
the corresponding expansion of cortical forelimb motor representations and 
dendritic spine remodeling of corticospinal neurons that control the distal 
forelimb (Conner et al., 2003; Wang et al., 2016). Following cortical injury, 
rehabilitative training of skilled forelimb movements results in reconstitution 
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of affected movement representations within adjacent, ectopic cortical areas 
(Castro-Alamancos et al., 1992; Castro-Alamancos and Borrel, 1995). As with 
motor learning, cholinergic input is critical for motor map reorganization 
and functional recovery after cortical injury (Friel et al., 2000; Conner et al., 
2005). Previously, we observed similar rehabilitation-dependent cortical 
reorganization and functional recovery after SCI (Hollis et al., 2016). Unlike 
following stroke, cortical structures remain intact after SCI. Cortical and other 
supraspinal motor centers are likely instrumental in driving rehabilitation-
mediated recovery, but it remains unknown what role the molecular and 
cellular mechanisms of motor learning play in this recovery.

Nicotinic acetylcholine receptors expressed in the central nervous system 
are important for synaptic excitation, attention, and cognition (Dani, 2001). 
In primary visual cortex, cholinergic innervation is required for experience-
dependent plasticity during the critical period (Bear and Singer, 1986) and 
closure of the critical period is associated with reduced nicotinic signaling 
(Morishita et al., 2010). Here we tested the role of nicotinic cholinergic 
signaling in skilled motor task acquisition and rehabilitation after SCI. 
 
Methods   
Animals
All animal experiments and procedures were approved by the Weill Cornell 
Medicine Institutional Animal Care and Use Committee (protocol # 2015-
0042) on May 12, 2018. All mice were housed on a 12-hour light/dark cycle 
from 9 a.m. to 9 p.m. at 25°C with free access to food and water. Twenty-four 
male and female C57BL/6J animals (8–12 weeks old) were purchased from 
Jackson Laboratory. For forelimb reaching task, animals were food restricted 
to 80–90% of their free-feeding bodyweight. Cervical spinal cord dorsal 
column lesion was used as a model of incomplete injury. Twelve mice used 
in this study performed the recessed single pellet-reaching task, the rotarod 
test, and the open field test. In each behavior test, six animals were injected 
with either nicotinic inhibitors or saline control. Experimental design is shown 
in Figure 1.

mouse. Individual trials were stopped, and the duration was recorded, if mice 
could not run with consecutive rotations or failed to stay on the rotarod. If 
animals successfully completed 600 seconds on the rotarod, the latency was 
recorded as 600 seconds.

Open field test
To test animal activity, mice were placed in a chamber (length × width × 
height: 30 cm × 22.5 cm × 25 cm) and allowed to explore for 5 minutes. 
Behavior was recorded from the top at 48 frames per second (GoPro camera, 
San Mateo, CA, US; Model HERO3) and total walking distance was analyzed by 
MATLAB software (MathWorks, Natick, MA, USA) (Autotyping15.04) (Patel et 
al., 2014).

C5 dorsal column spinal cord lesion
Two days after finishing the washout session of forelimb reach task, SCI was 
performed in both control and drug-treated animals. Mice were anesthetized 
with 4% isoflurane (VetOne, Boise, ID, USA) during surgery with 1.5–3% 
isoflurane, and their body temperature was maintained at 37°C using a 
SomnoSuite small animal anesthesia system (Kent Scientific, Torrington, CT, 
USA). Subcutaneous injection of the analgesic buprenorphine (0.1 mg/kg) 
was given immediately following anesthesia. Spinal level C5 was exposed by 
laminectomy and the dorsal columns were lesioned at a depth of 1 mm with 
Vannas spring scissors (Fine Science Tools, Foster City, CA, USA), as previously 
performed (Hollis et al., 2016). The dorsal musculature was sutured with 
6-0 suture and the skin was closed with wound clips. Mice were allowed 
to recover from surgery for 1 week before rehabilitative training, allowing 
recovery from the effects of laminectomy and the hyporeflexic phase of spinal 
shock (Ditunno et al., 2004).

Histology
To confirm SCI, after finishing all behavioral trainings, animals were 
anesthetized with ketamine/xylazine cocktail (ketamine, 150 mg/kg, McGuff, 
Santa Ana, CA, USA; xylazine, 15 mg/kg, VetOne) and transcardially perfused 
with ice-cold PBS followed by 4% paraformaldehyde (PFA). Spinal columns 
were postfixed in 4% PFA overnight at 4°C, cryoprotected by immersion 
in 30% sucrose in 0.1 M PBS for 2 days. Samples were then sagittally 
cryosectioned at 20 μm using a Leica cryostat and directly mounted on 
Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA, USA). Sections were 
blocked with 10% donkey serum for 1 hour, and incubated with rabbit anti-
PKCγ (a marker for corticospinal axons; 1:100, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA, sc-211, RRID: AB_632234) and mouse anti-GFAP (a marker for 
astrocytes; 1:750, Abcam, Cat# ab10065, RRID: AB_296804) antibodies for 2 
days at 4°C. Sections were then washed three times with PBS and incubated 
with fluorescently conjugated donkey anti-rabbit/mouse secondary antibody 
(1:200, Jackson ImmunoResearch, Cat# AB_2340854, RRID: AB_2313584) for 
1.5 hours at room temperature. Images were acquired on a Leica SP8 confocal 
microscope with 10× objective.

Statistical analysis
We used power analysis with a 40% effect size, an alpha of 0.05 and beta of 0.2, 
to generate our estimated group sizes based on our previous study (Li and 
Hollis, 2021). All procedures and analysis were performed blind to treatment 
assignment. Skilled pellet-reaching and rotarod tests were analyzed using two-
way repeated measures analysis of variance with post hoc Sidak’s comparison 
test using GraphPad Prism 9.0 (GraphPad Software, San Diego, CA, USA, www.
graphpad.com). The differences between two groups were compared by two-
tailed unpaired t-tests. The intra-group differences were analyzed using paired 
t-test. P < 0.05 was considered statistically significant. 

Results
Systemic inhibition of nicotinic receptors impairs motor learning
We used a pharmacological approach to study the contribution of nicotinic 
receptors to motor learning in adult mice. MEC and methyllycaconitine were 
injected intraperitoneally 30 minutes prior to behavioral training. Control 
mice were injected with normal saline. Single pellet reaching is a skilled 
behavior used to measure dexterity of a single forelimb (Whishaw and Pellis, 
1990). We employed a modified recessed single pellet-reaching task in 
which the food pellet is retrieved from a concave depression (Figure 2A); we 
previously found that this modification allows for a consistent learning curve 
in C57BL/6J mice (Li and Hollis, 2021). We found that systemic blockade of 
nicotinic receptors significantly attenuated skilled motor learning in the single 
pellet-reaching task (Figure 2B and C). MEC and MLA-treated mice showed 
smaller improvements over the course of training than controls. Washout of 
MEC and MLA over 5 days enabled the mice to learn the task with the same 
proficiency as controls (Figure 2B and C).

The effects of systematic inhibition of nicotinic acetylcholine signaling were 
not specific for skilled forelimb motor learning. MEC and MLA administration 
also impaired coordinated motor learning on the accelerating rotarod task. 
Mice trained over nine trials (4 to 40 r/min, constant acceleration over 5 
minutes) exhibited worse performance following intraperitoneal injection 
with MEC and MLA compared to control mice. MEC and MLA inhibition of 
nicotinic signaling resulted in significantly reduced latency to fall (Figure 2D). 
As with single pellet reaching, washout of MEC and MLA over 5 days enabled 
the mice to learn the rotarod with the same proficiency as controls (Figure 
2D). Additionally, MEC and MLA significantly reduced total walking distance in 
an open field test (Figure 2E). 

Figure 1 ｜ Experimental design.

Drug administration
Mice were randomly assigned to drug or control groups prior to motor 
learning assays, then randomly reassigned after motor learning for 
rehabilitation study post-injury. Mice were injected intraperitoneally with the 
pan-nicotinic, non-competitive antagonist mecamylamine (MEC, 5 mg/kg;  
Tocris, Minneapolis, MN, USA, Cat# 2843) and the nicotinic α7 subunit 
selective antagonist methyllycaconitine citrate (MLA, 5 mg/kg; MilliporeSigma, 
Burlington, MA, USA, Cat # M168) or vehicle (normal saline) 30 minutes 
before behavioral testing (Grottick and Higgins, 2000; Shi et al., 2011; Kita et 
al., 2013).

Recessed single pellet-reaching task
To test the effect of nicotinic inhibition on skilled motor learning, we 
employed a recessed single pellet-reaching task as described previously (Li 
and Hollis, 2021). Animals were calorie restricted to 80–90% of their free-
feeding bodyweight by being given 1–3 g food before training. An acrylic 
behavior box (length × width × height: 29.5 cm × 21.9 cm × 21.6 cm) with 
three slots (7 mm wide) on the left, middle, and right sides of the front wall 
was used to train the mice. A recessed hole (3 mm wide, 2 mm deep) at 12 
mm from the inside wall of the box was used to hold a 20-mg flavored food 
pellet (Bio-Serv, Flemington, NJ, USA, Cat# F05301). The dominant forelimb 
was identified during a single test session. Once the dominant forelimb was 
determined, it was trained over a total of 14 daily sessions consisting of 25 
trials each. A trial was counted as a success if the mouse grasped, retrieved, 
and ate the food pellet. Only trials with pellet contact were counted. The 
intensive rehabilitative training was performed 1 week after SCI. During the 
motor learning phase, animals were calorie-restricted to 80–90% of their free-
feeding bodyweight before retraining in the pellet-reaching task. Mice were 
trained 25 trials daily and 15 sessions in total. The successful retrieval rate 
was defined as the percentage of trials with successful pellet retrieval and 
eating. To account for day-to-day variability in performance, the peak success 
rate from the last three sessions of skilled forelimb training was used for pre-
injury values in SCI experiment.

Rotarod test
To test the effect of nicotinic inhibition on coordinated motor learning, mice 
were habituated on the rotarod (Med Associates, St. Albans, VT, USA, Cat# 
ENV-577M) at a speed of 4 r/min for 60 seconds before testing. For each 
trial, the rotarod accelerated from 4 to 40 r/min over 300 seconds, and then 
remained at 40 r/min for an additional 300 seconds, as necessary. Animals 
were tested 30 minutes after intraperitoneal injection of MEC and MLA or 
vehicle, and one trial was performed per day. The latency to fall after the 
onset of acceleration during each trial was recorded by the rotarod for each 
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Nicotinic signaling is not required for functional recovery following SCI
To test whether nicotinic signaling is also required for functional recovery, we 
randomly reassigned animals after motor learning, performed a cervical SCI, 
and tested the effects of MEC and MLA on intensive rehabilitative training 
on the single pellet-reaching task. We performed a dorsal column lesion at 
cervical spinal cord segment 5 (C5) to transect the corticospinal and ascending 
dorsal column tracts, leaving most gray matter, lateral white matter, and 
ventral spinal cord intact (Figure 3A and B). One week after C5 dorsal column 
lesion, intensive rehabilitative training was carried out in which animals were 
tested daily on the recessed pellet-reaching task. SCI significantly impaired 
task success (Figure 3C). Intensive rehabilitative training promoted recovery 
to levels similar to pre-injury, regardless of treatment group; MEC and MLA 
delivery had no effect on the recovery of function (Figure 3C). 

neurons to motor centers in medial prefrontal cortex and primary motor 
cortex, leaving cholinergic innervation of striatum, brainstem, cerebellum, 
spinal cord, and periphery intact. Nicotinic signaling is likely active in one of 
these other motor loci during motor learning.

During rehabilitation from SCI, the extent to which rehabilitation either relies 
on the execution of previously encoded motor programs or else leverages the 
cellular and molecular mechanisms of motor learning is not known. Motor 
cortex plasticity occurs alongside the acquisition of skilled motor learning 
and we previously found that rehabilitation on the single pellet-reaching task 
after SCI shapes both behavioral recovery and cortical plasticity (Hollis et al., 
2016). During motor learning, the role of motor cortex diminishes with the 
development of task proficiency. Inactivation of primary motor cortex early 
in training of a forelimb lever press task impaired performance; however, 
cortical silencing after an extensive training period had little effect on task 
success or movement kinetics (Hwang et al., 2019). In fact, the execution of a 
similar trained temporally precise lever press task is essentially unperturbed 
by the bilateral aspiration of the entire motor cortex (Kawai et al., 2015). The 
declining role of motor cortex in execution of learned behavior is reflected 
in the absence of a role for cholinergic signaling following training. We 
previously found that ablation of cholinergic innervation of motor cortex 
after coordinated motor learning of rotarod behavior had no effect on task 
execution (Li and Hollis, 2021), similar to the absence of effects on single 
pellet-reaching task success in rats when cholinergic neurons were ablated 
after training (Conner et al., 2003). Thus, when animals become proficient 
in a motor skill, motor cortex disengages from the behavior and subcortical 
structures (such as basal ganglia, red nucleus, brain stem, and cerebellum) are 
sufficient for maintenance of previously learned motor skills (Hikosaka et al., 
2002). 

The spinal cord receives multiple motor inputs and these supraspinal circuits 
are likely to control different aspects of movement execution. Our dorsal 
column SCI was limited to transection of the main body of the descending 
corticospinal tract and the ascending dorsal column-medial lemniscal sensory 
circuit, leaving other supraspinal pathways intact, including rubrospinal, 
reticulospinal, and the lateral, minor corticospinal tracts. It may be that the 
remaining supraspinal motor circuits retain the motor patterns encoded 
through training needed to compensate for the loss of dorsal column circuitry, 
or that nicotinic signaling plays no role in the shaping of these alternate motor 
pathways. Others have implicated a role for spared ventral corticospinal 
axons in rats and dorsolateral corticospinal axons in mice in the restoration 
of corticospinal-dependent behaviors, with limited effect on cortical motor 
representations (Weidner et al., 2001; Hilton et al., 2016). While we found no 
role for nicotinic signaling during intensive rehabilitative training to restore a 
previously trained, stereotyped movement, nicotinic signaling is likely to play 
a role in the learning of novel, compensatory movement strategies employed 
by individuals to regain independence after SCI. 
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Discussion
In this study, we used pharmacological tools to demonstrate that nicotinic 
acetylcholine signaling is required for the acquisition of motor skills but not 
the rehabilitation-mediated recovery of the previously trained skills after SCI. 
Recently, we have found that mice, unlike rats, do not require basal forebrain 
cholinergic input to cortex for the acquisition of skilled motor learning on 
the forelimb reach task (Li and Hollis, 2021). This leaves open the question 
of the locus of nicotinic activity during motor learning. In our previous study, 
we targeted both NBM cholinergic neurons directly, through targeted toxin, 
genetic, and optogenetic means, as well as the projections of NBM cholinergic 
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