
Citation: Li, A.; Li, C. Detecting

Parkinson’s Disease through Gait

Measures Using Machine Learning.

Diagnostics 2022, 12, 2404.

https://doi.org/10.3390/

diagnostics12102404

Academic Editor: Juan Rafael

Orozco-Arroyave

Received: 19 July 2022

Accepted: 1 October 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Detecting Parkinson’s Disease through Gait Measures Using
Machine Learning
Alex Li 1 and Chenyu Li 2,*

1 Stanford Center for Professional Development, Stanford University, Stanford, CA 94305, USA
2 Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
* Correspondence: chenyuo@stanford.edu

Abstract: Parkinson’s disease (PD) is one of the most common long-term degenerative movement
disorders that affects the motor system. This progressive nervous system disorder affects nearly
one million Americans, and more than 20,000 new cases are diagnosed each year. PD is a chronic and
progressive painful neurological disorder and usually people with PD live 10 to 20 years after being
diagnosed. PD is diagnosed based on the identification of motor signs of bradykinesia, rigidity, tremor,
and postural instability. Though several attempts have been made to develop explicit diagnostic
criteria, this is still largely unrevealed. In this manuscript, we aim to build a classifier with gait data
from Parkinson patients and healthy controls using machine learning methods. The classifier could
help facilitate a more accurate and cost-effective diagnostic method. The input to our algorithm
is the Gait in Parkinson’s Disease dataset published on PhysioNet containing force sensor data
as the measurement of gait from 92 healthy subjects and 214 patients with idiopathic Parkinson’s
Disease. Different machine learning methods, including logistic regression, SVM, decision tree, KNN
were tested to output a predicted classification of Parkinson patients and healthy controls. Baseline
models including frequency domain method can reach similar performance and may be another
good approach for the PD diagnostics.

Keywords: Parkinson’s disease; machine learning; gait measures

1. Introduction

Parkinson’s disease causes uncontrollable movements which are due to brain disorders.
With the progression of this disease, patients can suffer from difficulty walking and talking,
and mental and behavioral changes. The nerve cells in the patients’ basal ganglia who suffer
from Parkinson’s disease become impaired and/or die, and this leads to less production of
dopamine which is the key chemical messenger of the nervous system to control various
functions of the body [1–3]. Four main symptoms exist in Parkinson’s patients, including
tremor in arms, legs, heads and hands, muscle contraction for a long time, slowness of
movement, impaired balance with falls sometimes. Among every 100,000 who are 80 or
older, 1900 patients suffer from Parkinson’s disease. Though Parkinson’s disease is the
most common among elder people, there are no specific tests to diagnose Parkinson’s
disease [1–3]. The current state-of-the-art method is based on a patient’s medical history,
a review of signs and symptoms, together with a neurological and physical check by a
neurologist [4–6]. Though a dopamine transporter scan (DaTscan) can be a supportive test
to identify integrity of the striatal dopaminergic system, the final diagnosis is still based on
symptoms and neurologic examination [7–10]. Diagnostic accuracy is still not optimal with
clinical features, diagnostic tests or biomarkers [11]. The early detection of PD is largely
unmet while therapies can have a better chance for success in the early stage [12,13].

The gait dataset was used in one previous study by Hausdorff JM’s group [14] where
they collected the data from sensors and described the gait speed characteristics in PD
and controls using statistical methods. Another study from the same group [15] tested the
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comparison of gait speed on level ground and treadmill of PD and controls but mostly
used descriptive analysis. Previous studies also used a statistical approach to test rhythmic
auditory stimulation function on PD gait traces and concluded the potential usage of
rhythmic auditory stimulation (RAS) as an intervention to improve mobility and reduce
fall risk of PD patients [16,17]. Yogev G and colleagues [18] investigated the associations
between executive function and gait variability and suggested a decline in executive
function in PD.

One recent publication [19] showed a successful approach using a random forest
classification method to identify familial hypercholesterolemia with electronic health record
data. This reveals the potentially important application of machine learning methods in
disease diagnosis and high-risk patient identification. Some previous machine learning
approaches focused on magnetic resonance imaging [20], motor features [21] and non-motor
features [22]. There have been some machine learning trials tested on Parkinson’s disease.
Machine learning methods are tested to PD datasets, including handwritten patterns [23],
neuroimaging [24], cerebrospinal fluid [16], serum [25] and voice [26]. Jeon et al. [27]
applied Principal Component Analysis (PCA) to the Spatial-Temporal Image of Plantar
Pressure and used Support Vector Machine (SVM) to classify Parkinson gait and normal
gait, but the sophisticated foot pressure system may be less accessible. Zhao et al. [28] and El
Maachi et al. [29] proposed Convolutional Neural Network (CNN) approaches in classifying
PD patients and healthy controls using the same dataset as us. While favorable results were
achieved, the complexity of the deep neural networks is high and the associated training
process can be expensive. Our study may reveal a possible usage of baseline machine
learning classifiers for PD patient diagnosis that is cost effective, and provide insights on
novel criteria for PD.

2. Materials and Methods
2.1. Dataset and Features

Gait in Parkinson’s Disease dataset [30,31] published by Jeffrey Hausdorff on Phys-
ioNet is a database that contains measures of gait from 306 subjects. 214 of them are PD
patients and 92 are healthy controls. The records include the vertical ground reaction force
of subjects as they walked at their usual, self-selected pace for approximately 2 min on
level ground. One’s gait is measured via 8 sensors underneath each foot that measure the
vertical ground reaction force at a rate of 100 samples per second per sensor while the
subject walks for a short period of time at their own pace. Therefore, each subject is in a
multi-dimensional time series representation of k by 16 matrices where k is the number of
force values collected in 0.01 s granularity for this particular subject.

For baseline model, we used the full dataset. For frequency domain, decision tree,
KNN methods, since the gait of each patient was measured for slightly different amount of
time, we filtered the dataset by keeping the same time series length (8000 data points, or
80 s) and drop subjects who have fewer, resulting in a smaller dataset of 270 subjects with
186 being PD patients and 84 being healthy controls. In order to tune hyperparameters, the
training set is further divided into training and validation sets using a 80:20 split with the
same strategy. The study was repeated 10 times with different random selections of PD
patients and healthy controls to obtain the mean and standard deviations of all metrics.

Figure 1 shows a subset of the time domain and frequency domain data from one
sensor of a healthy control and a PD patient. With a spectral analysis, the peaks in the
frequency domain indicate the dominant frequency of approximately once per second,
which matches the time domain and is within our expectation of normal walking speed [32].
The plot of the PD patients shows greater uncertainty and noise in the frequency domain,
likely indicative of motor system-related issues [33].
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Figure 1. Time domain and frequency domain data from one sensor of a healthy control and a
PD patient.

2.2. Baseline Model

Our baseline models draw inspiration from Yogev G., et al.’s prior work. Coefficient
of Variation is a measure of variability as ratio of the standard deviation to the mean, and
thus motor-system related symptoms are likely to be reflected on such metrics [34]. Since it
measures the dispersion of the data with respect to its mean, it works well on the data series
obtained from different patients. The force data are preprocessed to obtain the Coefficient

of Variation CV(i)
j =

σ
(i)
j

µ
(i)
j

for each sensor j of subject i, where σ is the standard deviation and

µ is the mean of the data. Thus, each subject is represented by a one-dimensional vector of
x(i) = CV(i) ∈ R16. The CV metrics are then trained using Logistic Regression and Support
Vector Machine with the Radial Basis Function (RBF) kernel, both with L2 regularization.
The former minimizes the loss function where h(x) = g(θx) = 1/(1 + exp(−θx)) is
the sigmoid function and θ are learned parameters. The regularization strength λ is a
hyperparameter to be optimized.

∑
i
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(
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The latter solves the optimization problem for w and b in the hypothesis g
(
wTx + b

)
where g is the sign function. The regularization strength C and the hyperparameter γ of
the RBF kernel are optimized using the validation set.

minw,b,ξ
1
2
||w||2 + C ∑

i
ξ2

i s.t. y(i)
(

wTx(i) + b
)
≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

2.3. Frequency Domain

Walking can be seen as a periodic motion, so each patient’s data can be treated as
a finite sequence of equally-space samples of some function [35]. Therefore, the vertical
reaction force time series data can be approximated using the following model and turned
into its frequency domain using discrete Fourier transform, where N = 8000 is the length of
the time series and i is the imaginary unit. Since the force data are real values, we will use
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the modulus of only k = 0, 1, . . . , 3999. Therefore, the frequency domain representation of
each patient has 16 × 4000 real non-negative values and will be evaluated using Logistic
Regression and SVM.

Xk =
N−1

∑
n=0

xn

(
cos

2πkn
N
− isin

2πkn
N

)
, k = 0, 1, . . . , N − 1

2.4. Decision Tree, K-Nearest Neighbors, Convolutional Neural Networks

Decision Tree is a non-parametric supervised learning method that learns the decision
rules, which can be visualized in a tree-like structure for binary classification. Filtered
dataset of 8000 datapoints for each of the 16 sensors was utilized in training this model.
The input dataset for each subject is one-dimensional and 8000 × 16 in length. Sklearn
DecisionTree Classifier function was applied and the related parameters were tuned to
get the best model performance, including criterion, splitter, max depth, min samples
split, random state and max features [36]. Decision trees tend to be unstable with small
datasets [37], which was confirmed in our experiments.

K-Nearest Neighbors (KNN) is another non-parametric supervised learning method
suitable for binary classification which relies on an assumption that similar data points
are close enough [38]. In the KNN model, the same dataset with 8000 time points for each
of the 16 sensors was utilized. The input dataset for each subject is one-dimensional and
8000 × 16 in length. SKlearn function KNeighborsClassifier was used and parameters were
turned to get the best model performance (n neighbors, weights, algorithm, leaf size, metric
and n jobs). Compared with the Decision Tree method, KNN reduces the overfitting issue
and improves accuracy.

2.5. Limited Dataset

As an extension, we also experimented with the case where there is only a subset of
sensors available. If the models can still reliably predict Parkinson gaits versus regular
gaits, it could help facilitate even simpler equipment in collecting vertical reaction force
data and diagnosing PD. Specifically, the following two schemes were chosen (Figure 2).

• Sides-Only: all except sensors 1, 8, 9, 16
• Exclude-Diagonals: sensors 1, 4, 5, 8, 9, 12, 13, 16

The intuition behind these choices has to do with the possible correlation of the forces
exerted by each region of the foot. These two subsets of the original data were to be
evaluated using Logistic Regression and SVM.
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3. Results
3.1. Baseline Model

With the healthy control as the negative samples and PD patients as the positive
samples, we evaluate the predictions for this classification task with

- True Negative (TN): healthy control correctly identified
- False Positive (FP): healthy control incorrectly identified as PD
- True Positive (TP): PD patient correctly identified
- False Negative (FN): PD patient incorrectly identified as healthy control
- And the metrics
- Precision = TP/(TP + FP)
- Recall = TP/(TP + FN)
- False Positive Rate = FP/(FP + TN).

The SVM method on Coefficient of Variation achieved better training and test accuracy
than the Logistic Regression (Table 1, Supplementary Table S2). Both models had close
to zero false negative rate, but Logistic Regression had more trouble predicting over the
negative examples compared to SVM, achieving about 50:50 between true negatives and
false positives. Hyperparameters λ = 1 for Logistic Regression and C = 0.1, γ = 10 for SVM
were found via grid search (Table 1, Supplementary Table S1).

Table 1. Performance metrics of the test set.

Accuracy
Mean (SD)

n = 10

Precision
Mean (SD)

n = 10

Recall
Mean (SD)

n = 10

False Positive Rate
Mean (SD)

n = 10

Baseline
model

LR 0.81 (0.03) 0.81 (0.03) 0.95 (0.03) 0.52 (0.09)
SVM 0.85 (0.03) 0.86 (0.03) 0.94 (0.04) 0.35 (0.09)

Frequency
domain

LR 0.80 (0.04) 0.84 (0.03) 0.88 (0.05) 0.37 (0.09)
SVM 0.84 (0.03) 0.84 (0.03) 0.95 (0.05) 0.41 (0.10)

DT 0.60 (0.06) 0.71 (0.04) 0.70 (0.08) 0.64 (0.12)
KNN 0.70 (0.05) 0.73 (0.03) 0.91 (0.05) 0.75 (0.10)

Tuned hyperparameters for baseline model LR: λ = 1; baseline model SVM: C = 0.1, γ = 10; frequency domain
LR: λ = 1; frequency domain SVM: C = 0.1, γ = 1 × 10−6; DT: max depth = 43; KNN: neighbors = 5.

Since the dataset has an unbalanced positive and negative example, it is important to
analyze beyond just accuracy. The near perfect recall score indicates good performance on
the positive examples.

It is also valuable to look at its discriminatory ability, i.e., how well it can separate
the positive and negative classes. The True Positive Rate (TPR) is the same as the Recall
value, and the False Positive Rate (FPR) is higher than desired, which indicates less than
optimal performance over the negative examples. By varying the decision thresholds, we
can visualize the trade-off between TPR and FPR, the proportion of PD patients correctly
classified and the proportion of healthy controls incorrectly classified, in the Receiver
Operating Characteristic (ROC) curve. Area Under Receiver Operating Characteristic
(AUROC) indicates the degree of separability; the higher the value, the more certain the
model is in predicting each group. SVM’s higher AUROC indicates a superior performance
in its ability to distinguish the two classes here (Figure 3).

3.2. Frequency Domain

The time series of 8000 data points (80 s) for each sensor of each patient was trans-
formed into its frequency domain using discrete Fourier transform. Since the force data
was sampled at once per 0.01 s granularity, the highest frequency detected is 1 cycle/0.02
s, or 50 cycles/s, which should give great insight into the subject’s gait. Since the time
domain data is real, we only need the first half of the frequency domain since the rest are
symmetrically redundant in their magnitude [39]. Therefore, we obtained 4000 frequency
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bins spaced at the reciprocal of time series length apart, 1/8000, for every sensor, ready to
be trained. Hyperparamters λ = 1 for Logistic Regression and C = 0.1, γ = 1 × 10−6 for
SVM were found via grid search (Table 1).

Logistic Regression achieved perfect accuracy on the training set and comparable test
accuracy as the CV method in the baseline, whereas SVM with RBF Kernel per-formed better
in test accuracy and recall. In terms of the ability to separate the two classes, AUROC still
indicates SVM’s slightly better performance in this area (Table 1, Supplementary Table S2
and Figure 4).
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3.3. Decision Tree

Decision tree builds qualitative classification models fitting the underlying distribution
of data. The 8000 data points for each sensor are utilized to train the decision tree classifier.
We turned parameters and the results indicated the best evaluation metric with a max
depth of 43 (mean 43.1 with standard deviation 2.85), criterion as entropy and random
splitter. It reached 0.60 mean accuracy with 0.71 mean precision and 0.70 mean recall score
(Table 1, Supplementary Table S2). Decision tree did not improve the baseline methods
performance, and this indicates better performance of logistic regression in small datasets.

3.4. K-Nearest Neighbors

The other non-parametric classification method used was KNN. Different num-
bers of neighbors from 1 to 10, different weights, and other parameters were evaluated,
and 5 neighbors (mean 4.6 with standard deviation 0.70) with weights as distance pro-
vided the best performance with accuracy 0.70 with standard deviation of 0.05, precision
0.73 with standard deviation of 0.03 and recall 0.91 with standard deviation of 0.05 (Table 1,
Supplementary Table S2). KNN performance is improved compared with decision tree,
but does not exceed logistic regression.

3.5. Limited Dataset

In both Sides-Only and Exclude-Diagonals schemes, Logistic Regression and SVM
achieved slightly lower performance, which are expected due to some features being
removed, but higher performance than decision tree and KNN. Logistic Regression and
SVM both still maintained high recall (Table 2).

Table 2. Performance metrics of the test set using limited dataset.

Accuracy
Mean (SD)

n = 10

Precision
Mean (SD)

n = 10

Recall
Mean (SD)

n = 10

False Positive Rate
Mean (SD)

n = 10

Sides-Only
Baseline model

LR 0.80 (0.03) 0.79 (0.03) 0.97 (0.02) 0.60 (0.10)
SVM 0.84 (0.06) 0.87 (0.04) 0.90 (0.06) 0.30 (0.10)
DT 0.59 (0.08) 0.70 (0.06) 0.69 (0.10) 0.65 (0.15)

KNN 0.62 (0.06) 0.73 (0.04) 0.71 (0.08) 0.57 (0.09)

Exclude-Diagonals
Baseline model

LR 0.78 (0.04) 0.78 (0.03) 0.94 (0.05) 0.59 (0.09)
SVM 0.85 (0.03) 0.87 (0.02) 0.92 (0.03) 0.32 (0.06)
DT 0.60 (0.05) 0.71 (0.04) 0.73 (0.06) 0.68 (0.12)

KNN 0.68 (0.03) 0.69 (0.01) 0.98 (0.03) 0.98 (0.04)

Tuned hyperparameters for baseline model LR: λ = 1; baseline model SVM: C = 0.1, γ = 10; frequency domain LR:
λ = 1; frequency domain SVM: C = 0.1, γ = 1 × 10−6; DT: max depth = 43; KNN: neighbors = 5.

4. Discussion

In our study, the baseline models with Coefficient of Variation using simple Logistic
Regression and Support Vector Machine with the Radial Basis Function kernel already
performed very well in the PD patient population, achieving a perfect recall score. The more
complex models we used were not able to improve on the false positive rate and precision.
Even though techniques such as regularization and early stopping have been applied to
our more complex models, the training and test scores still suggest some overfitting due
to the small dataset size. While the performance of our classifiers did not surpass that of
the CNN models in the previous studies [28,29], our baseline models provide additional
insights into PD diagnosis and the simplicity makes them more accessible.

All of our models have shown high values in the recall score, especially baseline
models, indicating their excellent performance in identifying the PD group. This makes
Parkinson’s disease detection through gait measures an effective first line of screening, and
its non-invasive nature could expedite its acceptance in the field. Taken together previous
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studies in the field, this indicates that different machine learning methods can be good
approaches to address PD diagnosis with clear criteria for patients.

Moreover, the limited data exploration suggests that having fewer sensors would not
significantly decrease the performance of the tested models. This could facilitate simpler
and lower cost setups than the 16-sensor equipment used to obtain the dataset here and
allow the technology to be more accessible. With the limited dataset, the overall perfor-
mance is comparatively worse in the healthy subject population, suggesting some degree
of variations in the gait profile of healthy adults as investigated in some studies [39,40].

Some limitations of this study include the small number of PD patients and healthy
controls who came from similar demographics. In future work, possible directions in
improving the performance of diagnosing PD via gait measures would include obtaining
data from more healthy controls and PD patients so that deep learning methods can
be better evaluated, as well as applying experimental deep network models that have
improved capabilities with small datasets. Healthy gait measures can be further analyzed
to understand their variations and help develop methods that can perform better without
lowering the high recall scores in this paper. Also, external datasets with more even class
distribution are required for evaluation to reduce bias in the current study. There may also
be interesting properties in the frequency domain of the gait measure that can be learned by
both non-deep and deep learning approaches. With further approaches, machine learning
classifiers for PD patient diagnosis can be cost-effective with potential novel criteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12102404/s1, Table S1. Optimal parameters in logistic
regression. Table S2. Performance metrics in the training process.
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