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Nesfatin-1 is one of several brain-gut peptides that have a close relationship with
the central dopaminergic system. Our previous studies have shown that nesfatin-1 is
capable of protecting nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced neurotoxicity. A recent study also revealed a reduced
blood level of nesfatin-1 in patients with Parkinson’s disease (PD). The current study
was designed to investigate whether reduced nesfatin-1 in cerebrospinal fluid (CSF)
induces nigrostriatal system degeneration. An intra-cerebroventricular (ICV) injection
technique was used to administer anti-nesfatin-1 antibody directly into the lateral
ventricle of the brain. Enzyme-linked immunosorbent assay (ELISA) results showed that
ICV injection of anti-nesfatin-1 antibody into the lateral ventricle of the brain once daily
for 2 weeks caused a significant reduction in nesfatin-1 levels in the CSF (93.1%).
Treatment with anti-nesfatin-1 antibody resulted in a substantial loss (23%) of TH-
positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc), as
shown by immunofluorescence staining, a depletion in dopamine and its metabolites in
the striatum detected by high-performance liquid chromatography (HPLC), and obvious
nuclear shrinkage and mitochondrial lesions in dopaminergic neurons in the SNpc
detected by transmission electron microscopy (TEM). Furthermore, the results from
our Western blot and ELISA experiments demonstrated that anti-nesfatin-1 antibody
injection induced an upregulation of caspase-3 activation, increased the expression
of p-ERK, and elevated brain-derived neurotrophic factor (BDNF) levels in the SNpc.
Taken together, these observations suggest that reduced nesfatin-1 in the brain may
induce nigrostriatal dopaminergic system degeneration; this effect may be mediated via
mitochondrial dysfunction-related apoptosis. Our data support a role of nesfatin-1 in
maintaining the normal physiological function of the nigrostriatal dopaminergic system.
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INTRODUCTION

Parkinson’s disease (PD) is one of the most common
neurodegenerative diseases in the world (Dawson and Dawson,
2003; de Lau and Breteler, 2006; Elbaz et al., 2016). Most
PD patients display motor symptoms, including tremor,
muscle rigidity, akinesia (or slow movement), and postural
instability; patients also display non-motor symptoms, such
as abnormal digestive tract function, mood disorders, and
autonomic disturbances (Klockgether, 2004; Beitz, 2014). The
clinical pathology includes the loss of dopaminergic neurons
in the substantia nigra pars compacta (SNpc) with an ensuing
significant reduction in dopamine levels in the striatum (Dauer
and Przedborski, 2003; Sarkar et al., 2016; Balestrino and
Schapira, 2020). Extensive data in the literature have linked the
development of PD to genetic origins, environmental influences,
oxidative stress, protein misfolding, and inflammation, among
many other factors (Cacabelos, 2017; Delamarre and Meissner,
2017; Boulos et al., 2019). The etiology of PD, however, is not
fully understood (Respondek et al., 2019; Bonam and Muller,
2020; Gilmozzi et al., 2020).

Recently, several brain-gut peptides, such as neurotensin,
ghrelin, and glucagon-like peptide-1, were identified to play
a significant role in regulating the function of the brain
dopaminergic system (St-Gelais et al., 2006; Calsolaro and
Edison, 2015; Yu et al., 2016). Nesfatin-1, an 82-amino acid
polypeptide that is a product of the NEFA/NUCB2 gene identified
in 2006, has been shown to have anorexigenic properties (Oh
et al., 2006; Stengel et al., 2010; Pałasz et al., 2012). In the brain,
nesfatin-1 is expressed mostly in the paraventricular, arcuate,
and supraoptic nuclei of the hypothalamus, the nucleus tractus
solitarii, the dorsal nucleus of the vagus nerve, and the pituitary
gland (Stengel and Taché, 2011; Li et al., 2014). Nesfatin-1 is
relatively stable in the blood within 20 min after injection (Pan
et al., 2007). Interestingly, this peptide can freely cross the
blood-brain barrier in an unsaturated manner (Pan et al., 2007),
allowing the delivery of nesfatin-1 into the brain by peripheral
injection for the treatment of brain diseases (Dong et al., 2019).

Early studies on nesfatin-1 were mainly focused on its
inhibitory effects on eating, weight, and blood glucose regulation
(Atsuchi et al., 2010; Su et al., 2010; Goebel et al., 2011;
Stengel et al., 2011). Recent reports have also revealed the
impacts of nesfatin-1 on reproduction, sleep, anxiety, epilepsy,
and depression (Clynen et al., 2014; Kühne et al., 2018;
Friedrich et al., 2019; Kaya et al., 2019; Weibert et al., 2019).

Abbreviations: AD, Alzheimer’s disease; ANOVA, one-way analysis of variance;
BDNF, brain-derived neurotrophic factor; CNS, central nervous system;
CSF, cerebrospinal fluid; DA, dopamine; DOPAC, dihydroxyphenylacetic acid;
EDTA, ethylene diaminetetraacetic acid; ELISA, enzyme linked immunosorbent
assay; ERK, extracellular signal-regulated kinases GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; HPLC, high-performance liquid chromatography;
HVA, homovanillic acid; ICV, intra-cerebroventricular; MC4R, melanocortin 4
receptor; MPP+, 1-methyl-4-phenylpyridillium ion; MPTP, 1-methyl-4-phenyl-1,
2,3,6-tetrahydropyridine; PBS, phosphate-buffered saline; PD, Parkinson’s disease;
p-ERK1/2, phosphorylated ERK1/2; PFA, paraformaldehyde; ROS, reactive oxygen
species; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis;
SNpc, substantia nigra pars compacta; Str, striatum; TEM, transmission electron
microscopy; TH, tyrosine hydroxylase; TH(+), TH-immunoreactivity positive;
i.p., intraperitoneal injection.

Özsavcí et al. (2011) were among the first to report that nesfatin-
1 exerts neuroprotection against subarachnoid hemorrhage-
induced injury in rats by inhibiting neutrophil infiltration and
the subsequent release of inflammatory mediators. Tang et al.
(2012) further showed that nesfatin-1 significantly suppresses
inflammation and neuronal cell apoptosis after head trauma.
Our own data also demonstrate that nesfatin-1 is capable
of antagonizing rotenone and 1-methyl-4-phenylpyridinium
ion (MPP+)-induced neurotoxicity, and its neuroprotective
effect appears to be associated with the activation of the
C-Raf/extracellular signal-regulated kinase (ERK) signaling
cascade, leading to reduced apoptosis caused by mitochondrial
dysfunction after exposure to the neurotoxic agents rotenone
and MPP+ (Tan et al., 2015; Shen et al., 2017). More recently,
a clinical study provided evidence that the nesfatin-1 level in the
blood of PD patients is significantly lower than that in controls
(Emir et al., 2019).

While our data, together with data from other groups,
have established a protective function of nesfatin-1 in the
central nervous system (CNS), the receptor to which nesfatin-1
molecules bind has not yet been identified (Brailoiu et al., 2007,
2013; Shen et al., 2017). Yosten and Samson (2009) postulated
that melanocortin 4 receptor (MC4R) may serve as a candidate
nesfatin-1 receptor. Brailoiu et al. (2007) further speculated that
the receptor of nesfatin-1 is a G-protein-coupled receptor that
acts through Gi and Gs. Studies in our lab using the patch
clamp technique have demonstrated that nesfatin-1 can directly
decrease the excitability of nigral dopaminergic neurons in rat
brain slices (Li et al., 2014), thus suggesting that the nesfatin-
1 receptor may be expressed in nigral dopaminergic neurons.
These findings prompted us to ask whether MC4R is expressed in
dopaminergic neurons in the SNpc and whether delivering SHU
9119, an MC4R inhibitor, directly to the lateral ventricle could
block MC4R to affect neuronal function in the SNpc through
MC4R. The synthetic peptide SHU 9119 {sequence: Ac-Nle-
c[Asp-His-DNal(2′)-Arg-Trp-Lys]-NH2} has been generally used
to identify the physiological role of MC4R (Hruby et al., 1995;
Yang et al., 2002; Grieco et al., 2007).

Based on our own data and data in the literature, we
hypothesized that MC4R, a putative nesfatin-1 receptor, is
expressed in dopaminergic neurons in the SNpc. We further
hypothesized that the level of nesfatin-1 in the central milieu,
especially in the cerebrospinal fluid (CSF), is critical to its
protective role in maintaining the normal physiological function
of the nigrostriatal system. In the present study, we applied
an in vivo intra-cerebroventricular (ICV) injection technique to
deliver SHU 9119 or nesfatin-1 antibody directly into the lateral
ventricle of the brain to observe whether neurodegeneration
in the nigrostriatal system occurs as a consequence of MC4R
receptor inhibition or decreased CSF nesfatin-1 levels.

MATERIALS AND METHODS

Animals
The study was conducted in compliance with standard animal
use practices and was approved by the Animal Ethics Committee
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of Qingdao University (QDU20180120, Jan-2018). Thirty male
C57BL/6 mice were purchased from Beijing Vital River
Laboratory Animal Technology Co. (Beijing, China). The mice
were maintained in a facility with a 12-h light-dark cycle and were
provided with food and water ad libitum. At the time of use, the
mice were 7 weeks old and weighed 20–25 g.

Experimental Design and Animal
Treatment
Two sets of experiments were designed to test our hypothesis
(Figure 1). Experiment 1 was designed to identify the presence
of MC4R on dopaminergic neurons in the SNpc by double
staining of tyrosine hydroxylase (TH) and MC4R in brain
sections of C57BL/6 mice (n = 6) (Figure 1A). Experiment 2
was designed to study whether the lateral ventricle administration
of anti-nesfatin-1 antibody would induce nigrostriatal system
degeneration in mice (n = 24, six mice per group) (Figure 1B).
The following is the animal treatment for experiment 2.

To embed the guide cannula into the lateral ventricle, mice
were fully anesthetized with chloral hydrate (10%, 10 mL/kg)
(Keshi, Chengdu, China) by intraperitoneal (i.p.) injection
and placed in a stereotaxic frame (RWD, Shenzhen, China).
A longitudinal incision was made in the scalp to expose the
surface of the skull. A cranial burr hole (1 mm) was drilled into
the skull of the right hemisphere with the following coordinates:
0.3 mm posterior to bregma and 1.0 mm lateral to the midline
(Paxinos and Franklin, 2001; Shen et al., 2017, 2020). Next, a
stainless steel cannula (RWD, Shenzhen, China) was embedded
at 3.2 mm vertical from the skull surface (Young et al., 2012).
The cannula was fixed on the skull by a mixture of dental

base acrylic resin powder and liquid (Pigeon Dental, Shanghai,
China). On the experimental days, the dummy cannula was
removed, and an injector (3.2 mm protrusion) was inserted into
the guide cannula. ICV injection of drug solutions was performed
manually at a rate of 0.5 µL/min (Dore et al., 2017) in freely
moving animals through the cannula, which was connected to
a 5 µL Hamilton microsyringe (Reno, NV, United States), and
the injection cannula was kept in situ for an additional 3 min
to avoid reflux of the solution along the injector track. The ICV
injection technique is well established in this lab and was used in
our previous studies (Shen et al., 2017, 2020).

After 1 week of recovery, 24 mice (8 weeks old) were
randomly divided into four groups (six mice per group) and
administered ICV injections once per day for 14 continuous
days of the following: (1) control group: 2 µL saline; (2) non-
immune anti-mouse IgG antibody group (MAB 201): 2 µL
IgG1κ antibody (1.3 mg/ml) (Millipore, Darmstadt, Germany)
(Evans et al., 2019); (3) MC4R receptor inhibitor group:
0.5 µL SHU 9119 (0.5 nmol) (Tocris, Bristol, United Kingdom)
(Leckstrom et al., 2009); and (4) anti-nesfatin-1 group: 2 µL
nesfatin-1 antibody (0.12 mg/mL) (Phoenix, Burlingame, CA,
United States). Twenty-four hours after the last injection, the
CSF sample was collected, and then the brain was removed from
the skull. The right side of the SNpc was dissected to determine
protein levels by Western blot or enzyme-linked immunosorbent
assay (ELISA); the striatum was dissected for neurochemical
analyses by high-performance liquid chromatography (HPLC).
The collected samples were stored at −80◦C for future analyses.
The left side of the brain was fixed in 4% paraformaldehyde (PFA)
for immunofluorescence staining.

FIGURE 1 | Schematic illustration of the experimental design. (A) Double staining of TH and MC4R in the SNpc to demonstrate the presence of MC4R in the SNpc
(n = 6). (B) Anti-nesfatin-1 antibody induces nigrostriatal system degeneration in mice (n = 24, six mice per group). The mice received the substances at the doses
indicated by ICV injection for 14 days. The CSF was collected for the determination of the nesfatin-1 concentration. The SNpc and striatum were collected for the
determination of TH, caspase-3, and p-ERK1/2 expression, BDNF concentration, mitochondrial morphology, and nuclear morphology. BDNF, brain-derived
neurotrophic factor; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; MAB 201, non-immune anti-mouse IgG antibody; MC4R, melanocortin 4
receptor; p-ERK1/2, phosphorylated ERK1/2; SHU 9119, MC4R receptor inhibitor; SNpc, substantia nigra pars compacta; Str, striatum; TH, tyrosine hydroxylase;
ICV, intra-cerebroventricular.
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Double Staining of TH and MC4R in the
SNpc
This experiment was conducted to identify the presence of MC4R
on dopaminergic neurons in the SNpc. Untreated mice (8 weeks
old, n = 6) were fully anesthetized with chloral hydrate (10%,
10 mL/kg, i.p.) (Keshi, Chengdu, China). Brains of C57BL/6 mice
were removed from the skull, fixed in 4% PFA for 72 h at 4◦C,
incubated in 0.1 mmol/L phosphate buffer (pH 7.4) containing
25% sucrose at 4◦C for 2–3 days, and then stored at −80◦C.
The frozen brain tissues were cut into 20-µm-thick sections.
Double immunofluorescence staining is routinely performed in
our laboratory (Zhang et al., 2014; Shen et al., 2017). The free-
floating brain sections were incubated with 0.3% Triton X-100
diluted in PBS for 2 h at room temperature for permeabilization
and blocked in normal goat serum for 1 h at room temperature.
The sections were then double-immunostained at 4◦C with
primary antibodies against TH (1:2,000) (Millipore, Darmstadt,
Germany) and MC4R (1:50) (Alomone Labs, Jerusalem, Israel)
for 24 h followed by incubation with goat anti-rabbit Alexa
488-conjugated secondary antibody (1:800) (Abcam, Cambridge,
United Kingdom) and goat anti-mouse Texas Red secondary
antibody (1:800) (Birmingham, AL, United States) at room
temperature for 2 h. The brain tissues were mounted on objective
slides using ProLong Gold Anti-fade Mountant (Cell Signaling,
Boston, MA, United States) to avoid fluorescence bleaching. The
negative control was established by using only the secondary
antibody to show non-specific background staining. Images were
obtained by immunofluorescence microscopy (Observer A1,
Zeiss, Germany) at a magnification of 400×.

CSF Collection
Cerebrospinal fluid samples were collected using a 28G butterfly
needle connected to a 1-mL syringe. After being anesthetized with
chloral hydrate (10%, 10 mL/kg, i.p.) (Keshi, Chengdu, China),
the surface of the mouse brain was held vertically on the work
surface, and the needle was inserted vertically (relative to the
work surface) between the protuberance and the spine of the
atlas. After a puncturing sensation was felt, the CSF was slowly
collected (Gu et al., 2012).

Quantification of Nesfatin-1 in the CSF
by ELISA
Cerebrospinal fluid samples from six mice per group were
collected for ELISA. CSF samples (10 µL) were diluted 1:20 with
artificial CSF (a buffer containing 103 mmol/L NaCl, 4.7 mmol/L
KCl, 1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4, 25 mmol/L
NaHCO3, 10 mmol/L glucose, 1 mmol/L sodium pyruvate, and
2.5 mmol/L CaCl2, pH 7.4) (Shen et al., 2020). Concentrations
of nesfatin-1 in the CSF were determined by a mouse nesfatin-
1 ELISA kit from JianglaiBIO (Beijing, China) according to the
manufacturer’s instructions (Zhang et al., 2018).

Immunofluorescence Staining of TH in
the SNpc
Tyrosine hydroxylase is a rate-limiting enzyme in the
synthesis process of dopamine and norepinephrine

(Moore and Bloom, 1979). It is abundantly expressed in
dopaminergic neurons (Raisman-Vozari et al., 1991; Blanchard
et al., 1993). The protocol for immunofluorescence staining
of TH is routinely used in our laboratory (Jiang et al., 2008;
Shen et al., 2017). Brains were fixed in 4% PFA for 72 h at
4◦C then incubated in 0.1 mol/L phosphate buffer (pH 7.5)
containing 25% sucrose at 4◦C for 2–3 days. The frozen brain
tissues were cut into 20-µm-thick sections. The brain tissue
sections were used for immunofluorescence staining of TH in the
SNpc. The free-floating sections were first incubated with 0.1%
Triton X-100 and goat serum (Gibco-BRL, Grand Island, NY,
United States) in phosphate-buffered saline (PBS) for 2 h and
then incubated overnight at 4◦C with the TH primary antibody
(1:1,000) (Millipore, Burlington, MA, United States) in PBS
containing 0.1% Triton X-100 (St. Louis, MO, United States).
The sections used for staining TH in the SNpc were incubated
with Alexa Fluor 555-conjugated donkey anti-rabbit secondary
antibody (Abcam, Cambridge, United Kingdom), and images
were obtained by immunofluorescence microscopy (Observer
A1, Zeiss, Germany) at magnifications of 100× and 400×.

Nissl Staining in the SNpc
Brain sections (20 µm) were stained with Nissl staining reagent
(Beyotime, Shanghai, China) for 20–30 min and then rinsed
with double-distilled water for 5 min, 70% ethanol solution
for 5 s, and 95% ethanol solution for 5 s. Then, the brain
sections were dehydrated in anhydrous ethanol, cleared with
xylene solution (Sinopharm, Shanghai, China), and mounted
with neutral gum (Yiyang, Shanghai, China) (Jyothi et al., 2015;
Fathalla et al., 2017).

Stereological Analysis
Total numbers of TH-positive and Nissl-positive neurons were
estimated bilaterally from every 4th section through the extent
of the SNpc of each brain. Stereology was performed at 400×
using an Axioplan 2 imaging microscope (Zeiss, Göttingen,
Germany) fitted with a DEI-750 CE video camera (Optronics,
CA, United States) and a LEP MAC5000 motorized stage
controller (Ludl Electronic Products, NY, United States). The
software package used was Stereo Investigator (MBF Bioscience,
VT, United States). The coefficient of error for the individual
counts was 0.01. A counting frame of 50 µm × 50 µm and
a height of 10 µm was chosen. Only the neurons within the
counting frame were counted. At least 50 markers were counted
within 50 framing sites for each mouse. The neuron count
multiplied by four was used as the final number of TH+
cells. Data are expressed as TH(+)-dopaminergic neurons/SNpc
(Healy-Stoffel et al., 2012; Park et al., 2012; Nam et al., 2015; Shen
et al., 2017; Peng et al., 2018).

Quantification of Dopamine and Its
Metabolite Levels by HPLC
The HPLC protocol has been well established and is routinely
used in our laboratory (Jiang et al., 2008; Shen et al., 2017).
Samples of the striatum were weighed and then homogenized
in 120 µL of solution A (0.4 M perchloric acid). After initial
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centrifugation (12,000 rpm for 20 min at 4◦C) (Eppendorf
5810R, Germany), 80 µL of the supernatant was transferred into
Eppendorf tubes, and 40 µL of solution B [containing 20 mM
citromalic acid potassium, 300 mM dipotassium phosphate,
2 mM ethylenediamine tetraacetic acid (EDTA)·2Na] was added.
After additional centrifugation (12,000 rpm for 20 min at 4◦C),
100 µL of the supernatant was assayed for dopamine (DA) and its
metabolites homovanillic acid (HVA) and dihydroxyphenylacetic
acid (DOPAC) by HPLC. Separation was achieved on an Agilent
C18 reverse-phase column (4.6 mm× 150 mm× 5 µm) (Agilent,
CA, United States). The mobile phase consisted of 20 mM
citromalic acid, 50 mM sodium caproate, 0.134 mM EDTA·2Na,
3.75 mM sodium octane sulfonic acid, and 1 mM di-sec-
butylamine in 5% (v/v) methanol; the flow rate was 1 mL/min.
A 2,465 electrochemical detector (Waters, United States) was
operated in screen mode. The results are expressed as ng/mg wet
weight of brain tissue.

Western Blot
Samples of the SNpc were lysed in RIPA lysis buffer containing
protease inhibitor and phosphatase inhibitor cocktail (Beyotime,
Shanghai, China). The protein concentration was determined
using BCA kits (Beyotime, Shanghai, China) (Zhang et al., 2020).
For Western blotting, the samples were boiled in 5 × loading
buffer (Applygen, Beijing, China), electrophoresed on a 12%
Tris-glycine gel by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and then transferred to
polyvinylidene fluoride membranes with a pore size of 0.45 µm
(Merck Millipore, MA, United States) (Schägger, 2006). After
blocking with 7% non-fat milk at room temperature for
2 h, the membranes were incubated for 24 h with primary
antibody overnight at 4◦C and then with secondary antibodies
coupled to horseradish peroxidase for 2 h. The following
primary antibodies purchased from Cell Signaling Technology
(Boston, MA, United States) were used for Western blot
analysis: phospho-ERK1/2 (1:1,000), caspase-3 (1:1,000),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(1:1,000). The following secondary antibodies were used for
Western blot analysis: anti-rabbit IgG-HRP (1:10,000) and
anti-mouse IgG-HRP (1:10,000) (Santa Cruz Biotechnology,
Dallas, TX, United States). Cross-reactivity was visualized using
ECL Western blot detection reagents (Millipore, Burlington,
MA, United States), analyzed by scanning densitometry
using UVP VisionWorksTM LS Software (UVP, Cambridge,
United Kingdom) and quantified with ImageJ Software
(Zhang et al., 2020).

Morphological Examination of
Mitochondria and Nuclei by
Transmission Electron Microscopy
The subcellular microstructure was examined by using a JEOL
JEM-1400 transmission electron microscope (JEOL, Tokyo,
Japan) at the Electron Microscopy Core Facility at Qingdao
University. SNpc samples were cut into 2 mm3 pieces, fixed
with 2.5% glutaraldehyde for more than 4 h, postfixed with 2%
osmium tetroxide in Sorensen’s buffer for 1 h, dehydrated in an

ascending ethanol series (30, 50, 70, 80, 90, 95, and 100%), and
embedded in Epon/Araldite resin. Thin sections (70 nm) were
cut using a Leica EM UC7 Ultramicrotome (Leica Microsystems,
Wetzlar, Germany) and placed on 100 mesh copper grids
(Electron Microscopy Sciences, Hatfield, PA, United States).
Sample grids were poststained with premixed solutions of uranyl
acetate and lead citrate (Ultrostain I and II, respectively, Leica
Microsystems, Wetzlar, Germany) and examined at 80 kV using a
JEOL JEM-1400 transmission electron microscope (JEOL, Tokyo,
Japan) (Eustaquio et al., 2018).

For animals in each group (n = 6 per group), at least
three samples per animal were prepared. Images were captured
of randomly selected neurons (approximately 10 neurons per
animal) from all the animals in each group. The images were
recorded using a TVIPS F416 4k × 4k CCD camera running
EM-MENU 4.0 acquisition software (Tietz Video and Image
Processing Systems, Gauting, Germany). Mitochondrial length
(along the long axis) and the number of perinuclear mitochondria
were counted and summarized from 10 images for each animal.
The nuclear morphology of dopaminergic neurons was also
observed and described (Eustaquio et al., 2018).

Quantification of Brain-Derived
Neurotrophic Factor in the SNpc by
ELISA
Samples of SNpc were lysed in RIPA lysis buffer containing
protease inhibitor and phosphatase inhibitor cocktail (Beyotime,
Shanghai, China). The protein concentration was determined
using BCA kits (Beyotime, Shanghai, China). The samples were
then diluted 1:10 with sample dilution buffer (1% BSA with 0.05%
Tween-20). The brain-derived neurotrophic factor (BDNF)
concentration was determined by the Total BDNF Quantikine
ELISA Kit from R&D Systems (MN, United States) according to
the manufacturer’s instructions (Polacchini et al., 2015).

Statistical Analysis
SPSS 20.0 (SPSS Inc., Chicago, IL, United States) was used
to analyze the data. All data are shown as the mean ± SD.
Differences between the means of two groups were compared
using the unpaired-samples t-test. One-way analysis of variance
(ANOVA) followed by the Student–Newman–Keuls test was used
to compare differences between means in more than two groups.
p < 0.05 was considered statistically significant.

RESULTS

Expression of MC4R in Dopaminergic
Neurons in the SNpc
Tyrosine hydroxylase is typically expressed in dopaminergic
neurons (Pickrell et al., 2015; Shehadeh et al., 2019). A double
staining technique was used to detect the expression of MC4R
in dopaminergic neurons in the SNpc. The images in Figure 2
illustrate the robust signal of the MC4R staining in the SNpc. The
MC4R signals were colocalized with TH signals, indicating the
presence of MC4R in dopaminergic neurons in the SNpc.
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FIGURE 2 | Double staining of TH and MC4R in the mouse SNpc (n = 6). The images were obtained by immunofluorescence microscopy. TH, tyrosine hydroxylase;
MC4R, melanocortin 4 receptor; SNpc, substantia nigra pars compacta.

Decreased Nesfatin-1 Levels in CSF
Following Daily ICV Injection of
Anti-nesfatin-1 Antibody
Following the various ICV treatments, we used ELISA to quantify
the concentration of nesfatin-1 in the CSF. The data presented
in Table 1 show that daily ICV injection of saline, non-
immune anti-mouse IgG antibody, MC4R receptor inhibitor
(SHU 9119), and anti-nesfatin-1 antibody for 14 days resulted
in nesfatin-1 concentrations in the CSF of 0.29 ± 0.083,
0.33± 0.019, 0.31± 0.065, and 0.02± 0.010 ng/mL, respectively.
Treatment with anti-nesfatin-1 antibody significantly decreased
the nesfatin-1 level in the CSF compared to the control treatment
(by 93.1%), non-immune anti-mouse IgG antibody treatment,
and MC4R receptor inhibitor treatment (p < 0.05).

ICV Injection of Anti-nesfatin-1 Antibody
Induced Dopaminergic Neuron Loss in
the SNpc
After 14 days of daily ICV injection, the numbers of TH-
immunopositive (TH+) dopaminergic neurons in the SNpc

TABLE 1 | Nesfatin-1 concentrations in the CSF with or without direct injection of
antibody or inhibitor into the lateral ventricle.

Group Drug Nesfatin-1 concentration
(ng/ml)

Control Saline 0.29 ± 0.083

Anti-nesfatin-1
antibody

2 µl nesfatin-1 (0.12 mg/ml) 0.02 ± 0.010*

Non-immune
anti-mouse IgG
antibody

2 µl IgG1κ antibody
(1.3 mg/ml)

0.33 ± 0.019

MC4R receptor
inhibitor

0.5 µl SHU 9119 (0.5 nmol) 0.31 ± 0.065

The drugs were administered to mice by ICV injection once daily for 14 days. The
data represent the mean ± SD. n = 6 per group. *p < 0.05, compared to the
controls. MC4R, Melanocortin 4 receptor.

in the control group, non-immune anti-mouse IgG antibody
group, MC4R receptor inhibitor group, and anti-nesfatin-1 group
were 4,736 ± 702.73, 5,200 ± 72.32, 4,336 ± 168.57, and
3,632 ± 372.84, respectively. Direct injection of anti-nesfatin-
1 antibody into the brain ventricle resulted in a significant loss
of TH(+)-dopaminergic neurons in the SNpc (Figures 3A,B).
The survival ratio of TH(+)-dopaminergic neurons in the SNpc
in the anti-nesfatin-1 group decreased by 23% compared to
that in the control group (p < 0.05) and by 30% compared
to that in the non-immune anti-mouse IgG antibody group
(MAB 201 group) (p < 0.05). In the MC4R receptor inhibitor
(SHU 9119)-treated group, there was no significant reduction
in the number of dopaminergic neurons compared with that in
the control group.

After 14 days of daily ICV injection, the numbers of Nissl-
positive neurons in the SNpc in the control group, non-immune
anti-mouse IgG antibody group, MC4R receptor inhibitor group,
and anti-nesfatin-1 group were 5,638 ± 132.94, 6,210 ± 698.62,
6,295 ± 94.75, and 4,562 ± 79.37, respectively. Direct injection
of anti-nesfatin-1 antibody into the brain ventricle resulted
in a significant loss of Nissl-positive neurons in the SNpc
(Figures 3C,D). The survival ratio of Nissl-positive neurons
in the SNpc in the anti-nesfatin-1 group decreased by 19%
compared to that in the control group (p < 0.05) and by 26.5%
compared to that in the non-immune anti-mouse IgG antibody
group (MAB 201 group) (p < 0.05).

ICV Injection of Anti-nesfatin-1 Antibody
Induced Depletion of Dopamine and Its
Metabolites in the Striatum
After 14 days of daily treatments, the levels of DA and its
metabolite HVA were significantly decreased in the striatum in
the anti-nesfatin-1 group. Anti-nesfatin-1 antibody treatment
resulted in 28, 22, and 29% depletion of DA compared
to its levels in the control, non-immune anti-mouse IgG
antibody, and MC4R receptor inhibitor groups (p < 0.05),
respectively (Figure 4A). Anti-nesfatin-1 treatment caused
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FIGURE 3 | Anti-nesfatin-1 treatment induced nigral dopaminergic neuron degeneration. (A) TH(+)-dopaminergic neurons in the SNpc of control mice and mice
treated with MAB 201, SHU 9119, or anti-nesfatin-1 antibody are shown. (B) A summary of the data showing the numbers of TH(+)-dopaminergic neurons in the
different groups (TH, tyrosine hydroxylase). (C) Nissl-positive neurons in control mice and mice treated with MAB 201, SHU 9119 or anti-nesfatin-1 antibody are
shown. The dotted portion indicates the SNpc. (D) A summary of the data showing the numbers of Nissl-positive neurons in the different groups. Each value
represents the mean ± SD, n = 6; *p < 0.05. MAB 201, non-immune anti-mouse IgG antibody; SHU 9119, MC4R receptor inhibitor; SNpc, substantia nigra pars
compacta; TH(+), TH-positive.

FIGURE 4 | Anti-nesfatin-1 antibody-induced depletion of DA and HVA in the striatum of the right brain (n = 6). (A) Striatal DA levels in control mice and mice treated
with MAB 201, SHU 9119, or anti-nesfatin-1 antibody are shown. (B) Striatal HVA levels in the different groups. (C) Striatal DOPAC levels in the different groups (DA,
dopamine; HVA, homovanillic acid; DOPAC, dihydroxyphenylacetic acid). Each value represents the mean ± SD, n = 6; ***p < 0.0001, **p < 0.005, and *p < 0.05.
MAB 201, non-immune anti-mouse IgG antibody; SHU 9119, MC4R receptor inhibitor.

26, 22, and 19% depletion of HVA, respectively, compared
to its level in these groups (p < 0.05) (Figure 4B). The
DA and HVA levels in mice pretreated with MAB 201
and SHU 9119 did not significantly change compared with
those in the control mice (Figures 4A,B). No significant
difference was found in DOPAC levels among all the treatment
groups (Figure 4C).

Anti-nesfatin-1 Antibody Treatment
Stimulated Caspase-3 Expression in the
SNpc
Caspase-3 activation is a recognized marker of cell apoptosis
(Rogers et al., 2017). The Western blot data in Figure 5A show
that ICV injection of the anti-nesfatin-1 antibody increased the
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FIGURE 5 | Anti-nesfatin-1 antibody treatment stimulated caspase-3 protein
expression in the SNpc (n = 6). (A) An original image of a Western blot
showing the caspase-3 protein levels in control mice and mice treated with
MAB 201, SHU 9119, or anti-nesfatin-1 antibody. (B) Statistical analysis of
caspase-3 protein levels in the different groups. Each value represents the
mean ± SD, n = 6; **p < 0.005, and *p < 0.05. MAB 201, non-immune
anti-mouse IgG antibody; SHU 9119, MC4R receptor inhibitor; SNpc,
substantia nigra pars compacta.

expression of caspase-3. After 14 days of daily ICV injection,
the ratios of caspase-3/β-actin expression in the SNpc in the
control group, non-immune anti-mouse IgG antibody group,
MC4R receptor inhibitor group, and anti-nesfatin-1 group
were 0.522 ± 0.177, 0.405 ± 0.215, 0.740 ± 0.069, and
0.817 ± 0.260, respectively. The ratios of caspase-3/β-actin
expression demonstrated that the anti-nesfatin-1 antibody
treatment increased caspase-3 expression by 57% compared to
the control treatment (p < 0.05) (Figure 5B). Furthermore,
the expression of caspase-3 in the anti-nesfatin-1 group was
increased by 102% compared to that in the non-immune anti-
mouse IgG antibody group (p < 0.05) (Figure 5B). These
data indicate a statistically significant upregulation of caspase-3
expression, an indicator of induced cell apoptosis, in the SNpc of
mice following the reduction of nesfatin-1 in the CSF.

ICV Injection of Anti-nesfatin-1 Antibody
Induced Mitochondrial Lesions and
Nuclear Shrinkage in the SNpc
Altered cell apoptosis could be due to dysfunctional
mitochondria in neuronal cells (Nunnari and Suomalainen,
2012; Perier et al., 2012; Franco-Iborra et al., 2016). We
used transmission electron microscopy (TEM) to examine
mitochondrial morphology. The data in Figure 6A show a
marked reduction in mitochondrial numbers in dopaminergic
neurons in the SNpc after daily ICV treatment with anti-nesfatin-
1 antibody for 14 days. Compared with the control treatment,
treatment with anti-nesfatin-1 resulted in a 54% depletion of the
number of mitochondria (Figure 6B).

We further examined nuclei in dopaminergic neurons by
TEM. The volume of the nucleus in the anti-nesfatin-1 group
was significantly reduced; the edges of the nucleus were also
visibly folded inward, suggesting that the nuclei of dopaminergic
neurons were impaired following anti-nesfatin-1 treatment
(Figure 6C). Additionally, there was a 9% decrease in the length
of the mitochondrial major axis (Figure 6D) in the anti-nesfatin-
1 group compared to that in the control group (p < 0.05).

ICV Administration of Anti-nesfatin-1
Antibody Stimulated ERK1/2 Expression
in the SNpc
Phosphorylation of ERK1/2 is known to activate apoptotic factors
within downstream apoptotic pathways, leading to neuronal
apoptosis (Jiang et al., 2000). The Western blot data in Figure 7A
show that the expression of p-ERK1/2 was noticeably increased
following anti-nesfatin-1 treatment. After 14 days of treatment,
the ratios of p-ERK/β-actin in the SNpc in the control group,
non-immune anti-mouse IgG antibody group, MC4R receptor
inhibitor group, and anti-nesfatin-1 group were 0.766 ± 0.86,
0.827 ± 0.21, 0.900 ± 0.09, and 1.105 ± 0.17, respectively
(Figure 7B). The p-ERK level in the anti-nesfatin-1 group
increased by 44% compared with that in the control group
(p < 0.05). The p-ERK level in the anti-nesfatin-1 group
increased by 34% compared to that in the non-immune anti-
mouse IgG antibody group. These differences were statistically
significant (p < 0.05).

Anti-nesfatin-1 Antibody Treatment
Upregulated BDNF Expression in the
SNpc
Brain-derived neurotrophic factor is a small-molecule protein
structurally related to nerve growth factor that plays an important
role in the growth, development, differentiation, maintenance,
and regeneration of various types of neurons in the CNS (Allen
et al., 2013). ELISA was used to quantify BDNF levels in the
SNpc, and as shown in Figure 8, our data demonstrated that after
14 days of treatment, the concentrations of BDNF in the SNpc in
the control group, non-immune anti-mouse IgG antibody group,
MC4R receptor inhibitor group, and anti-nesfatin-1 group were
0.911± 0.17, 1.325± 0.29, 0.991± 0.33, and 1.873± 0.32 pg/µg
protein, respectively. A significant increase in the BDNF level
in the anti-nesfatin-1 group (by 89%) compared to that in the
control group was observed (p < 0.05). Similar increases were
also observed by comparing the anti-nesfatin-1 group with the
non-immune anti-mouse IgG antibody group (41%) and the
MC4R receptor inhibitor group (89%); these differences were all
statistically significant (p < 0.05).

DISCUSSION

The results presented in this study establish that (1) MC4R,
a putative nesfatin-1 receptor, is expressed in dopaminergic
neurons in the mouse SNpc; (2) daily ICV injection of nesfatin-
1 antibody greatly reduces nesfatin-1 levels in the CSF; (3)
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FIGURE 6 | Anti-nesfatin-1 antibody treatment induced mitochondrial depletion and nuclear shrinkage in dopaminergic neurons (n = 6). (A) Mitochondria in
dopaminergic neurons in control and anti-nesfatin-1 antibody-treated mice. (B) A summary of the data showing the numbers of mitochondria in the dopaminergic
neurons of control and anti-nesfatin-1 antibody-treated mice. (C) The anti-nesfatin-1 antibody induced nuclear shrinkage. The red arrows indicate the shrunken
nuclei. (D) A summary of the data showing the long axis length of mitochondria in the dopaminergic neurons of control and anti-nesfatin-1 antibody-treated mice.
Each value represents the mean ± SD, n = 6; ***p < 0.0001, and *p < 0.05. MAB 201, non-immune anti-mouse IgG antibody; SHU 9119, MC4R receptor inhibitor.

a reduced nesfatin-1 level in the CSF is associated with
nigrostriatal dopaminergic system degeneration, as evidenced by
the reduction in TH(+) neurons, altered DA neurotransmitter
levels, and impaired mitochondria and nuclei in the SNpc;
and (4) the mechanism underlying DA neuron damage could
involve dysfunctional apoptosis. Taking into account the existing
evidence in the literature, i.e., the nesfatin-1-mediated rescue of
rotenone-induced cell apoptosis in dopaminergic cells (Tan et al.,
2015) and MPTP-induced dopaminergic neuron loss in the SNpc
(Shen et al., 2017), as well as the reduced nesfatin-1 blood levels in
PD patients (Emir et al., 2019), we postulate that the brain peptide

nesfatin-1 plays a critical role in maintaining the normal function
of the nigrostriatal dopaminergic system.

The main pathological characteristic of PD is the selective
loss of TH(+) -dopaminergic neurons in the SNpc, which results
in a decrease in the number of nerve fibers projecting from
the substantia nigra to the striatum and a subsequent reduction
in the release of dopamine from the striatum (Daubner et al.,
2011; Alieva et al., 2018). The current study demonstrates that
diminished nesfatin-1 in the CSF seems likely to be responsible
for dopaminergic neuron degeneration. This statement is
supported by the following observations. First, reducing the
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FIGURE 7 | Anti-nesfatin-1 antibody treatment induced an increase in p-ERK
protein levels (n = 6). (A) An original image of a Western blot showing the
p-ERK protein levels in control mice and mice treated with MAB 201, SHU
9119 or anti-nesfatin-1 antibody. (B) Statistical analysis of p-ERK protein
levels in the different groups. Each value represents the mean ± SD, n = 6;
*p < 0.05. MAB 201, non-immune anti-mouse IgG antibody; SHU 9119,
MC4R receptor inhibitor; p-ERK, phosphorylated ERK.

FIGURE 8 | Anti-nesfatin-1 antibody treatment elevated BDNF levels in the
SNpc (n = 6). Statistical analysis of BDNF protein levels in control mice and
mice treated with MAB 201, SHU 9119 or anti-nesfatin-1 antibody. Each value
represents the mean ± SD, n = 6; **p < 0.005 and *p < 0.05. BDNF,
brain-derived neurotrophic factor; MAB 201, non-immune anti-mouse IgG
antibody; SHU 9119, MC4R receptor inhibitor; SNpc, substantia nigra pars
compacta.

level of nesfatin-1 in the CSF by administrating anti-nesfatin-1
antibody into the lateral ventricle greatly reduced the numbers
of TH(+)-dopaminergic neurons in the SNpc, as shown by our
immunofluorescence study. Second, DA and its metabolism in
the striatum were significantly reduced after ICV injection of

anti-nesfatin-1 antibody, as shown by our HPLC measurements.
Furthermore, subcellular structures such as mitochondria and
nuclei in dopaminergic neurons were severely damaged in
animals treated with anti-nesfatin-1 antibody. Thus, these data
support a critical role of nesfatin-1 in the CNS in protecting nigral
dopaminergic neurons from degeneration.

To understand the mechanisms by which nesfatin-1 exerts its
neuroprotective effects, our first step was to examine whether
the diminished CSF nesfatin-1 level induced apoptosis in nigral
dopaminergic neurons, since cell apoptosis has been repeatedly
shown in the literature to be associated with nigral dopaminergic
neuron degeneration in postmortem brain tissues from PD
patients (Mochizuki et al., 1996; Anglade et al., 1997). The
results from the present study clearly showed that the reduction
in nesfatin-1 in the CSF resulting from ICV injection of anti-
nesfatin-1 antibody increased the expression of caspase-3 in
the SNpc, which suggests that apoptosis was induced in nigral
dopaminergic neurons in the SNpc.

Our next step was to evaluate the structural integrity of
mitochondria and the nucleus because evidence in the literature
has established that damaged mitochondria may lose their ability
to produce energy to support normal cell functionality, leading
to neuronal apoptosis, which is involved in dopaminergic neuron
degeneration (Ryan et al., 2015; Bose and Beal, 2016; Ganguly
et al., 2017; Golpich et al., 2017; Larsen et al., 2018; Surmeier,
2018; Grünewald et al., 2019). Data from the PD brain also
show that mitochondrial dysfunction can increase the production
of reactive oxygen species (ROS) by reducing the supply of
adenosine triphosphate and blocking energy production (Iversen
and Iversen, 2007; Ryan et al., 2015; Bose and Beal, 2016).
The ROS produced in mitochondria can further lead to the
opening of mitochondrial permeability transition pores and the
hyperpolarization of the mitochondrial membrane (Zorov et al.,
2014). In turn, the damaged mitochondrial membrane allows
the leakage of cytochrome C into the cytoplasm, which activates
caspase-3 and caspase-3 dependent apoptosis (Przedborski and
Vila, 2001; Schapira and Jenner, 2011; Subramaniam and
Chesselet, 2013). Our TEM data indicated a substantial decline
in mitochondrial numbers in dopaminergic neurons and a
significantly shortened length of the long axis of mitochondria
after the levels of nesfatin-1 in the CSF were significantly
reduced. Moreover, the nuclei in the dopamine neurons were
also markedly shrunken. Combining the observations of caspase-
3 activation, mitochondrial dysfunction, and nuclear shrinkage,
we propose that decreased nesfatin-1 in the CNS may cause
mitochondrial lesions in dopaminergic neurons, which may
subsequently activate the apoptosis cascade and ultimately lead
to the degeneration of dopaminergic neurons.

Studies in the literature have shown that ERK is involved in
neuronal cell survival (Fei et al., 2015; Jeong et al., 2017; Shi
et al., 2017); in particular, the state of ERK1/2 activation may
determine whether the kinase promotes cell death or promotes
cell survival (Stanciu et al., 2000; Chang and Karin, 2001;
Stanciu and DeFranco, 2002; Chu et al., 2004). Yin et al. (2008)
demonstrated that chronic manganese exposure in rats results
in a significant activation of astrocytic caspase-3 and p-ERK
that mediates the apoptosis of astrocytes. Our Western blot data
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revealed a significant activation of p-ERK in the SNpc following
injection of anti-nesfatin-1 antibody into the CSF. Thus, it seems
likely that diminished nesfatin-1 levels in the CNS may weaken
the ability of cells to protect mitochondria in dopamine neurons,
which may cause the overexpression of p-ERK, leading to the
apoptosis of dopamine neurons.

Brain-derived neurotrophic factor, a known neurotrophic
factor, exerts neuroprotective effects, including anti-apoptotic,
and antioxidative effects as well as suppression of autophagy (Wu
et al., 2016, 2017; Chen et al., 2017). A significant increase in
BDNF levels in the SNpc following the reduction of nesfatin-
1 was evident in the current research. Since anti-nesfatin-1
antibody treatment greatly reduced the number of dopaminergic
neurons (by 23%), it is possible that the increased BDNF
may reflect a compensatory response that offsets the loss of
dopaminergic neurons (Hassani et al., 2019).

Finally, does nesfatin-1 exert its neuroprotective effect by
acting on its putative receptor, i.e., MC4R? Our previous study
showed that nesfatin-1 postsynaptically inhibits the electrical
activity of nigral dopaminergic neurons, suggesting that nesfatin-
1 receptors are expressed in dopaminergic neurons (Li et al.,
2014). A number of candidate nesfatin-1 receptors have been
proposed, including MC4R, corticotropin-releasing factor type
2 receptor, and natriuretic peptide receptor A (Yosten and
Samson, 2009; Angelone et al., 2013; Ying et al., 2015). Initially,
we hypothesized that the effect of nesfatin-1 on dopaminergic
neurons may be mediated through its binding to MC4R, while
the expression of MC4R in the SNpc was indeed confirmed by
our current study. Injection of a specific MC4R inhibitor, SHU
9119, into the lateral ventricle neither caused nigral dopaminergic
lesions [i.e., TH(+) -dopaminergic neurons, DA levels] nor
induced apoptosis (i.e., caspase-3) or other related signaling
pathways (i.e., ERK1/2 and BDNF). Thus, it is highly unlikely
that MC4R is involved in the function of nesfatin-1 in protecting
dopamine neurons in the SNpc.

In summary, our data demonstrate that reducing the nesfatin-
1 concentration in the CSF by administering anti-nesfatin-
1 antibody into the lateral ventricle can induce nigrostriatal

dopaminergic system degeneration in vivo. This effect may be
mediated by apoptosis triggered by mitochondrial dysfunction.
Our study provides new evidence that nesfatin-1 plays a
role in maintaining the normal physiological function of
the nigrostriatal system. Further investigation with nesfatin-1
knockout mice is needed to demonstrate the effect of nesfatin-1
on the nigrostriatal dopaminergic system.
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