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Background: Williams syndrome (WS) is a neurodevelopmental disorder that has been attributed to heterozygous
deletions in chromosome 7q11.23 and exhibits a variety of physical, cognitive, and behavioral features. However, the
genetic basis of this phenotypic variability is unclear. In this study, we identified genetic clues underlying these
complex phenotypes. Methods: Neurobehavioral function was assessed in WS patients and healthy controls. Total
RNA was extracted from peripheral blood and subjected to microarray analysis, RNA-sequencing, and qRT-PCR.
Weighted gene co-expression network analysis was performed to identify specific alterations related to intermediate
disease phenotypes. To functionally interpret each WS-related module, gene ontology and disease-related gene
enrichment were examined. We also investigated the micro (mi)RNA expression profiles and miRNA co-expression
networks to better explain the regulation of the transcriptome in WS. Results: Our analysis identified four significant
co-expression modules related to intermediate WS phenotypes. Notably, the three upregulated WS-related modules
were composed exclusively of genes located outside the 7q11.23 region. They were significantly enriched in genes
related to B-cell activation, RNA processing, and RNA transport. BCL11A, which is known for its association with
speech disorders and intellectual disabilities, was identified as one of the hub genes in the top WS-related module.
Finally, these key upregulated mRNA co-expression modules appear to be inversely correlated with a specific
downregulated WS-related miRNA co-expression module. Conclusions: Dysregulation of the mRNA/miRNA network
involving genes outside of the 7q11.23 region is likely related to the complex phenotypes observed in WS patients.
Keywords: Williams syndrome; autism spectrum disorder; genetics.

Introduction
Williams syndrome (WS; OMIM: 194050) is a rare
genetic neurodevelopmental disorder suspected to
be caused by heterozygous microdeletions in approx-
imately 26–28 genes found in the 7q11.23 chromo-
somal region (Pober, 2010). Physically, patients
exhibit characteristic features such as a distinctive
‘elfin’ facial appearance, congenital heart disease,
and endocrine disturbances (Pober, 2010). They also
often exhibit hypersociability, intellectual disabili-
ties (IDs), and visual-spatial deficits but typically
have relatively preserved verbal skills (Pober, 2010).
In addition, accumulating evidence indicates that
generalized anxiety disorder and attention deficit
hyperactivity disorder (ADHD) are also commonly
observed in association with WS (Leyfer, Woodruff-
Borden, Klein-Tasman, Fricke, & Mervis, 2006;
Stinton, Elison, & Howlin, 2010). However, while
our understanding of WS is continually increasing,

the exact contribution of individual genes to the
complex phenotypes observed for this disease is still
largely unknown.

As indicated above, genes within the 7q11.23
chromosomal region have long been suspected to
play an important role in WS. However, although
considerable effort has focused on evaluating the
function of these genes, only elastin (ELN) has been
shown to be related to WS and appears to be
responsible for the development of supravalvular
aortic stenosis (SVAS; Curran et al., 1993; Ewart
et al., 1993). Animal studies have also shown that
some of the genes in this region are associated with
behavioral abnormalities (Osborne, 2010), but as
these findings are based on nonhuman research in
models that do not necessarily reflect the broad
phenotypic spectrum observed in human WS
patients, they are largely inconclusive. Taken
together, these studies suggest that WS is likely a
multifactorial disorder and that the diverse pheno-
types observed in WS patients are not solely based
on deleted genes in the 7q11.23 region.
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In addition, recent studies have shown that
genomic copy number variation (CNV) can partially
affect gene expression (Blumenthal et al., 2014; Luo
et al., 2012). On the basis of this idea, several
studies have attempted to identify candidate genes
related to the diverse WS phenotypes using genome-
wide gene expression analyses, but these efforts
have not yet provided conclusive results (Adamo
et al., 2015; Antonell, Vilardell, & Perez Jurado,
2010; Chailangkarn et al., 2016; Henrichsen et al.,
2011; Khattak et al., 2015; Lalli et al., 2016). This is
mostly due to the small sample sizes (ranging from 3
to 8 WS patients), age or gender biases, and the
conventional approaches utilized, which largely
depend on absolute changes in gene expression.

Furthermore, it is unclear what types of tissue are
the most suitable for sampling and analysis to gain
insight into the WS gene expression profile. In
general, postmortem brain tissues and induced
pluripotent stem cell (iPSC)-derived neurons are the
most practical tissues to sample to better under-
stand neuropsychiatric phenotypes, but they have
significant drawbacks, including being unscalable
and varying in both sample quality and cell hetero-
geneity (Brennand, Landek-Salgado, & Sawa, 2014).
In contrast, peripheral blood samples can be easily
collected in much larger sizes, and sample quality
can be better controlled. Multiple studies have also
reported significant correlation between certain gene
expression profiles in the blood and brain, though
the two are not perfectly interrelated (Liew, Ma,
Tang, Zheng, & Dempsey, 2006; Sullivan, Fan, &
Perou, 2006). Blood sampling also has the added
benefit of capturing the gene expression profiles
associated with both the immune system and meta-
bolic pathways. This allows changes in peripheral
immunity, mediated by microglia and astrocytes, to
be analyzed, providing insight into immune-related
learning, memory, and social behaviors, all of which
are affected in WS (Filiano et al., 2016; Kipnis,
2016).

In contrast to WS patients, autism spectrum
disorder (ASD) patients are genetically heteroge-
neous and mainly characterized by social impair-
ments (Geschwind & State, 2015). It is conceivable
that the opposing social-behavioral phenotypes of
the two disorders may be particularly useful for
revealing the neurogenetic bases of social function
(Jarvinen, Korenberg, & Bellugi, 2013). Although
attention to this field is growing, differences and
similarities in the biological pathways between WS
and ASD remain to be elucidated.

In this study, we evaluated the gene expression
changes related to the complex intermediate phe-
notypes in WS, focusing on genes outside of the
7q11.23 region. Notably, our weighted gene co-
expression network analysis (WGCNA) was per-
formed using peripheral blood samples. WGCNA is
an unbiased approach and is considered more
robust than conventional gene expression analyses

(Langfelder & Horvath, 2008). Our analysis also
involved profiling micro(mi)RNA expression and
miRNA co-expression networks to elucidate the
mechanisms underlying transcript upregulation
related to WS. Furthermore, we compared gene
expression patterns between WS and ASD to
understand the molecular basis for their contrast-
ing social behaviors. To our knowledge, this is the
first time these complimentary approaches have
been used to comprehensively investigate the geno-
type-phenotype relationship in WS using peripheral
blood samples.

Methods
Study participants

We recruited 152 individuals (66 WS patients, 32 ASD
patients, and 54 nonpsychiatric controls) from Kyoto Univer-
sity, Osaka City General Hospital, and Todaiji Ryoiku Hospital
for Children. We split the participants into four sets. The
overlap between these data sets is shown by a Venn diagram in
Figure S1. All participants were free of medication for
6 months or more before blood sample collection. This study
was approved by the ethics committees of each participating
institution, and written informed consent was obtained from
all participants.

Clinical assessment

Using quantitative (q)PCR of isolated genomic DNA
(Appendix S1), we confirmed that all patients with WS
harbored the full deletion in chromosome 7q11.23 typical
for this disease and that this deletion was not present in the
controls (Figure S2). The Japanese version of the Child/
Adult Behavior Checklist (CBCL/ABCL) was used to evaluate
behavioral and psychological problems (Hatton et al., 2002).
The Japanese translation of the Social Responsiveness
Scale-2 (SRS-2) was used to assess social function (Bruni,
Constantino, & Gruber, 2014), while the Hyperacusis
Questionnaire (HQ) was used to assess the extent of hyper-
acusis (Khalfa et al., 2002). ASD diagnosis was based on
DSM-5 criteria and was confirmed with the Autism Diagnos-
tic Observation Schedule (ADOS) and the Japanese transla-
tion of the High Functioning Autism Spectrum Screening
Questionnaire (ASSQ-R) (Ehlers, Gillberg, & Wing, 1999).
Demographic data for the individuals are provided in
Table S1.

Microarray analysis

Total RNA and miRNA were extracted from the peripheral blood
of participants using a Paxgene Blood RNA and miRNA System
(QIAGEN, Tokyo, Japan). RNA quality and the presence of
small RNAs were determined using an Agilent 2100 Bioana-
lyzer (Agilent Technologies, Tokyo, Japan). Samples with RNA
integrity number (RIN) values greater than eight were used for
subsequent analyses.

To analyze transcriptomic changes, we used an Agilent
SurePrint G3 Human GE v2 8x60K Microarray (G4851B)
(Agilent Technologies). Briefly, total RNA (100 ng) was labeled
with Cy3 using the Low Input Quick Amp RNA Labeling kit
(One-Color) (Agilent Technologies). Labeled cRNA was then
purified using an RNeasy mini kit (QIAGEN). Subsequently,
600 ng of Cy3-labeled cRNA was fragmented and hybridized at
65°C for 17 hr. After hybridization, the slides were scanned on
an Agilent Microarray scanner (G2565CA), and data were
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extracted with the Agilent Feature Extraction software package
version 11.0.1.1 (Agilent Technologies). Raw gene expression
data were background corrected using the normexp method
and quantile normalized using the Limma R package. During
preprocessing, all samples were hierarchically clustered to
identify array outliers on the basis of mean interarray corre-
lation (IAC; Gold, Wang, & Coombes, 2005). All Agilent control
probes and low expressed probes were removed. The signals in
replicate spots were averaged with the avereps function. To
eliminate batch effects, the ComBat package was applied with
the default parameters (Johnson, Li, & Rabinovic, 2007).
Agilent probe identifiers were annotated using BioMart
(Ensembl version 76). Differentially expressed (DE) genes were
calculated based on diagnosis, age, gender, and RIN using the
Limma R package (Smyth, 2005). The eBayes function was
used to calculate t-test statistics based on the empirical Bayes
method. The Benjamini-Hochberg method was used to evalu-
ate the false discovery rate (FDR) (Benjamini & Hochberg,
1995). Genes were considered to be DE when the FDR <0.05
and the |fold change (FC)| >1.3.

To analyze miRNA expression in our samples, we used a
SurePrint G3 Human miRNA 8x60K Microarray (G4870C)
(Agilent Technologies). Briefly, total RNA (100 ng) was labeled
and then hybridized for 20 hr at 55°C. Data preprocessing and
normalization were carried out with the AgiMicroRna R pack-
age (Lopez-Romero, 2011). A linear model was fitted to each
miRNA to assess the differential expression between two
groups using the Limma R package (Smyth, 2005). MiRNAs
were considered to be DE when the FDR <0.05 and |FC| >1.25.
PhenoGram was used to visualize the results for each DE
miRNA as previously described (Wolfe, Dudek, Ritchie, &
Pendergrass, 2013).

Principal component analysis

After removing the genes within the 7q11.23 region, the DE
genes (FDR <0.05 and |FC| ≥1.3) were further evaluated using a
Principal Component Analysis (PCA). The PCA was performed
using the R package with the prcomp function.

Weighted gene co-expression network analysis

We performed co-expression network analysis using the
WGCNA package in R (Langfelder & Horvath, 2008). Briefly,
to construct signed mRNA co-expression networks, the soft-
thresholding power was set to 12 to maximize scale-free
topology model fit as it plateaued above 0.9. The initial
module assignments were determined with a dynamic tree-
cutting algorithm using the following settings: deepSplit = 2,
minModulesize = 100, and dthresh = 0.2. We also con-
structed signed miRNA co-expression networks as previously
described (Wu, Parikshak, Belgard, & Geschwind, 2016). The
soft-thresholding power was set to 10 to maximize scale-free
topology model fit as it plateaued above 0.8. We utilized
more stringent parameters (soft-thresholding power = 10,
deepSplit = 4, minModulesize = 10, dthresh = 0.25) and then
performed 200 rounds of bootstrapping. The topological
overlap matrix for each of the resampled networks was
calculated to construct the network in a way that was robust
to outliers. In both networks, the expression profiles of each
module were summarized using the module eigengene (ME)
as the first principal component (PC1) of the module. The
correlations between the MEs and the biological traits were
analyzed to identify modules associated with each trait of
interest. The linear mixed-effects model was also used to test
the association between MEs and several covariates (sex,
age, and RIN). Hub genes were defined as genes with the
highest module membership value (kME). The igraph R
package was used to visualize the graphs (Csardi & Nepusz,
2006).

Gene set enrichment analysis, gene ontology, and
pathway analysis

We performed gene set enrichment analyses using two-sided
Fisher’s exact tests with the fisher test function in R. Gene
lists were obtained from sources for each set as detailed in
Table S2. First, we searched for brain cell type-specific
genes, including known immune and neuronal genes, in each
module as described previously (Albright & Gonzalez-Scar-
ano, 2004; Cahoy et al., 2008). Next, we examined the
enrichment of genes associated with neurodevelopmental
disorders in each module. ASD-susceptibility genes were
obtained from the Simons Foundation Autism Research
Initiative (SFARI) gene database, AutDB (Abrahams et al.,
2013). Rare de novo variation (RDNV) genes associated with
ASD were previously compiled by Werling, Parikshak, and
Geschwind (2016). The ASD-associated genes in co-expres-
sion modules ASD M12v (downregulated in the brains of
subjects with ASD) and ASD M16v (upregulated in the brains
of subjects with ASD) were obtained from Voineagu et al.
(2011). Genes associated with IDs were obtained from
Vissers, Gilissen, and Veltman (2016). Notably, genes asso-
ciated with both ASD and IDs were excluded from the ID
gene list. Genes associated with ADHD were obtained from
Cristino et al. (2014). DE genes in other WS samples,
including lymphoblasts (LCL), fibroblasts, and iPSCs, were
obtained from Antonell et al. (2010), Henrichsen et al.
(2011), and Adamo et al. (2015), respectively. Then, we
examined the enrichment of nonpsychiatric disorder-asso-
ciated genes in each module. The lists of genes associated
with atherosclerosis, diabetes mellitus (DM) type 2, and
systemic lupus erythematosus (SLE) were obtained from
Nardone, Sams, Zito, Reuveni, and Elliott (2017). We
performed a mouse phenotype enrichment analysis using
the following mouse phenotype (MP) ontology terms from
the Mouse Genome Informatics (MGI) database (Eppig,
Blake, Bult, Kadin, & Richardson, 2015): abnormal social
behavior [MP:0002557], abnormal fear/anxiety behavior
[MP:0002065], and abnormal learning/memory
[MP:0002063]. Finally, we assessed the enrichment of genes
located within the 7q11.23 chromosomal region in each
module. Gene Ontology (GO) analysis was performed using
GO Elite (Zambon et al., 2012) with the default settings and
a Z-score threshold greater than two. Pathway enrichment
analysis was performed using the KEGG database (Kanehisa,
Sato, Kawashima, Furumichi, & Tanabe, 2016) with Enrichr
(Kuleshov et al., 2016). All of the expressed genes were used
as the background gene list.

MiRNA target prediction

Potential targets of the DE miRNAs were predicted using
TargetScan 7.1 (Agarwal, Bell, Nam, & Bartel, 2015), an
algorithm included in the Ingenuity Pathway Analysis (IPA)
miRNA target filter (QIAGEN). To select target genes, we used
the following steps. First, we searched the targets for those
with a TargetScan total context score of �0.2 or less. We then
selected target genes that were negatively correlated with the
DE genes (FDR <0.05) between the WS patients and controls.
The remaining gene list was used for further analysis as
targets.

Integrated mRNA-miRNA network analysis

We assessed whether mRNA co-expression modules were
regulated by the miRNA co-expression modules in WS. For
this analysis, we calculated the Spearman correlations
between the MEs of the upregulated mRNA modules (M4, M6,
M11, and M12) and the ME of the downregulated miRNA
module (MM7). Then, we analyzed the interactions between the
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target genes of the top five miRNAs in the downregulated
miRNA module (MM7) and the top 250 genes in each upreg-
ulated mRNA module. The integrated networks were visualized
using Cytoscape software (Shannon et al., 2003).

Statistical analysis

All statistical analyses were performed with R. Statistical
differences between two groups were carried out using Stu-
dent’s t-tests or Mann–Whitney U-tests. The FDRs were esti-
mated using the Benjamini-Hochberg method.

Results
Gene expression differences between WS and
control patients

We sought to identify gene expression differences
between WS patients and controls to distinguish
causative changes in the transcriptome. An over-
view of our analysis is provided in Figure S1. As
expected, we found changes both within the
7q11.23 region, and genome-wide. Most (but not
all) genes within the deletion region were signifi-
cantly downregulated in WS patients and
unchanged in controls (Figure 1A), and these find-
ings were validated by qRT-PCR in a subset of the
patients (Figure S3). Consistent with a previous
report, we also found that ELN was not downreg-
ulated in our data set (Merla et al., 2006). Regard-
ing genome-wide distribution, we identified several
genes that were significantly altered in the WS
patients compared to the controls (Figure 1B), with
the strongest DE signal being observed within the
7q11.23 region. Furthermore, this result was not
affected by blood cell composition in WS patients
and controls (Appendix S1 and Figure S4). These
findings support an essential role for genes in the
7q11.23 region during disease onset.

However, our cross validation of the model
(Appendix S1) and PCA of the DE genes outside of
the 7q11.23 region indicate that robust WS-specific
transcriptomic changes exist in other regions of the
genome. Indeed, our receiver operating character-
istic analysis revealed a high area under the curve
(0.96), which indicates an almost perfect classifi-
cation (Figure S5). Moreover, our PCA shows a
clear separation of groups, and the PC1 was
significantly different between groups (p = 2.2E-
16; Figure 1C,D).

Identification of gene co-expression modules in WS

To identify co-expression modules associated with
WS, we performed a WGCNA, which provides a
system-level view of transcriptional changes. Our
analysis identified 22 co-expression modules (Fig-
ure 2A), which were subsequently grouped by their
ME. Of these, six were significantly correlated with
WS (FDR <0.05; absolute R > .45) (Figure 2B,C; the
full list appears in Table S3). Notably, the M11

module appears to have the strongest correlation
with WS among these modules (R = .67, FDR = 6E-
10; Figure 2C). We also observed a similar trend
when we used the linear mixed-effects model (Fig-
ure S6).

Gene co-expression modules associated with known
gene sets of interest and intermediate WS
phenotypes

We next evaluated the possible association between
our co-expression modules and the observed inter-
mediate WS phenotypes by clinically scoring disease
severity. Interestingly, four (M4, M11, M12, and
M22) of the six modules appear to be significantly
associated with the intermediate phenotypes, espe-
cially when scored with SRS-2, which is typically
used to assess social impairment (FDR <0.05; Fig-
ure 2C). Furthermore, three modules (M4, M11, and
M12) were associated with WS phenotypes scored
using the CBCL/ABCL, which is used to assess
cognitive-behavioral problems (FDR <0.05; Fig-
ure 2C). We also found that two modules (M4 and
M12) are correlated with the HQ scores, which reflect
sensory disturbances, in WS patients (FDR <0.05;
Figure 2C). Overall, these results strongly suggest
that these four modules (M4, M11, M12, and M22)
are involved in the observed neuropsychiatric phe-
notypes of WS.

Interestingly, three of the four modules (M4, M12,
and M22) were strongly enriched with glial cell
marker genes (FDR <0.01), while only the M11
module was significantly enriched with neuronal
marker genes (FDR = 5E-3; Figure 2D). These
results indicate that altered gene expression in the
blood may contribute, at least in part, to the
observed changes in the brain, supporting the use
of peripheral blood samples in our analysis.

Next, we evaluated the enrichment of gene sets
known to be associated with neurodevelopmental
disorders (ASD, ID, ADHD, and WS). The M4 module
is significantly enriched with ASD M16V genes that
are known to be upregulated in ASD, most of which
are associated with inflammatory processes involv-
ing microglia and astrocytes (FDR = 2E-4), as well as
dysregulated genes in fibroblasts and iPSCs in WS
(FDR = 2E-2 and 5E-3, respectively; Figure 2D).
Furthermore, the M12 module appears to be signif-
icantly enriched for ID genes (FDR = 3E-3; Fig-
ure 2D). In contrast, none of the modules are
significantly enriched with nonpsychiatric disorder
(atherosclerosis, DM type 2, and SLE) genes (Fig-
ure 2D). To further investigate the correlations
between each module and the various neuropsychi-
atric phenotypes associated with WS, we determined
the MP term annotations (abnormal social behavior,
fear/anxiety behavior, and learning/memory) using
the MGI database. The M11 module, which is
enriched with neuronal cell genes, is also signifi-
cantly enriched with genes related to abnormal
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learning/memory (FDR = 3E-8; Figure 2D). Taken
together, these results highlight the potential impor-
tance of these four WS-associated modules (M4,
M11, M12, and M22) on disease phenotype. It is also
important to note that only the M22 module was
significantly enriched with genes found within the
7q11.23 region (FDR = 7E-11; Figure 2D).

Characterization of the WS-associated co-expression
modules

Among the four WS-associated modules, M4, M11,
and M12 appear to include mostly upregulated genes
(Figure 3A-C), while those in M22 are largely down-
regulated in WS (Figure 3D). The results of our GO
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(Figure 3E) and KEGG (Figure 3F) analyses (full list
appears in Table S4) show that the M11 module is
enriched with genes related to antigen processing
and presentation, B-cell activation, and intestinal
immune network IgA production. It also contains
BCR signaling-related genes (BLNK and CD19), with
the BCL11A gene as the top hub genes (Figure 3G). In
contrast, the M12 module was enriched in genes
involved in RNA processing, gene expression, and
RNA transport (Figure 3E,F). Of particular note is the
identification of ASD candidate genes (CYFIP1 and
DPYSL2) as hub genes in the M4 module (Figure 3H).
CYFIP1 is involved in cytoskeletal remodeling in
neurons (Oguro-Ando et al., 2015), while DPYSL2 is
important for axon outgrowth and mTOR signaling-
related processes (Pham et al., 2016). Furthermore,
the M22 module, which included genes within the
7q11.23 region, was enriched in factors related to the
regulation of fibroblasts migration and insulin sig-
naling pathway (Figure 3E,F).

To confirm the top hub genes, we compared the
gene lists found using RNA-sequencing (RNA-seq;
Appendix S1) and those found using microarray
analysis. Notably, the list of hub genes for each
module are similar between the two analyses (R = .8,
p = 8.2E-7) (Figure S7). In addition, the top hub
genes in the M11 module were also validated by qRT-
PCR in an independent subset of samples (p < .05;
Appendix S1 and Figure S6).

Finally, we constructed protein-protein interaction
(PPI) networks to examine the connections between
the WS-associated modules at the protein level
(Appendix S1). Our analysis indicates that there
are interactions between the proteins encoded by the
genes in each of the four modules, most of which are
directly and/or indirectly connected (Figure S7).
These results support the interrelated nature of the
factors at both the gene and/or protein level in each
of the four WS-associated modules.

Comparison of the gene expression profiles of WS
and ASD

In contrast to WS, the core symptoms of ASD involve
impairments in sociability (Geschwind & State,
2015). However, there is no clear evidence of a
difference in transcriptional dysregulation between
WS and ASD. In fact, the pathways represented in the
M4module suggest thatWS and ASD partly share the
same dysregulated pathways (Figure 2D). However,
we found that the number of DE genes between WS
and ASD was higher than that between ASD and the
controls orWS and the controls (FDR <0.05; |FC| ≥1.3)
(Figure S8). These findings mirror the opposite social
phenotypes between WS and ASD. A WGCNA was
also performed to obtain a system-level view of these
gene expression changes. Unfortunately, this analy-
sis failed to identify significantly associated modules
in ASD (Figure S8) or to reveal genetic associations
between WS and ASD. A possible explanation for this

may be related to the heterogeneity of ASD or the
small sample size in this study.

WS-associated miRNA expression

There is accumulating evidence that miRNAs, which
posttranscriptionally regulate the expression of mul-
tiple genes, are dysregulated in psychiatric disorders
(Geaghan & Cairns, 2015). To investigate the possi-
ble involvement of miRNA in the dysregulated gene
network in WS, we performed miRNA expression
analysis of the same peripheral blood samples
obtained from WS and healthy control patients. A
total of 21 miRNAs were shown to be significantly
dysregulated in WS compared to controls (FDR
<0.05; |FC| >1.25) (Figure 4A; the full list appears
in Table S5). We also found that the DEmiRNAs were
located at multiple loci. Interestingly, miR-590-5p,
which is located in the 7q11.23 region, appears to be
significantly downregulated in WS (Figure S9). To
validate these results, we performed qRT-PCR and
observed similar changes in expression in each of the
DE miRNAs (R = .97, p = 5.3E-6) (Figure S9; the
primers listed in Table S6).

Identification and characterization of miRNA co-
expression modules in WS

A WGCNA was performed to better understand the
miRNA co-expression profiles at a system level
(Figure 4B). Among the 19 miRNA co-expression
modules that we detected, only one module (MM7)
was significantly correlated (downregulated) with WS
(FDR <0.05; Figure 4C,D). One of the top hub
miRNAs in this module, miR-1915-3p (Figure 4E),
has been reported to be associated with major
depressive disorder and Alzheimer’s disease (Lukiw,
Andreeva, Grigorenko, & Rogaev, 2012; Maffioletti
et al., 2016). In addition, miR-590-5p, which is
located in the 7q11.23 region, was also observed in
the MM7 module (Table S5). Furthermore, our anal-
ysis indicates that the target genes of the miRNAs in
the module are related to antigen processing and
presentation and regulation of B-cell apoptosis
(Table S4). These GO results for the MM7 miRNA
module appear to be similar to those of the M11
module, suggesting a possible correlation between
the downregulated miRNAs and the upregulated
mRNAs in these modules.

Integrative analysis of the WS-associated mRNA/
miRNA co-expression modules

To gain insight into the correlation between the MM7
miRNA module and the upregulated mRNA modules
(M4, M11, and M12), we performed a Spearman
correlation analysis. Our results indicate a negative
correlation between the miRNA and mRNA modules
(Figure 5A-D). Notably, the M12 module had the
strongest correlation with the MM7 module (R = �.5,
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p = 9E-4; Figure 5B). Moreover, as shown in Fig-
ure 5E, the top hub miRNAs in the MM7 module
were also tightly connected with the top hub genes in
these three the mRNA modules. Taken together, our
results show that the upregulated WS-associated
mRNA modules, which contain genes outside of the
7q11.23 region, are likely regulated by the miRNA in
the MM7 module and the downregulation of these
miRNA may modulate the clinical phenotypes
observed in WS.

Discussion
Despite a long-standing effort, the genotype-pheno-
type relationship inWS has not been fully elucidated.

In this study, we investigated the contribution of gene
expression changes outside of the typical 7q11.23
region to the complex phenotypes observed in WS
patients. Our network approach shows that four co-
expression modules (M4, M11, M12, and M22) are
associated with the intermediate phenotypes of WS.
Notably, three of these (M4, M11, and M12), which
contain genes outside of the 7q11.23 region, are
upregulated in WS. In addition, we examined the
concomitant miRNA expression profiles to elucidate
their possible regulatory role. This analysis demon-
strated that the key upregulated mRNA modules are
inversely correlated with the downregulated miRNA
module (MM7) in WS patients. Taken together, our
findings provide the first evidence that the
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dysregulated mRNA and miRNA transcriptomic net-
works may be associated with the complex pheno-
types observed in WS patients.

Williams syndrome has been associated with a
number of comorbidities and medical complications.
Glucose intolerance, for example, affects approxi-
mately 75% of adult WS patients, though the exact
cause remains unknown (Pober et al., 2010). In this
study, the M22 module was enriched for genes
involved in the insulin signaling pathway and the
M4 module was related to the negative regulation of
glucose import. These results indicate the possibility
that our network approach may capture the genetic
clues of other issues affecting the WS patient, such
as impaired glucose tolerance. Moreover, we also
found that the M11 module was enriched for genes
involved in B-cell activation and proliferation. The
relevance of these findings may be related to the
repeated cases of tumors, mainly Burkitt lymphoma
tumors, in WS patients (Decimi et al., 2016).
Although it remains unclear whether WS is associ-
ated with Burkitt lymphoma, our findings may give
mechanistic clues to the process of tumor develop-
ment in WS.

It is also important to note that most of the WS-
associated modules were enriched for glial cell
marker genes despite the study being performed on
peripheral blood samples. Glial cells are known to
play a pivotal role in brain function, regulating
synaptic transmission as well as mediating crosstalk
between the central nervous and immune systems
(Clarke & Barres, 2013; Prinz & Priller, 2017).
Microglia are the resident macrophages of the brain
and play roles in the immune response. They also
share a common lineage with the macrophages in
peripheral blood (Prinz & Priller, 2014). Similarly,
astrocytes in the brain have signaling pathways that
resemble those of some cell types found in the blood
(Sofroniew, 2015). In addition, accumulating evi-
dence indicates that immune system dysfunction is
associated with various neurodevelopmental disor-
ders, including ASD and schizophrenia (Estes &
McAllister, 2015). Unfortunately, we could not con-
firm our findings using postmortem brain tissue
fromWS patients as it is extremely difficult to obtain.
Nonetheless, although the evidence is not definitive,
our results provide new insights into the possible
connection between immune system disturbances,
especially the immune-glial network, and the neu-
ropsychiatric phenotypes in WS.

Recently, the contrasting social behaviors
observed in WS and ASD patients have received
considerable attention among researchers interested
in the neurobiological mechanisms of social abnor-
malities (Barak & Feng, 2016). Despite the intriguing
nature of these two disorders, the similarities and
differences in their phenotypes have not been fully
elucidated in terms of their underlying mechanisms.
In this study, the M4 module appears to be strongly
associated with ASD M16V, which consists of

upregulated glial cell-related genes in the brain
tissue of ASD patients, and the two ASD candidate
genes (CYFIP1 and DPYSL2) were found to be the top
hub genes. These findings suggest that some aspects
of the neuropsychiatric and behavioral impairments
observed for WS and ASD may share some common
mechanisms and pathways. Furthermore, the
BCL11A gene, one of the hub genes in the M11
module, is a zinc-finger transcription factor and a
critical modulator of hemoglobin switching that has
been associated with ASD and IDs (Bauer & Orkin,
2015; De Rubeis et al., 2014; Dias et al., 2016).
Intriguingly, de novo microdeletion of BCL11A leads
to severe speech problems (Peter, Matsushita, Oda,
& Raskind, 2014). Conversely, our data indicate that
BCL11A is upregulated in WS. This is not altogether
surprising as this condition is characterized by
verbal fluency with extensive and expressive speech
rich in vocabulary. Thus, it is possible that BCL11A
acts as one of the driver genes of the neuropsychi-
atric phenotypes in WS patients.

It is widely known that epigenetic factors, such as
DNA methylation, histone modifications, and non-
coding RNAs, contribute to the regulation of gene
expression (Issler & Chen, 2015). It has also been
reported that disruption of epigenetic regulation is
involved in many psychiatric disorders (Geaghan &
Cairns, 2015). Although the epigenetic mechanisms
underlying WS are not yet clearly understood, a
recent study showed that aberrant DNA methylation
occurs not only in the 7q11.23 region but also
throughout the genomes of WS patients (Strong
et al., 2015). Thus, epigenetic dysregulation may
play a significant role in the upregulation of the three
WS-associated modules (M4, M11, and M12) in this
study. Furthermore, the observed dysregulation of
various miRNAs across the entire genome, which
appear to interact with their target mRNAs in WS,
also support this hypothesis. In addition, BCL7B (in
the 7q11.23 deletion region) and BCL11A (in the M11
module) encode subunits of SWItch/sucrose nonfer-
mentable (SWI/SNF) chromatin-remodeling com-
plexes, which are known to regulate gene
expression and play roles in neurodevelopmental
disorders (Ronan, Wu, & Crabtree, 2013). Therefore,
dysregulation of these genes may also explain the
altered gene expression profiles in WS patients.

Several limitations should be considered when
interpreting our results. First, our findings were
based on samples derived from peripheral blood, and
therefore it remains to be determined whether all
clinical symptoms seen in WS can be explained by
our identified modules. As an additional approach,
molecular pathological epidemiology (MPE) (Ogino
et al., 2016), which integrates molecular signatures
with epidemiological studies may help decipher the
etiologies of WS. Second, a previous study involving
immortalized lymphoblast lines showed that the
parental origin of the deletion contributes to the
level of expression of GTF2I, which is located within
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the deleted region (Collette et al., 2009). Although we
could not confirm parental origin owing to the
difficulty in obtaining parent samples, it may be
useful to examine whether the expression of genes in
the deleted region is affected by imprinting.

While additional studies are needed to further
elucidate the genetic basis of the complex pheno-
types in WS, our study provides novel insight into
the global changes in genotype relative to the phe-
notypic manifestation of the disease and could lead
to the development of effective interventions.
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Key points

� Our results show that the upregulation of multiple co-expression modules containing genes located
outside of the standard 7q11.23 deletion region may significantly contribute to the intermediate and highly
variable Williams syndrome (WS) phenotypes.

� The effects of the glial cell activation-mediated mRNA/miRNA regulatory network provide novel insight into
the biological mechanisms underlying WS neuropsychiatric phenotypes.

� The downregulation of one miRNA module appears to have significant consequences on the transcriptome,
leading to the upregulation of three mRNA modules, all of which include genes that are dispersed
throughout the genome.

� To our knowledge, this is the first time that the dysregulated mRNA and miRNA transcriptomic networks
have been broadly evaluated in association with the complex phenotypes observed in WS patients.
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