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Abstract
The eye’s retinotopic exposure to an adapter typically produces an after-image. For example, an observer who fixates a red
adapter on a gray background will see an illusory cyan after-image after removing the adapter. The after-image’s content, like its
color or intensity, gives insight into mechanisms responsible for adaptation and processing of a specific feature. To facilitate
adaptation, vision scientists traditionally present stable, unchanging adapters for prolonged durations. How adaptation affects
perception when features (e.g., color) dynamically change over time is not understood. To investigate adaptation to a dynamically
changing feature, participants viewed a colored patch that changed from a color to gray, following either a direct or curved path
through the (roughly) equiluminant color plane of CIE LAB space. We varied the speed and curvature of color changes across
trials and experiments. Results showed that dynamic adapters produce after-images, vivid enough to be reported by the majority
of participants. An after-image consisted of a color complementary to the average of the adapter’s colors with a small bias
towards more recent rather than initial adapter colors. The modelling of the reported after-image colors further confirmed that
adaptation rapidly instigates and gradually dissipates. A second experiment replicated these results and further showed that the
probability of observing an after-image diminishes only slightly when the adapter displays transient (stepwise, abrupt) color
transitions. We conclude from the results that the visual system can adapt to dynamic colors, to a degree that is robust to the
potential interference of transient changes in adapter content.
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Introduction

Efficiently processing the visual environment is crucial for
humans (Hyvärinen et al., 2009; MacKay & Mac Kay, 2003).
Information processing is metabolically expensive, as the neu-
ronal processing of the visual system alone takes up consider-
able energy (Attwell & Laughlin, 2001). It is therefore important
to the visual system to maximize transmitted information while
minimizing processing costs (Barlow, 1961; Laughlin, 2001).
One way the visual system does this is by adaptation (Hosoya
et al., 2005; Lan et al., 2012; Laughlin, 1989; Sharpee et al.,
2006). Visual adaptation is a mechanism by which the sensitiv-
ity of a neuron (or neural network) adjusts its firing rate depend-
ing on the exposure duration of a stimulus (for reviews from
varying perspectives, see Clifford et al., 2007; Kohn, 2007;
Krekelberg et al., 2006; Rieke & Rudd, 2009; Webster, 2015):
most neurons are less likely to fire as stimulus presentation time
within their receptive fields increases. Adaptation further
strengthens when the stimulus targets exactly the feature that a
neuron or neural population “prefers,” that is right at the center
of their tuning curve (Clifford, 2002; Clifford et al., 2007).
Adaptation to stimuli dynamically maintains sensitivity to visual
changes to accommodate for the wide range of (natural) signals

Key Points
• Adapters that change color produce vivid after-images.
• After-image colors reflect a weighted, complementary average of an
adapter’s colors.

• After-images tend to be influenced more by recent rather than initial
adapter colors.

• Frequent color changes slightly reduce after-image formation
probabilities.
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the experiments opens up a new way of studying adaptation dynamics.
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that neurons, with limited response ranges, are required to en-
code (Brenner et al., 2000; Chander & Chichilnisky, 2001;
Enroth-Cugell & Shapley, 1973; Shapley & Victor, 1978).
Because the visual system mainly responds to changes in, for
example, luminance, response saturation is prevented, and nov-
elty detection and discriminative power are enhanced. This form
of adaptation operates across the entire hierarchy of visual pro-
cessing, all the way from the eye’s retinal level (e.g., Smirnakis
et al., 1997) to the high-level, cortically represented perceptual
level (e.g., Rhodes et al., 2003)

The advantage of compressing information through adap-
tation also comes with perceptual side effects in the form of
illusions. For example, when observers look at a red stimulus
for a considerable amount of time, adaptation gradually in-
curs. When the red stimulus suddenly disappears, leaving a
blank (e.g., gray) screen, a cyan after-image appears (M. H.
Wilson&Brocklebank, 1955), approximately complementary
(i.e., with an opposite content in color space) to the adapter’s
initial (primary) color (Burckhardt, 1866; Koenderink et al.,
2020; Manzotti, 2017; Pridmore, 2021). Such illusions, inher-
ent to the mismatch between the physical world and its com-
pressed subjective representation by the visual system, nicely
reveal the underlying dynamics of adaptation (Mather et al.,
1998). However, perceptual effects of, for instance, color ad-
aptation are typically studied with prolonged presentation of
unchanging stimuli, mostly with the intention of maximizing
adaptation effects (Gibson & Radner, 1937; Hershenson,
1989; Leopold et al., 2005; Magnussen & Johnsen, 1986; H.
R. Wilson, 1997; Yeonan-Kim & Francis, 2019). In this way,
neurons tuned to a specific feature are targeted consistently at
peak sensitivity. However, it is currently unknown how adap-
tation operates and affects perception when adapters dynami-
cally change within their feature domain (i.e., changes in hue
for color or changes in direction for motion), and thus subse-
quently stimulate different neuronal populations with tuning
curves that partially overlap but with distinct peak sensitivi-
ties. Considering that our environment is continuously chang-
ing, it is relevant to learn whether temporally dynamic stimuli
change, or even disrupt or reset adaptation. The degree to
which a visual change after adaptation promotes recovery
from adaptation strongly depends on characteristics of both
the adapter and the test stimulus (van de Grind et al., 2004).
When the test stimulus shares features with the adapter stim-
ulus, the recovery from adaptation may speed up. The inter-
action between sequentially presented stimuli with overlap-
ping features, as in the case of dynamic adapters, may thus
potentially hamper the emergence of after-images.
Conversely, even despite such recovery processes, adaptation
may also continue to build up when an adapter changes in
content because tuning curves are typically broad, causing
stimulations around rather than at peak sensitivity.
Hypothetically speaking, rapid adaptation to a broad region
of a feature dimension (e.g., both red and magenta colors)

would still result in an accumulated net change across multiple
neuronal populations, as predicted by the distribution shift
model (Mather, 1980). In the latter case, dynamically chang-
ing adapters should evoke after-images based on, for example,
the average of multiple adapter contents, predicting a quick
instigation of adaptation, even during short presentations of
adapter content.

The latter proposition, that dynamic adapters still promote
adaptation, assumes rather fast adaptation processes. In fact,
electrophysiological evidence on contrast adaptation in retinal
ganglion cells and motion adaptation in the visual cortex sug-
gests the existence of such fast adaptation processes in the order
of milliseconds (Akyuz et al., 2020; Baccus & Meister, 2002;
Fairhall et al., 2001; Kim & Rieke, 2001; Müller et al., 1999;
Oluk et al., 2016; Priebe et al., 2002; Vautin & Berkley, 1977;
Wark et al., 2007). Both perceptual and electrophysiological
research suggest that brief (~25 ms) adaptation to motion or
shape is enough to produce after-effects (Glasser et al., 2011;
Suzuki, 2001). A rather fast chromatic adaptation process has
also been reported for color contrast (Rinner & Gegenfurtner,
2000; Werner et al., 2000), but these studies used static rather
than dynamic stimuli. Other studies have looked at effects of
dynamic adapters (Fairchild & Reniff, 1995; Spieringhs et al.,
2019) to investigate adaptation on a relatively slow time scale,
with long time intervals between stimulus changes. It is impor-
tant to note that the aforementioned studies have applied vary-
ing paradigms to study chromatic adaptation. For instance, one
paradigm used a center-surround paradigm for slow dynamic
stimuli (Fairchild & Reniff, 1995). Here, the center was kept
static, and the surround changed slowly. While this provides
insights into how perception of a target object changes as a
function of surrounding light changes, it tells little about the
history of changes of the target itself. Furthermore, paradigms
that made use of static stimuli (e.g., Werner et al., 2000) can
provide insights into how stimulus characteristics contribute to
adaptation, but do not take into account the fact that stimuli in
our environment may change dynamically over time. Most
importantly, perhaps, none of these studies look at after-
image content. Therefore, the following two questions remain:
(i) does the visual system adapt to stimuli that change in content
within a domain (i.e., its feature, not its spatial location) to a
degree that leaves after-images? (ii) how does adaptation to
dynamic content affect the after-image content? In the current
study we employ temporal color gradients as adapters to study
the effects of dynamic changes on adaptation by measuring
after-image probabilities and content in two separate experi-
ments. We chose color for three reasons: (1) color is a funda-
mental characteristic of vision and is especially important for
identifying objects and materials (Witzel & Gegenfurtner,
2018); (2) color allows the measurement of both content and
magnitude variations of after-images; and (3) short adaptation
intervals with colors have, to our knowledge, not yet been
investigated. We show that the visual system does indeed
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rapidly adapt to adapters that dynamically change color, as
demonstrated through the subjective report of vivid after-
images.

Method: Experiment 1

Participants

We recruited a total of 20 participants through online advertis-
ing and distributing flyers on campus. The majority were stu-
dents of Utrecht University participating for study credits. All
participants provided written informed consent and we
debriefed them about the purpose of the study after the exper-
iment. The faculty ethics assessment committee of Utrecht
University’s faculty of social and behavioral sciences approved
this study (#21-0533), confirming that it adheres to the set of
human ethical principles of the Declaration of Helsinki.

Eight of the 20 participants indicated not having systema-
tically seen after-images. They either guessed the color of the
after-images or reported the adapter’s color rather than the
(complementary) after-image color (see the Analysis section
below for details; see Experiment 2 for solutions). These par-
ticipants were therefore excluded from the analysis. The re-
maining 12 participants (age: M = 24.3 years, SD = 3.7; fe-
males: N = 6) had normal or corrected-to-normal vision and
showed no signs of color blindness, as confirmed with an
Ishihara color blindness (protanopic and deuteranopic) test
consisting of five pictures of colored numbers.

Procedure, stimuli, and apparatus

The experiment was programmed on a desktop computer with
visual stimuli presented on a an Asus ROG swift gaming
monitor (33.8 cm diagonal size; 1,920 × 1 080 pixels; 60-Hz
refresh rate; maximum luminance: 300 cd/m2; not calibrated
for anisotropies in colors and luminance). Participants sat on a
chair in a darkened room with their head in a chin-forehead
rest to ensure a fixed viewing distance to the screen of 48 cm.
During a trial we presented a colored circle (the adapter; lu-
minance: ~150 cd/m2; diameter: 8.8° visual angle) for 3 or
4.5 s (for explanation, see next paragraph), a blank screen
for 1 s in which an afterimage was perceived, a mask (random
colors per pixel) for 1 s to disrupt lingering after-image effects,
and an interactive color wheel to report the after-image colors
(Fig. 1a).

A trial started with the presentation of a gray screen
with a white fixation dot (diameter: 0.2°) before the pre-
sentation of the adapter. The fixation screen was shown
for a duration that was randomly chosen from a range
between 0.5 and 1.5 s.

The dynamic adapter remained visible for 3 s during
which it dynamically changed color (dynamic phase). In

half the trials, the dynamic adapter was preceded by a
static adapter for 1.5 s. The adapter displayed CIE 1976
L*a*b* (white point: d65; output: sRGB; Matlab’s
lab2rgb function, using theoretical sRGB settings) colors
because it approximates a perceptually (pseudo-)uniform
color space and was designed to align with how human
vision operates (L'Eclairage, 2004). More specifically, the
orthogonal a (red-green) and b (blue-yellow) axes of color
space align with the color opponency model and, at a
fixed L (luminance) plane, are approximately perceptually
equiluminant. The changes in colors during the dynamic
phase followed a predefined color trajectory through color
space, being either a straight path or a bended path from
the initial color to gray, that is from full color saturation at
the color space’s border (though, of course limited by the
monitor’s gamut) to no saturation at the color space’s
center (Fig. 1b and c). The properties of the curved tra-
jectories were counterbalanced across trials (i.e., an equal
number of trials per condition), consisting of either a
clockwise or counterclockwise and either a weakly
(change in angle: 0.375π radians; 67.5°) or strongly
bended path (change in angle: 0.50π radians; 90.0°). In
half of the trials, the adapter first remained a constant
color for 1.5 s at full saturation (i.e., the static adapter
phase could be present or absent). The initial start color
of the adapter was randomly chosen from one of eight
possible start positions (see black dots at the color space’s
border in Fig. 1b; initial angles: 0π, 0.25π, 0.50π, 0.75π,
1.00π, 1.25π, 1.50π, or 1.75π radian angle in a*b color
space). The fixation dot turned to black the moment that
the adapter reached 0% saturation to indicate the start of
the 1-s long after-image observation period.

After the after-image observation phase, participants
could select the observed after-image color from a color
wheel. The color wheel showed colors at 50% rather than
100% saturation to better match the saturation levels of
after-images. The inner portion of the wheel changed color
depending on the concentric position (i.e., angle with re-
spect to the wheel’s center) of a computer mouse cursor.
Participants clicked the left mouse button to choose an
after-image color and to initiate the next trial. It was man-
datory for participants to choose a color and they had to
guess if they were uncertain about the color or even pres-
ence of an after-image.

Participants completed a total of 192 trials (three curvature
conditions × two static phase conditions × two rotation direc-
tions × eight initial start colors × two trials per condition) and
the entire experiment lasted approximately 45 min.
Participants could take a break after a quarter, half, and
three-quarters of all trials. To control for protanopic and deu-
teranopic color blindness, observers had to indicate which
number they saw in five pictures taken from the Ishihara
Color Vision Test before starting the experiment.
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Analysis and computational modelling

Two independent variables were of main interest, consisting
of the degree of color space trajectory curvature for the dy-
namic adapter (curvature type) and the presence or absence of
a static adapter phase (static phase presence). The dependent
variable consisted of the deviation in radian angles (-π – +π)
between the after-image color complementary to the initial
color and the actual reported after-image color (Fig. 1d).
Deviation angles of trials with clockwise trajectories were
reversed (multiplied by -1) to rotate the angle in the
trajectory’s direction. As such, a positive deviation angle
meant that a participant observed an after-image in the

extrapolated direction of the curved color space trajectory,
and a negative angle, vice versa.

Participants could be removed from the analysis for two
possible reasons. First, when a participant’s distribution of de-
viation angles was biased to (-)π rather than centered around 0
for straight-path trials, this indicated that the participant errone-
ously reported the adapter’s color rather than the complemen-
tary after-image color (Rayleigh test of uniformity with H1:
known mean angle of 0; selection criteria: p < 0.001).
Second, when deviation angles were distributed randomly (uni-
formly), without centering around a peak, this indicated that
participants guessed, probably because they did not see or
memorized the after-images properly (Rayleigh test of

Fig. 1 Stimulus manipulations and after-image measure – Experiment 1.
a Stimulus presentation procedure of a single trial. b Color space with the
adapter’s color trajectories. c Examples of adapter colors as a function of
time. d Visualization of deviation angle as the dependent variable. a–d
The initial color was chosen from one of eight locations in color space per
trial (see black dots in panel b; equal number of trials per initial color
condition). In half of the trials, the adapter statically displayed one color
for 1.5 s before changing colors. During the dynamic phase, the adapter’s
color gradually changed to gray, following a straight, weakly curved, or
strongly curved trajectory through color space. The fixation dot turned
fromwhite to black to inform participants that an after-image should soon

appear. Participants reported the after-image’s color after the presentation
of a mask by clicking on a color wheel, whose center was colored de-
pending on the position of the mouse. The dependent variable consisted
of the deviation in angle between the initial color’s complementary color
and the reported after-image color. e Modelling procedure to predict the
expected after-image angle in color space (dotted line in the fourth sub-
plot) based on the weighing of the adapter angles (first subplot) with the
factors (i) saturation (second subplot), that linearly decreases over time
and (ii) adaptation state (third subplot), following a power law decay over
time

Attention, Perception, & Psychophysics



uniformity with H1: not distributed uniformly; selection
criteria: p < 0.001).

We created a mixed linear regression model, with fixed
within-subject factors of curvature type and static phase
presence and a random between-subject factor predicting de-
viation angles. We stepwise removed insignificant main, in-
teraction, or intercept effects. Thereafter we performed post
hoc comparisons of deviation angles across conditions with
paired, two-tailed Student’s t-tests.

Besides the regression model that directly linked deviation
angles to single valued parameters, we created a computational
model that predicted deviation angles based on the characteris-
tics of adapter colors across time (for weighing steps, see Fig.
1e). The goal of this was not to create a model superior
to models published before but to see how much variance in
after-image content across conditions could be explained by a
rather simple model. The model predicted deviation angles by
calculating a weighed mean of the trajectory angles. Each tra-
jectory angle was weighed by a specific integer number that
was based on three parameters: (1) the duration (in millisec-
onds) a color was present because longer presentation times
facilitate adaptation, (2) the saturation of the color because
higher contrast colors facilitate adaptation (Webster &
Mollon, 1994), and (3) the duration from the start of the trial
following the tk power law (Drew & Abbott, 2006) because
adaptation to a color recovers as time passes by (for a
schematic overview, see Fig. 1e). The only free parameter
was k, optimized using a hyper-parameter grid search approach
between k = 0–4 with a step resolution of 0.1. Note that adap-
tation decay may also be modeled with an exponential decay
function. A power law approximates such a function. To ex-
plain how an array with weighed angles (and thus colors) was
constructed, we provide several examples. An initial array rep-
resented the dynamic phase and consisted of 60 deviation an-
gles per second (i.e., the screen’s refresh rate), which resulted in
a total of 180 angles (3 s × 60 Hz) in the condition without a
static phase. By angles we mean the relative angle between a
line from the initial adapter color to the gray center and a line
from the current adapters color to the gray center on the color
plane (Fig. 1b). This array with angles started and ended with a
0π radian angle, but the intermediate array angles depended on
the degree of curvature. For example, in the strong curvature
condition, the 90th angle was 0.25π radians (45°). Another 90
times 0π radian angles (1.5 s × 60 Hz) were added in front of
the array in case of the presence of a static phase, resulting in an
array with 270 angles in total. These arrays only represented
angles weighed for static and dynamic phase durations. To take
into account effects of saturation, the initial array was extended
by repeating each angle 100 (full saturation) to 0 (no saturation;
gray) times depending on the color’s saturation at the specified
angle and distance from the color space center. To model the
release of adaptation over time, the number of repetitions for
saturation was reduced by a normalized factor f (range: 0–1)

determined with the power law function where 0 indicates fully
recovered from adaptation, which applies to color angles pre-
sented at the start of the adaptation phase, and 1 indicates ad-
aptation state at full strength, which applies to color presented at
the end of the adaptation phase. For example, for the angle at
1.5 s after the start of the dynamic phase (halfway through the
dynamic phase; array index = 180) with k set at 1.4: f = 1801.4 ÷
2701.4 = 0.57. We use two examples to illustrate what numbers
the final array of an adapter condition with both a static and
dynamic phase constituted: (1) a static phase angle of 0π ra-
dians appeared 810 times at the start of the array (1.5 s × 60 Hz
× 100% saturation × 0.09 average adaptation recovery; the latter
normalization factor was based on the average of f of the first 90
array items). The angle of array index 180 (0.25π) was present
29 times (0.017 s × 60 Hz × 50% saturation × 0.57 adaptation
recovery). The mean across all the angles in an array served as
the modelled and predicted deviation angle. We computed
Pearson’s correlation, mean absolute errors (MAE), and root-
mean squared errors (RMSE) as indicators of model fit. The
data or materials for the experiments reported here are available
on request to the corresponding author. None of the experi-
ments was preregistered.

Results and discussion: Experiment 1

Deviation angle results

As mentioned in the Methods, 12 out of 20 participants
(60%) systematically reported having observed after-im-
ages, indicating that dynamic adapters can evoke after-im-
ages. Our next aim was to inspect the robustness of after-
image colors. In other words, how variable did participants
report after-image colors complementary (i.e., opposite in
color space) to the initially presented colors at the start of
each trial? To answer this, we calculated the mean deviation
angles between (1) the colors complementary to the initial
colors and (2) the reported after-image colors (Fig. 1d), per
participant. We then computed histograms representing the
number of participants falling within one of 45 bins distrib-
uted across the full range of 2π radians (i.e., 360°) deviation
angles, per condition. Figure 2a displays these deviation
angle histograms as polar plots. The red dotted lines show
a distribution of mean deviation angles for the condition in
which adapters went straight through color space from
100% saturation to 0% saturation, thus without changing
hue. This specific distribution centers around 0π radians
with a maximum deviation of approximately 0.10π radius,
meaning that dynamic adapters evoke after-images of a
complementary color that were robustly reported by more
than half the participants.

Importantly, trials with adapters that followed a curved
trajectory through color space (see green dash-dotted and blue
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dashed lines in Fig. 2a) evoked after-images that deviated
systematically from the color complementary to the initial
color, in the direction of the trajectory’s curvature (i.e.,
>0π radians). As shown in Fig. 2b, the patterns of devia-
tion angles across curvature conditions indicated that the
stronger the curvature, the larger the color deviation in the
direction of an extrapolated color trajectory (for statistical
results, see Table 1; all post hoc comparisons between
curvature conditions show significant differences with p
< 0.001). This result showed that also in the case of color
the visual stimulus integrates across (color-)space and
time during adaptation, leading to an integrated color af-
ter-effect.

This result is further underscored when considering the
effect of a static phase preceding the curved trajectory during
adaptation. The observation of a static color for 33% of the
total adaptation time (i.e., 1.5 out of 4.5 s adaptation) signifi-
cantly reduced the deviation angle by 27% (SD: 31%) in the
strongly curved condition (for statistics on the interaction, see
Table 1; post hoc comparison: p = 0.005) but did not reduce
this in the straight and weakly curved condition (p > 0.05).
The relatively weakened amount of influence of the static
adapter preceding the dynamic adapter can be explained when
taking the gradual recovery from adaptation into account, as is
described in the following section.

Spatiotemporal modelling results

To investigate how rapid adaptation was released as a function
of time, we computationally modelled the median deviation
angle per condition based on the characteristics of the
adapter’s colors. Examples of the modelled angles are giv-
en in Fig. 3, showing an almost perfect fit by the model.
These results indicate that a rather simple model, that bases
predictions on merely three fixed, predefined adapter prop-
erties (color content, saturation, and presentation duration;
see Methods for details) and one free adaptation release/
decay parameter (a power of k = 1.4), very well explains
the variation in after-image colors across conditions.

Method: Experiment 2

Experiment 1 showed that (for those participants with system-
atic color after-effects), the color content of the evoked after-
images depended on a weighted average of all presented
adapter colors. However, a substantial number of participants
did not observe after-images. The presence of abrupt color
changes may have hampered after-image formation for these
participants. We designed Experiment 2 to improve after-
image formation (increasing the number of included

Fig. 2 Results – Experiment 1. a Histogram polar plot per curvature
condition (see legend) based on average deviation angle per participant,
pooled across static-phase-present and -absent conditions. The radial lines
extending from the circle’s border indicate the mean deviation angle
across participants. Straight and curved lines within the circle represent

the possible color trajectories through color space. b Mean deviation
angle across static phase duration conditions per participant (colors). c
Same as panel (b), but now the average across participants for a present or
absent static adapter phase. Vertical lines display standard errors from the
mean

Table 1 Mixed linear model for after-image colors – Experiment 1

Factor Coef. CI Std. err. z p

Curvature 0.415 0.371 – 0.459 0.023 18.355 <0.001

Curvature * Static phase presence -0.084 -0.131 – -0.037 0.024 -3.494 <0.001

For each row, numbers indicate the coefficient (weight or beta), corresponding 5–95% confidence intervals (CIs) and standard errors of coefficients, z-
statistic, and p-value of significance per factor in the mixed linear model
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participants) and investigate the underlying factors that deter-
mine the probability of evoking an observable after-image
with dynamic adapters. To achieve this, we (1) changed the
experimental design to measure and improve after-image for-
mation probability (for examples of studies investigating
after-image probability and visibility, see Atkinson, 1972;
Hazenberg & van Lier, 2013; Shimojo et al., 2001), (2) varied
the durations of static and dynamic phases more systematical-
ly to assess these factors in more detail, and manipulated the
abruptness of color transitions to understand whether the pres-
ence of such transients affect after-image formation. More
specifically, Experiment 2 differed from Experiment 1 in the
following aspects:We invited a total of 55 participants. Due to
COVID-19-caused restrictions, we had to change the experi-
mental setting to an online, web-based (JavaScript) experi-
ment. Participants were instructed to sit in front of their
laptop/computer screen at a distance of approximately 50
cm. The latter was achieved by instructing participants to align
the edges of two pieces of A4-sized paper behind each other,
one in portrait and the other in landscape orientation, with the
outer edges touching their head and screen. The participants
received explicit instructions to report the color seen after the
fixation turned black if a color was perceived at all.
Participants received the additional option to indicate not hav-
ing observed an after-image (press keyboard button “escape”).
In addition to measuring after-image content (i.e., which col-
or), this option allowed the measurement of the probability
that an after-image was observed as a reflection of after-
image magnitude (i.e., saturation/strength). We also increased
the after-image phase to 1.5 s (instead of 1 s) such that partic-
ipants received more time for observation, increasing the
probability of observing an after-image. We presented no
masks during the trials to prevent the potential disruption of

after-image observations, and to partially make up for the loss
of time due to the longer after-image phase.

Participants could overwrite their choice as many times as
they preferred before continuing to the next trial. After their
choice, participants could initiate the next trial by clicking on a
“NEXT” button at the bottom of the web page.

As compared to Experiment 1, the design of Experiment 2
included modifications to the manipulations in the curvature
of the adapter’s color trajectories, static phase durations, and
additions of two novel stimulus manipulations to assess the
generalization of the computational model attested in
Experiment 1 (Fig. 4).

Firstly, we adapted the trajectories and added a swirl-like
trajectory to create more datapoints for the model (Fig. 4a;
change in angles: weak 0.33π; moderate 0.66π; strong 1π).
Secondly, we removed the static adapter phase absence con-
dition and varied the durations of the static phase (1 s, 2 s, or 3
s) to better model the effects of long-term adaptation. Thirdly,
we manipulated the dynamic phase duration (independent of
static phase duration) to model effects of short-term, fast ad-
aptation (Fig. 4b). Fourthly, the colors changed along the tra-
jectory in two, five, or 60 steps during the dynamic phase to
examine to what degree visual transients, the smoothness of
changes, and extrapolation (extrapolation should be easy for
60 steps, but more difficult for two to five steps) affects after-
images. Lastly, rather than using a predefined set of eight start
colors like in Experiment 1, we randomly chose an initial
adapter color to prevent participants becoming acquainted
with a set of colors. The experiment was programmed in
JavaScript and we used the online Gorilla Experiment
Builder to build and host the experiment (Anwyl-Irvine
et al., 2020). Participants completed a total of 108 trials (four
curvature conditions × three static phase durations × three

Fig. 3 Modelling results – Experiment 1. a Examples of predicted devi-
ation angles, highlighted by the straight lines from trajectories to crosses
on circle border, and the measured deviation angles (median across par-
ticipants’ mean deviation angle) across curvature conditions, highlighted
by the dots on the circle border. b Same as (a) but now for the strongly
curved trajectory for the static phase being either present (small brown

dot) or absent (large pink dot). c Scatter plot of predicted and measured
deviation angles of all possible conditions (n = 6). Marker symbol indi-
cates different curvature conditions, marker size indicates static phase
presence/absence. RMSE root mean squared error, MAE mean absolute
error, R Pearson’s rho
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dynamic phase durations × three step numbers × one trial per
condition; rotation direction and initial start colors sampled
randomly). The adapter’s and fixation diameters spanned
50% and 2% of the vertical browser size, respectively.

Eleven participants were excluded from analysis because
they showed signs of color blindness according to the Ishihara
color blindness test results, indicated having failed to perform
the experiment in a dark room, or still did not report comple-
mentary after-image colors for straight trajectories (selection
was based on same Rayleigh tests as in Experiment 1). Of the
remaining population of 44 participants, 42 fell within the age
range of 18–24 years and two within 25–30 years (age range
instead of exact age was assessed; 27 females; 38 right-
handed).

Results and discussion: Experiment 2

Deviation angle results

As outlined in theMethods, the majority of participants (80%)
reported having systematically observed after-images with
complementary colors, confirming the success of the experi-
mental design changes implemented to increase the number of
participants included in the analysis. Next, we aimed to repli-
cate the effect of curved color space trajectories of the dynam-
ic adapter on the after-image colors as reported previously in
Experiment 1. Figure 5a and b show that all included partic-
ipants robustly observed after-image colors complementary to
colors that were mostly present during the dynamic phase.

The more the adapter’s trajectory curved through col-
or space, the more likely the observed after-image color
deviated from the color complementary to the initial start
color (for model statistics, see Table 2; all post hoc com-
parisons: p < 0.001). Also, in line with Experiment 1, the
static adapter phase duration moderated the curvature

effect, with the shorter the static phase lasted, the larger
the effect of curvature (Fig. 5c; all comparisons between
static-phase durations for moderate curvature: p < 0.05;
strong curvature: p < 0.01). Besides replicating the ef-
fects of Experiment 1, we also examined the effects of
dynamic phase duration (Fig. 5d) and number of color
steps (Fig. 5e). Both moderated the effects of trajectory cur-
vature, with an enhanced effect for long as compared to short
dynamic phases (comparisons between dynamic phase dura-
tions for moderate and strong curvature: p < 0.01) and an
enhanced though small effect on strong curvature by two
and 60 color steps as compared to five steps (comparisons
between five steps and other step conditions for strong curva-
ture: p < 0.05). The latter suggests an effect of the number of
transients (an adapter with 60 color steps is perceived as a
smooth change with no transients), with relatively many tran-
sients (five steps) weakening the effect of curvature.

Spatiotemporal modelling results

Modelled deviation angles were computed the same way as in
Experiment 1. The only exception was the free parameter k of
the power law, which was fitted at 2.0 rather than 1.4 to model
a faster release of adaptation than in Experiment 1. Similar to
the fit of the model of Experiment 1, the predictions matched
the data (ground truth) of Experiment 2 very well (Fig. 6). The
only noteworthy residual consisted of an underestimation of
the effect of a relatively short (1 s) dynamic adapter phase (see
magenta, dashed line in Fig. 6c and most transparent squares
and circles in Fig. 6e). This undershoot of deviation angle may
point at the existence of a yet unknown nonlinear process.
Nonetheless, the model almost perfectly fitted the data, indi-
cating that the model generalizes well across varying stimulus
manipulations, experimental settings, and participants.
Despite this achievement and the goal to create a simplemodel
(see Methods), it is important to stress that much more

Fig. 4 Stimuli and procedure – Experiment 2. a As compared to
Experiment 1, the color changes of adapters in Experiment 2 followed
alternative trajectories, including a stronger, swirl-like trajectory. The
initial color (black dots on the color space edge) could be chosen from

more options than in Experiment 1. b Examples of added manipulations
of dynamic phase durations (1, 2, or 3 s) and number of abrupt steps (2, 5,
or 60 steps/s) in color trajectories
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comprehensive adaptation models exist and that the current
model can be improved, for example by incorporating the
non-linear relation that has been shown between where the
test stimulus falls along the chromatic axis and its saturation
(Webster & Mollon, 1994).

After-image probability results

The design of Experiment 2 allowed another measurement,
namely the probability that a participant observed an after-
image. Figure 7 shows these probabilities across conditions.
All individuals more likely observed after-images when the
degree of curvature of the dynamic adapter’s trajectory
through color space decreased (for model statistics, see
Table 3; post hoc comparisons indicated that all curvature
conditions differ significantly from each other with p < 0.01
except for the none versus weak condition). Long static
adapter phases (comparisons across static phase durations
of deviation angles averaged across curvature conditions:

p < 0.001), long dynamic adapter phases (p < 0.001), and
smooth color transitions (p < 0.05) similarly increased the
probability of observing an after-image.

When considering all directions of effects across the ma-
nipulations to adapters together, the probability of observing
an after-image inversely related to the rate of change during
adaptation. The more abrupt, transient color changes within a
certain adaptation time window (like in the strong bending
condition, 1 s lasting static phase, 1 s lasting dynamic phase,
and 2 color step condition), the less likely an after-image is
observed. However, what a transient actually is remains to be
tested as both the curvature and the step size interact in a yet
unpredicted and complex manner. A distribution shift model
(as was described by Mather in 1980 for adaptation to bi-
vectorial motion) may provide an alternative explanation for
the pattern of probabilities across adapter manipulations. As
adaptation duration increases, all color-sensitive neuronal
populations, each with a peak sensitivity at a different color
(i.e., with different distributions), are stimulated to reach an

Fig. 5 After-image color results – Experiment 2. a–e Same as Fig. 2 but now for Experiment 2 with the added manipulations of dynamic phase duration
and number of steps

Table 2 Mixed linear model for after-image colors – Experiment 2

Factor Coef. CI Std. err. z p

Curvature 0.255 0.204 – 0.307 0.026 9.673 <0.001

Curvature * Static phase duration -0.056 -0.072 – 0.040 0.008 -7.002 <0.001

Curvature * Dynamic phase duration 0.069 0.053 – 0.084 0.008 8.695 <0.001

Curvature * # Steps <0.001 0.000 – 0.001 <0.001 2.462 0.014

For each row, numbers indicate the coefficient (weight or beta), corresponding 5–95% confidence intervals (CIs) and standard errors of coefficients, z-
statistic, and p-value of significance per factor in the mixed linear model
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effective adaptation state. At the end of a curved adapter tra-
jectory, the adapter has changed to a color that also partially
stimulates and thus adapts populations that are sensitive to the
opponency, after-image colors. The latter shifts the net effect
of adaptation towards a more equally distributed sensitivity
across color space directions, resulting in a smaller after-
image formation probability.

General discussion

We investigated how adapters that dynamically changed color
produce after-images (if at all) and which adapter properties
determined their content and likelihood to be observable. The
analyses of results of two adaptation experiments put forward
coherent evidence that dynamic adapters evoke observable
after-images. Whether an adapter changes directly from one
color to gray or indirectly from one color through several hues

to eventually gray, any type of temporal color gradient can
leave an after-image. The content of an after-image with
respect to the content of a dynamic adaptor consists of a
color complementary to the weighted average of the
adapter’s color gradient, meaning that all and thus also
shortly presented adapter colors affect the content of an
after-image. The weighing depended on multiple factors of
which one was assigning heavier weights to more recent
(seen last) adapter colors using a power law that models a
decay of adaptation as a function of time. All this points to
the involvement of a rapid form of color adaptation, a find-
ing in line with previous reports on effects of contrast, mo-
tion, shape adaptation, and color contrast (Gegenfurtner &
Rieger, 2000; Glasser et al., 2011; Suzuki, 2001) in dynamic
(Zaidi et al., 2012; Spieringhs et al., 2019) and static stimuli
(Fairchild & Reniff, 1995; Rinner & Gegenfurtner, 2000;
Werner et al., 2000). Our model is similar to the one de-
scribed by Spieringhs et al. (2019); however, rapid

Fig. 6 Modelling results – Experiment 2. a–e Same as Fig. 3 but now for Experiment 2 conditions (n = 108)

Table 3 Mixed linear model for after-image probabilities – Experiment 2

Factor Coef. CI Std. err. z p

Intercept 0.522 0.466 – 0.578 0.029 18.247 <0.001

Curvature -0.076 -0.087 – -0.064 0.006 -13.298 <0.001

Static phase duration 0.086 0.073 – 0.100 0.007 12.233 <0.001

Dynamic phase duration 0.076 0.062 – 0.090 0.007 10.715 <0.001

Curvature * # Steps 0.001 <0.001 – 0.001 <0.001 5.171 <0.001

For each row, numbers indicate the coefficient (weight or beta), corresponding 5–95% confidence intervals (CIs) and standard errors of coefficients, z-
statistic, and p-value of significance per factor in the mixed linear model
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adaptation has, to our knowledge, not been reported earlier
in studies on color after-images. Furthermore, adding to the
aforementioned models, we describe the relative influence
of the stimulus presentation time. To model the complemen-
tary after-image colors with even better precision, we in-
creased weights for colors with high saturation and long
adaptation duration, following the classical finding that the
longer and the “stronger” the adapter, the larger the effect on
the after-image (Gibson & Radner, 1937; Hershenson,
1989; Leopold et al., 2005; Magnussen & Johnsen, 1986;
H. R. Wilson, 1997; Yeonan-Kim & Francis, 2019). As
such, our study adds knowledge to the field of chromatic
adaptation from a unique perspective and with a novel
paradigm.

In addition to the color content of the after-images, we
investigated what determined the likelihood of observing an
after-image – a binary reflection of its intensity. The probabil-
ity of after-image formation apparently increases as a function
of adaptation duration but decreases as a function of: (1) the
number and abruptness of color changes (few and slow color
changes, with long adaptation phases, enhanced after-image
occurrence), or (2) the ratio of adaptation levels between

initial adapter colors and complementary (opponency) colors
at the end of curved color trajectories of the adapter.
Nevertheless, after-images persisted to occur even for the
most vivid and short-lived changes to adapters. In conclusion,
adaptation does not necessarily require stable stimuli to evoke
vivid after-effects. The visual system appears to adapt to a
whole history of varying contents, without a strong cancella-
tion by visual change. This means that the traditional approach
to investigating adaptation with stable adapters can be extend-
ed to dynamic adapters to gain more fine-grained insights in
how adaptation evolves over time with only few and short
trials per participant.

The observation that dynamic adapters produce slightly
weaker after-images than stable (or less dynamic) adapters
requires an explanation. An adapter that rapidly changes color
may trigger a mechanism that slightly hampers after-image
formation. Such rapid changes are called visual transients
and can affect adaptation (Naber et al., 2020), likely by oper-
ating on attentional mechanisms. More specifically, color-
changing items capture attention more strongly than stable
items in visual search paradigms (von Mühlenen & Conci,
2016). It is possible that the sudden appearance of a novel

Fig. 7 After-image probability results – Experiment 2. a–d Same as panels b–e in Fig. 5 but now for the probability of seeing an after-image
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color may inhibit adaptation to previous colors, as a form of
backward masking (Raab, 1963), and thereby suppress after-
image formation. Another possibility is that color transients
produce an attentional blink (Raymond et al., 1992) or en-
hance forward masking (Gibson, 1996), suppressing the
after-image from awareness.

An alternative (neural) explanation for the observation that
dynamic adapters lower the likelihood of after-image forma-
tion relates to the broadness of tuning curves of neural popu-
lation sensitive to specific colors. As a dynamic adapter
changes from initial colors towards complementary colors in
conditions with a curved path through color space, it may also
adapt populations sensitive to complementary colors through
stimulation of the outer range of the tuning curves, cancelling
out initial adaptation effects of opponency colors. Previous
studies on motion after-effects induced a relatively complex
adaptation state by presenting multiple transparent motion di-
rections at once (Verstraten et al., 1994). Such adapters pro-
duce after-effects with a motion direction based on a weighted
net effect of the separate motion components. For example,
the separate adaptation to a random dot pattern with left- and
rightward moving dots, results in motionless after-effects be-
cause the net adaptation level has no bias in a particular direc-
tion, similar to the here observed weakening of the color after-
effect for strongly curved trajectories. While it is impossible to
show two transparent colors in parallel, the relatively fast se-
quential presentation of multiple colors may have achieved
comparable effects. Nonetheless, these propositions need to
be tested in future studies. Other interesting analyses to pursue
in the future are which colors are more likely to produce after-
images, whether certain after-image colors deviate more
strongly from the complementary color (Koenderink et al.,
2020), and how the addition of luminance changes in the
adapter affects after-images.

Another observation that needs to be elaborated on is the
difference in the free power law parameter between the two
experiments. This fitted parameter determined how fast the
state of adaptation decayed, being substantially slower for
the data of Experiment 1 than those of Experiment 2.
Participants took part in Experiment 1 in a well-controlled
lab and dark setting, likely facilitating the conditions to
achieve a strong adaptation state and thus a weaker release
from adaptation. On the other hand, participants sat in an
environment of their choice during Experiment 2, likely with
less ideal circumstances for adaptation. Another possibility is
that the groups in Experiments 1 and 2 differed in adaptation
recovery rates by chance as such power law parameters have
been shown to be very subject dependent (e.g., see van de
Grind et al., 2004).

One question that remains is where (and how) rapid color
adaptation operates in the brain. The debate about the neural
locus of (rapid) adaptation is currently unsettled (Barbur et al.,
1999; Loomis, 1972; Shevell et al., 2008; Van Lier et al.,

2009; Zaidi et al., 2012; Zeki et al., 2017) but will be of
relevance to future scientific investigations that aim to better
understand the underpinnings of adaptation. Another direction
for future research could be to test the half-axes of the color
space separately, as done before by Rinner and Gegenfurtner
(2000), to get insights into interactions across adaptation in
multiple, distinct color channels by looking at curves that
activate both axes and to explore the mechanism behind the
weighting.
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