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Objective:Osteoarthritis (OA) is a common degenerative joint disease, and animal models
have proven pivotal in investigating this disease. This study aimed to develop a primate
model of OA that may be more relevant to research studies on OA in humans.

Method: Twelve female rhesus macaques were randomly divided into three groups.
Four animals were untreated (Control group); four were subjected to the modified
Hulth method, involving cutting of the anterior and posterior cruciate ligaments, and
transecting the meniscus (Hulth group); and four were subjected to the modified
Hulth method combined with cartilage defect (MHCD group). Each primate was
subjected to motor ability tests, and underwent arthroscopic, radiographic,
morphological, and pathological observation of the knee joints at various times
for up to 180 days.

Results: Motor ability on Day 180 was significantly lower in the MHCD group than in the
Control (p＜0.01) and Hulth (p＜0.05) groups. Radiographic and morphological
examination showed that the severity of knee joint deformity and articular cartilage
injury were greater in the MHCD group than in the other groups. Pathological
examination showed that cartilage thickness was significantly lower in the MHCD
group than in the other groups at the same time points. The Mankin score on
Day 180 was markedly higher in the MHCD group than in the Hulth (p＜0.05) and
Control (p＜0.001) groups.

Conclusion: The MHCD model of OA closely resembles the pathophysiological
processes of spontaneous knee OA in humans. The time required to develop knee OA
is shorter using the MHCD model than using the Hulth method.
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INTRODUCTION

Osteoarthritis (OA) is a common degenerative joint disease that
adversely affects the quality of life of millions of people around the
world (Johnson and Hunter, 2014; Glyn-Jones et al., 2015).
Symptoms of OA include persistent joint pain, swelling,
stiffness, and limited range of motion, accompanied by
progressive cartilage degradation, subchondral bone sclerosis,
osteophyte formation, and synovium inflammation (Goldring
and Goldring, 2010; Sokolove and Lepus, 2013). OA commonly
affects the hands, feet, spine, and large weight-bearing joints,
particularly the knee (Michael et al., 2010). Knee OA (KOA) is
a major cause of physical disability and morbidity, imposing
enormous medical and socioeconomic burdens on individuals
and society (Alkan et al., 2014; Cross et al., 2014; Hawker et al.,
2014). Factors associated with the development of KOA include
age, strain, trauma, obesity, and genetic factors; the incidence of
KOA does not differ significantly according to race or geographical
location (Blagojevic et al., 2010; Guilak, 2011). To date, however,
the exact causes and pathogenesis of KOA remain largely
unknown, and no treatments have been found to effectively
inhibit KOA progression and/or repair injured cartilage.

Animal models are an essential tool to explore the
pathogenesis or KOA and to develop effective therapies
(Lampropoulou-Adamidou et al., 2014). Various
experimentally induced and spontaneous KOA models have
been developed in several animal species, including mice, rats,
rabbits, guinea pigs, dogs, sheep, goats, and horses (Kuyinu
et al., 2016; Cope et al., 2019). However, the patterns of disease,
particularly chronic degenerative diseases, in these animals
differ markedly from those in humans (Teeple et al., 2013;
Mccoy, 2015; Thysen et al., 2015). Because nonhuman primates
are phylogenetically close to humans, they make powerful
experimental models for studying human diseases. Monkeys,
such as rhesus and cynomolgus macaques, are particularly
appropriate for studying the molecular processes innate to
OA development and progression, as they naturally develop
OA at rates similar to those observed in humans (Bailey et al.,
2014). To date, however, few KOA models have been developed
in monkeys and other primates.

Surgical models of KOA developed in animals involve
transaction of the anterior cruciate ligament (ACL),
meniscectomy, meniscus injury, and focal cartilage defect
(Gregory et al., 2012). These methods are rapid and
reproducible, and are similar to the disease-initiating events
and pathology of human KOA (Fang and Beier, 2014). One of
the most common surgical methods used to induce OA is the
Hulth method, which involves cutting the ACL and posterior
cruciate ligament (PCL), and transecting the meniscus (Zhou
et al., 2018). Compared with other models, KOA induced by the
Hulth method is more similar to the spontaneous induction of
OA observed in humans. However, the Hulth method may take a
long time to produce the same degree of joint damage as a
naturally degenerative model. To develop an OA model in
which spontaneous development of OA is similar to that in
humans, but more rapid and effective than the Hulth model,
we explored a potential animal model of KOA based on rhesus

macaques. This model involved using a modified Hulth method
combined with focal cartilage defect (MHCD). The feasibility and
validity of the MHCD method were assessed in comparison with
the Hulth model.

MATERIALS AND METHODS

Ethics Statement
All animal procedures were approved by the Institutional Animal
Care and Use Committee of The Second People’s Hospital of
Yunnan Province and the Kunming Institute of Zoology. CAS
(SCXK(滇)K2017-0008). All animals were treated according to
the guidelines of the Association for Assessment and
Accreditation of Laboratory Animal Care International
(AAALAC) for the ethical treatment of primates.

Animals
Twelve female specific pathogen-free rhesus macaques (Macaca
mulatta), aged 12.5–13.9 years and weighing 6.7–8.3 kg, were
provided by the Kunming Institute of Zoology of the Chinese
Academy of Sciences. The monkeys were housed individually in
cages measuring 2.2 m (H) × 2.0 m (W) × 1.5 m (D) and kept in an
environment with a 12 h light/dark cycle, a temperature of 22–24°C,
and relative humidity of 45–55%. They were fed a standard
nonhuman primate diet, and both food and water were available
ad libitum. Additionally, the monkeys were allowed to move freely
for 6–8 h each day in a spacious activity room (12.5 × 10 × 6m)
equipped with a small rockery, swings, and ball games. Occasionally,
videos andmusic were played to relax the monkeys. The animal care
staff, as well as the study staff, provided the monkeys with positive
interactions.

Grouping and Modeling
The 12 rhesus macaques were randomly divided into three groups
of four. Monkeys in the Control group did not undergo surgery;
monkeys in the Hulth group underwent unilateral knee surgery
during which the ACL and PCL were cut and the meniscus was
transected; and monkeys in the MHCD group underwent
unilateral knee surgery using the MHCD method.

The monkeys were anesthetized by intramuscular injection of
ketamine (0.2 mg/kg; Virbac, France) and fixed in a supine
position on the surgical table. The site of incision on the
proximal left leg was marked, and a tourniquet was applied.
Anterior medial and anterior lateral approaches to the knee joint
were made (incisions 4 cm in length) to enable exploration of the
knee joints. Operative exploration indicated that the ACL,
meniscus, articular cartilage, and other structures were all
good. Subsequently, monkeys randomized to the Hulth group
underwent transection of the ACL and PCL, and resection of the
medial meniscus. By contrast, monkeys in the MHCD group
underwent transection of the ACL, the medial collateral ligament
(MCL), and the medial meniscus, along with resection of full-
thickness cartilage (0.5 × 0.5 × 0.1 cm) in the weight-bearing area
of the medial femoral condyle; the procedure was carried using a
No. 15 blade scalpel (Jinzhong, Shanghai, China) (Figure 1). The
articular cavity and incision were flushed with saline and closed
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FIGURE 1 | Scheme showing the processes of modeling knee osteoarthritis in rhesus macaques using the Hulth and MHCD methods. Abbreviations: MHCD,
modified Hulth combined with cartilage defect; ACL, anterior cruciate ligament; PCL, posterior cruciate ligament; MCL, medial collateral ligament.

TABLE 1 | Baseline characteristics of the three groups of rhesus macaques (�x±s)

Groups Age (year) Weight (kg) Knee circumference (cm) Crown
sacral length (cm)

Control group 12.93 ± 1.24 6.43 ± 0.28 15.29 ± 0.47 46.12 ± 1.36
Hulth group 13.09 ± 1.20 6.45 ± 0.30 15.20 ± 0.50 46.30 ± 1.51
MHCD group 13.16 ± 1.58 6.37 ± 0.34 15.50 ± 0.85 46.48 ± 1.71
F 1.333 2.809 2.363 0.506
P 0.311 0.113 0.150 0.619
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with 3-0 absorbable sutures (3L Medical Products Co, Nanchang,
China), followed by external fixation with a plaster cast. A soft-
padded bandage was placed over the limb and maintained for
2 weeks. Starting within 3 days post-operation, cefodizime
sodium (25 mg/kg; Suzhou Chung Hwa Chemical &
Pharmaceutical Industrial Co, Suzhou, China) was injected
intramuscularly once every 12 h to prevent infection, and
parecoxib (0.8 mg/kg; Pfizer, United States) was injected
intramuscularly once daily to relieve pain. Animals were
monitored daily.

Motor Ability Test
To evaluate the effect of pain caused by KOA on the motor ability
of monkeys, all monkeys were monitored by video surveillance
(Hikvision, China) from Day 3 to Day 180. The time for which
each monkey walked and/or ran during each 24 h period was
recorded.

Radiographic Examination
OnDays 60, 120, and 180, all animals were anesthetized with 10%
chloral hydrate and subjected to radiographic evaluation. X-ray
images of the knee joint were taken using an Axiom Multix M
radiographic unit (Siemens, Germany). Magnetic resonance
imaging (MRI) (Philips, the Netherlands) was also performed
to assess changes in articular cartilage. X-ray images and MR
images were evaluated by two radiologists and by one specialized
orthopedic surgeon independently. One observer (orthopedic
surgeon) evaluated all MR images twice with a 3-months
interval between the two reading sessions.

Arthroscopic Examination
Following anesthetization with 10% chloral hydrate on Day 120,
the monkeys underwent arthroscopic examination (Stryker,
United States) of the targeted knee joint to obtain pictures of
articular surface injury.

Morphological Examination
All animals were euthanized by administration of intensive
anesthesia 180 days after the operation. The monkeys were
placed in the supine position and the sites of the surgical areas
were shaved. Incisions over the knee joint were made, the knee
joint cavity was exposed to collect the fluid, and the articular
cartilage surface was examined. Articular cartilage of the medial
femoral condyle was cut from the excised knee joints and stored
at −20°C before analysis.

Histological Examination
Cartilage specimens were fixed with 4% paraformaldehyde (Solarbio
Beijing, China) for 48 h at 4°C, decalcified in 20% EDTA solution
(Merck, Germany), dehydrated through graded ethanol solutions,
embedded in paraffin, and sliced into 5-μm sections. Sections were
stained with hematoxylin and eosin (H&E; Solarbio), Safranin O
(Solarbio), and toluidine blue (Solarbio), and then sealedwith neutral
gum. Finally, the specimens were assessed under a light microscopy
(Nikon, Japan). Five slices of each articular cartilage specimen were
selected, and KOA was evaluated by measuring the Mankin
score(Van Der Sluijs et al., 1992).

Enzyme-Linked Immunosorbent Assay
Synovial fluid was aspirated from the knee joints of all monkeys
on Day 120. The concentrations of interleukin-1β (IL-1β),
transforming growth factor-β1 (TGF-β1), and matrix
metalloproteinase-13 (MMP-13) in these specimens were
measured using commercially available kits (Human
Quantikine ELISA kits; R&D Systems).

Statistical Analysis
All data are presented as mean ± standard deviation (SD) and were
analyzed using the SPSS 13.0 statistical package. Data distributed
normally were analyzed using a t test, whereas non-normally
distributed data were analyzed using the Mann-Whitney U test.
p-values <0.05 were considered statistically significant.

RESULTS

Baseline Characteristics and Intraoperative
Condition of Rhesus Macaques
There was no significant difference between the Control, Hulth,
and MHCD groups with respect to age, body weight, knee
circumference, and crown sacral length (p > 0.05) (Table 1).
Operation time was longer for the MHCD group than for the
Hulth group (p < 0.05) (Figure 2A), but there was no significant
difference in blood loss (p > 0.05) (Figure 2B). None of the
monkeys experienced infection or died.

Analysis of Motor Ability
Compared with the Control group, motor ability at 3 and 7 days
post-surgery was significantly lower in the Hulth (p < 0.01 on
both days) and MHCD (p < 0.001 on Day 3, p < 0.01 on Day 7)
groups due to postoperative pain. Removal of the plaster cast led
to rapid relief of pain in the Hulth group, with motor ability being
significantly greater than that of theMHCD group on Day 14 (p <
0.05). By contrast, the motor ability of the MHCD group was

FIGURE 2 | Evaluation of operation time (A) and blood loss (B) in rhesus
macaques subjected to the Hulth and MHCD methods. *p < 0.05. Data are
presented as the mean ± SD.
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FIGURE 3 | Evaluation ofmotor activity and postoperative X-rays in the three groups of rhesusmacaques. (A)Motor activitywithin 24 h after surgery. (B)Representative
X-rays of the knee joints on Day 180. (C). Changes in joint convergence angles of the left knee. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as the mean ± SD.

FIGURE 4 | MRI findings of the knee joints of the three groups of rhesus macaques. (A) Representative MRI findings of the knee joints on Day 180. (B) Sizes of
articular cartilage defects on Days 60, 120, and 180. (C) Thicknesses of articular cartilage in the weight-bearing part of the knee joint on Day 180. (blue arrows, ACL;
yellow arrows, medial meniscus; red arrows, cartilage defects). *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as the mean ± SD.
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significantly lower than that of the Control group on Days 14 (p <
0.01), 21 (p < 0.05), and 30 (p < 0.05). Subsequent progression of
KOA after surgery in the MHCD group resulted in gradual
weakening of motor ability, which was significantly lower in
the MHCD than in the Control group on Days 120 (p < 0.05), 150
(p < 0.01), and 180 (p < 0.01). Interestingly, motor ability on Day
180 was significantly higher in the Hulth than in the MHCD
group (p < 0.05), but did not differ significantly between the
Hulth and Control groups (Figure 3A).

Radiographic Analysis of the Knee Joint
After surgery, monkeys showed a reduced knee joint space and
other gradual changes associated with KOA (Figure 3B and
Figure 4A). X-rays of animals in the MHCD group showed
collapse and sclerosis of the articular surface, deformity of the
knee joint, and narrowing of the joint space, whereas X-rays of
animals in the Hulth group showed sclerosis of the articular
surface without collapse. By contrast, X-rays of the Control group

showed knee joints with smooth appearance and regular surfaces
(Figure 3B). On Days 120 and 180, the joint line convergence
angle (JLCA) in the MHCD group was significantly greater than
that in the Control group (p < 0.01), whereas, on Day 180, the
JLCA was more extensive in the Hulth group than in the Control
group (p < 0.05) (Figure 3C).

MRI of animals in the Hulth andMHCD groups showed slight
increases in suprapatellar capsule and articular cavity effusion,
medial subluxation of the patella, and injury to the articular
cartilage of the medial femoral condyle (Figure 4A). Monkeys in
the Hulth group showed subchondral cystic lesions in the medial
femoral condyle, whereas animals in the MHCD group showed
cartilage and subchondral bone damage in the medial tibial
condyle, as well as joint space narrowing. The size of the
cartilage defect was significantly larger in the MHCD than in
the Control group on Days 60 (p < 0.01), 120 (p < 0.001), and 180
(p < 0.01), and was also significantly larger in the Hulth than in
the Control group on Days 60, 120, and 180 (p < 0.05 each). In

FIGURE 5 | Representative arthroscopic findings of the knee joints of rhesus macaques from the Control, Hulth, and MHCD groups on Day 120 (blue arrows, ACL;
yellow arrows, medial meniscus; red arrows, cartilage defects).
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addition, the size of the cartilage defect was significantly larger in
the MHCD than in the Hulth group on Days 60 (p < 0.01) and
120 (p < 0.05) (Figure 4B). On Day 180, the articular cartilage
was thicker in the Control group than in the MHCD group
(Figure 4C).

Morphological Observation of the Knee
Joint
Arthroscopic views of the knee joints and the gross appearance of
the femoral condyles and tibial plateaus in each group are shown
in Figure 5. Arthroscopy showed that the articular cartilage in the
Control group was smooth, and that the ACL and medial
meniscus were present. By contrast, arthroscopy of the knees
in the Hulth and MHCD groups showed absence of the ACL and
medial meniscus, and wear of the medial femoral condyle
cartilage. Gross examination revealed abrasion of the weight-

bearing surface of the medial femoral condyle and of the femoral
posterior condylar cartilage in the Hulth group, but more serious
abrasion in the MHCD group. In addition, significant cartilage
degeneration and cartilage thinning of the tibial plateau were
evident in the MHCD group, but not in the Control and Hulth
groups (Figure 6).

Histopathologic Evaluation of Knee Joint
H&E staining of samples from the Hulth and MHCD groups on
Day 180 showed damaged cartilage, disorganized chondrocyte
clusters, and rough cartilage surfaces (Figure 7A). In the Hulth
group, the boundary of each layer was obscure, the tidal line was
continuous, and the articular hyaline cartilage was replaced
gradually by fibrous tissue. In the MHCD group, however, the
articular cartilage surface was damaged to different degrees, the
structure was disordered, cartilage destruction involved the
radiation layer, the tidal line was interrupted and blurred, and
the articular cartilage was almost entirely replaced by fibrous
tissue. Consistent with the radiographic and gross observations,
the Mankin score showed that the severity of cartilage damage
was markedly higher in the Hulth group than in the Control
group (p < 0.01), but lower than in the MHCD group (p < 0.05).
The Mankin score was also markedly higher in the MHCD than
in the Control group (p < 0.001) (Figure 7B).

Tissue samples obtained after sacrifice on Day 180 were also
stained with Safranin O, which detects proteoglycans, a major
extracellular matrix component in cartilage. Safranin O staining of
samples from the Control group showed a deep red color; the
cartilage had a smooth surface; and the chondrocytes displayed
normal morphology and were arranged in an orderly manner. By
contrast, the intensity of SafraninO staining was reducedmarkedly
in the Hulth group, as was the number of chondrocytes, which also
showed disordered layers. Samples from theMHCD group showed
almost complete absence of Safranin O staining, the number of
chondrocytes was significantly reduced, and subchondral bone
remodeling was complete (Figure 8A).

Consistent with the results of Safranin O staining, toluidine
blue staining of Day 180 samples from the Control group showed
a deep blue color, with chondrocytes appearing in distinct layers
and arranged in an orderly manner. Samples from the Hulth
group showed light blue staining of the articular cartilage, with
the number of cells being significantly decreased. Samples from
the MHCD group showed lower intensity of toluidine blue
staining, with some of the layers showing no staining and the
regions in the weight-bearing area being negative for
chondrocytes (Figure 8B).

Expression of IL-1β, TGF-β1, andMMP-13 in
Synovial Fluid
Measurement of IL-1β, TGF-β1, and MMP-13 concentrations
in synovial fluid on Day 120 showed that the levels of all
three were significantly higher in the Hulth group than in the
Control group (p < 0.01 each). The levels of IL-1β (p < 0.001),
TGF-β1 (p < 0.001), and MMP-13 (p < 0.01) in the MHCD group
were much higher than those in the Control group. Moreover,
the levels of IL-1β (p < 0.01) and TGF-β1 (p < 0.01) were

FIGURE 6 | Gross observations on Day 180, showing abrasion of the
weight-bearing surface of the medial femoral condyle and femoral posterior
condylar cartilage in the Hulth group, but more serious abrasion in the MHCD
group (blue arrows, ACL; yellow arrows, medial meniscus; red arrows,
cartilage defects).
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significantly higher in the MHCD group than in the Hulth group
(Figures 9A–C).

DISCUSSION

OA is a common chronic disease characterized by articular
cartilage degeneration and bone destruction, which are the main
causes of joint pain and disability in patients with advanced disease
(Weimer et al., 2012). Development of OA is a complex process,
involving several pathological pathways and mechanisms.

Choosing an appropriate animal model of KOA is very
important for assessing the mechanisms involved in the
development of the disease in humans (Aigner et al., 2010).
Spontaneous models are, to some extent, the closest to the
natural degeneration of joints in patients with OA, but they
take a long time to develop (Teeple et al., 2013). Furthermore,
experimental results can be affected by many factors, thereby
reducing the reliability of these models (Stone et al., 2015).
Transgenic models cannot simulate the pathogenesis of human
OA completely because it is driven by a combination of multiple
genes and factors (Little and Hunter, 2013). Surgical methods of
modeling KOA are used widely because they are rapid, simple,
and highly repeatable (Gregory et al., 2012). The Hulth method
induces knee joint instability and pathological changes, similar to
spontaneous models of OA (Pashuck et al., 2016; Patel et al.,
2016). To date, however, effective and reliable models of KOA in
animals have not been quick to develop. Compared with the
Hulth method, animal models of KOA induced by cartilage injury

alone show significantly less damage to the biomechanical
stability of the knee joint. The time needed to produce OA-
related pathological changes is longer, as weight-bearing
interventions are required for the injured limb (Marijnissen
et al., 2002). The present study used a modified version of the
Hulth method, combining it with cartilage injury to yield a KOA
model that closely resembles the pathophysiological process of
spontaneous KOA in humans. Furthermore, this modification led
to development of KOA in a shorter time than the Hulth method.

Developing an appropriate animal model is important for
exploring the pathogenesis and treatment of KOA. Various animal
models have been utilized to gain insight into KOA onset and
progression, and to aid development and evaluation of advanced
diagnostic tools and treatments (Mccoy, 2015). For example, medial
meniscectomy in male Lewis rats stimulates the pathological changes
of KOA; this rat model was used to explore the effect of antiresorptive
and anabolic bone therapy on post-traumatic osteoarthritis (Bagi et al.,
2015). A canine spontaneousKOAmodelmay serve as an appropriate
animal model that closely mimics pathological changes in humans
(Pertovaara, 2012). Moreover, this model may be used in translational
pain research to test the safety and efficacy of novel analgesics. KOA
was simulated in a rabbit model by transecting the PCL, providing a
valuable marker of OA disease severity and progression (Gao et al.,
2013). However, differences in knee morphology, biomechanics, and
behavior in these animalmodels canmake it difficult to extrapolate the
findings to humans (Bailey et al., 2014). In this study, we selected
rhesus macaques, a nonhuman primate, as model animals because
morphologic progression of cartilage degeneration andKOAaremore
similar to humans than other animal models.

FIGURE 7 | Pathological morphology of articular cartilage 180 days after surgery. (A)Representative images showing H&E staining of the weight-bearing surface of
the medial femoral condyle and femoral posterior condylar cartilage from the Control, Hulth, and MHCD groups. (White arrow: tidemark, White arrowhead: subchondral
cyst, Black arrow: sclerosis, Black arrowhead: fibrocartilagemineralization, Blue arrow: degradation of cartilagematrix) (B)Histologic scores of the cartilage lesions in the
three groups. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as the mean ± SD.
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FIGURE 8 | Staining of glycosaminoglycans in articular cartilage 180 days after surgery. Representative images of (A) Safranin O and (B) toluidine blue staining.

FIGURE 9 | Concentrations of three representative proteins in the synovial fluid of rhesus macaques on Day 120. Concentrations of (A) IL-1β, (B) TGF-β1, and (C)
MMP-13 were measured by ELISA. IL-1β, interleukin-1β; TGF-β1, transforming growth factor-β1; MMP-13, matrix metalloproteinase-13. *p < 0.05, **p < 0.01, ***p <
0.001. Data are presented as the mean ± SD.
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Although the MHCDmethod increased operation time compared
with the Hulth method, it did not increase intraoperative blood loss.
The decrease in activity during the first 30 days after surgery in both
groups may be associated with postoperative pain. Interestingly, after
the plaster cast was removed onDay 14, activity increased significantly
in the Hulth group whereas activity in the MHCD group remained
low. Damage to the knee cartilage in the MHCD group may have
restricted early-stage motor activity. Although late stage (Day 180)
motor activity was significantly higher in the Hulth group than in the
MHCD group, activity in the Hulth and Control group was similar.
The difference between the Hulth andMHCD groups may have been
caused by the more significant damage to the articular cartilage in the
weight-bearing area of the knee joint in theMHCD group. This result
may provide indirect evidence for more rapid development of KOA
after the MHCD than the Hulth method.

X-rays and MRI scans are simple and useful methods of
preliminarily diagnosing KOA, with a moderate relationship
reported between OA imaging features and KOA symptoms (Wu
et al., 2012). Radiographic evaluation revealed pathology typical of OA
in both the Hulth and MHCD groups, accompanied by severe
cartilage degradation and bony changes. OA progression, however,
was faster in the MHCD group than in the Hulth group. Radiological
results showed that the MHCD method increased the severity of
articular cartilage injury, knee joint deformity, and subchondral bone
damage, suggesting that the combined method promotes pathological
damage to articular cartilage and accelerates OA progression. These
changes are similar to those observed for human OA and are
consistent with those in previous reports of surgically-induced OA
in nonhuman primates (Liu et al., 2018; Zhou et al., 2018).
Furthermore, arthroscopic examination and gross morphological
and cross-sectional analyses of articular surface wear suggested that
pathologic degradation of the cartilage corresponded with
radiographic results. Cartilage destruction in the MHCD group
was more severe than in the Control and Hulth groups, as
determined by the Mankin score. Joint destruction at Day 120 in
the MHCD group was similar to that on Day 180 in the Hulth group,
with imaging changes and morphological appearance in the MHCD
group being closer to the natural degeneration observed in
human KOA.

We also found that cartilage pathology was associated with
increased secretion of cytokines and MMPs. Previous studies
show that serum concentrations of IL-1β and TGF-β1 are higher
in OA patients than in control groups, and that these concentrations
are closely associated with pain (Hussein et al., 2008; Lee et al., 2011).
Inflammation is involved in the pathophysiological mechanism of
KOA, as evidenced by the presence of cytokines in both
osteoarthritic joints and synovial fluid (Rutgers et al., 2010; Yu
and Kim, 2013). These cytokines may be involved in the
pathophysiology of OA by regulating expression of MMPs, which
induce degradation of the extracellular matrix (Inoue et al., 2005;
Haseeb andHaqqi, 2013; Lim et al., 2014). Cytokines andMMPs are
involved in the development of cartilage damage (Bondeson et al.,
2006; Klatt et al., 2006; Pujol et al., 2008). The present study found
that the levels of IL-1β, TGF-β1, and MMP13 in synovial fluid were
significantly higher in the MHCD than in the Hulth and Control
groups, and were significantly higher in the Hulth than in the
Control group. OnDay 120, expression of cytokines andMMP-13 in

synovial fluid of rhesus macaques with MHCD-induced KOA was
similar to that in patients with spontaneous KOA. The inflammatory
and biomechanical changes in synovial fluid were less serious
animals subjected to the Hulth method.

This study had several limitations. First, due to the lack of
suitable experimental animals and funds, groups of animals with
spontaneous KOA and those subjected to sham operations were
not included. Second, the study included a small number of
animals, suggesting caution in interpreting the results. Additional
studies are required to compare MHCD-induced and
spontaneous models of KOA, as well as KOA in primates of
different genders and ages.

In conclusion, the present study describes the development of
a primate model of KOA using a modified Hulth method
combined with focal cartilage defects. This model is similar to
spontaneous models with respect to osteoarthritic and
histopathologic grading, as well as changes in expression of
inflammatory cytokines and MMPs. Furthermore, compared
with the Hulth method, the MHCD method resulted in more
rapid development of KOA, suggesting that the MHCD method
may be a suitable model for studying the pathogenesis and
treatment of OA.
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