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Mining Human Phenome to Investigate Modularity of Complex Disorders
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Abstract

A principal goal for biomedical research is to 
improve our understanding of factors that control 
clinical disease phenotypes.  Among genetically-
determined diseases, identical mutations may exhibit 
substantial phenotype variance by individual and 
background strain, suggesting both environmental 
and genetic mutant allele interactions.  Moreover, 
different diseases can share phenotypic features 
extensively.  To test the hypothesis that phenotypic 
similarities and differences among diseases and 
disease subvariants may represent differential 
activation of correlated feature “disease phenotype 
modules”, we systematically parsed Online 
Mendelian Inheritance in Man (OMIM) and 
Syndrome DB databases using the UMLS to 
construct a disease – clinical phenotypic feature 
matrix suitable for various clustering algorithms. 
Using Cardiovascular Syndromes as a model, our 
results demonstrate a critical role for representing 
both phenotypic generalization and specificity 
relationships for the ability to retrieve non-trivial 
associations among disease entities such as shared 
protein domains and pathway and ontology functions 
of associated causal genes.

Introduction

Analyzing the overlaps and interrelationships of 
clinical manifestations of a series of related diseases 
may provide a window into biological modules that 
lead to pathophysiological processes to produce 
disease phenotype. This particular aspect of 
phenotype grouping reflects modularity in human 
disease genetics[1]. However, few computational 
methods[2-5] have been investigated to systematically 
cluster diseases and gain insights into the molecular 
processes underlying them. This is partly due to 
intrinsic difficulties in accessing controlled clinical 
descriptions and its availability in structured form 
suitable for computational genome – wise analysis. 
Our hypothesis is that the modular nature of complex 
disorders can be attributed to their clinical feature 
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overlap associated with mutations in different genes 
that are part of same biological module. Genes that 
are part of a functional module are connected at 
various biological levels such as interacting partners, 
steps in a biochemical pathway, network of   
biological process or components of a multi protein 
complex[1-3, 5, 6]. Clustering diseases based on their 
shared clinical features provides an informational 
framework to analyze disease modularity and to 
explore underlying biological associations between 
various genotypic entities.  Indeed, this approach of 
logical grouping of genes by their associated 
phenotype clusters is referred as phenomics[5]. We 
used Online Mendelian Inheritance in Man 
(OMIM)[7] and Online Congenital Multiple 
Anomaly/Mental Retardation Syndromes
(SyndromeDB) (http://www.nlm.nih.gov/
archive//20061212/mesh/jablonski/syndrome_toc/
toc_c.html) as principal data sources for diseases and 
their corresponding clinical features. The phenotypic 
data presented in these data sources is not complete, 
unavailable in a well-ordered computable form and is 
not optimal to perform computations in forming 
accurate disease clusters. Therefore, this study only 
provides a proof of concept but certainly not a 
finished product. Our work has examined the 
possibility of using existing standard terminologies 
[8] and text mining tools[9, 10] to semantically 
normalize extracted clinical feature term variations 
and also dimensionality reduction methods to 
overcome the complexity in dealing with large 
number of clinical features.

Although there are limitations with this approach, our 
analysis revealed there is a detectable correlation 
between phenotype similarities to multiple levels of 
gene annotations. As, a pilot project we classified 
only Cardiovascular Syndromes (CVS) present in 
OMIM forming a cardio-phenome system.  We 
considered an OMIM disease as a CVS if it has at
least one cardiovascular symptom mentioned in the 
clinical synopsis (CS) section or occurrence of terms 
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such as “heart” or “cardiovascular” or “cardiac” in 
the free text section (TX) of OMIM. 

Methods

Data Sources

Our data include both phenomic sources for forming 
disease clusters and genomic sources to validate the 
clusters by investigating phenotype – genotype 
correlations.  

Genomic Data Sources

 Human Gene Ontology - gene (GOA) annotations
(ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) and
protein info (ftp.ncbi.nih.gov/reffseq/H_sapiens/
mRNA_Prot/human.protein.gpff.gz)was downloaded 
from the NCBI FTP site.  Protein domains at NCBI's 
Conserved Domain Database (CDD)[11] were not 
available for download and were parsed from the file 
‘human.protein.gpff.gz’ using the Biojava software 
package (http://biojava.org) . 

Phenomic Data Sources

A total of 977 records were downloaded in XML 
format from OMIM by searching for terms 
‘cardiovascular’ or “heart” or “cardiac” occurring in 
CS or TX sections. A Java XML parser (http://
xerces.apache.org/xerces-j/) was used to extract 
OMIM ID, disease name and the associated CS and 
TX sections from each OMIM record. OMIM ID and 
the corresponding gene associations were 
downloaded from NCBI Entrez Gene FTP site (ftp.
ncbi.nlm.nih.gov/gene/DATA/mim2gene).Syndrome 
DB is not available for download and a Java HTML 
parser (http: //htmlparser. sourceforge.net/) was used 
to extract the relevant data directly from their
website. Each Syndrome DB entry has a ‘major 
features (MF) section’ (e.g. mouth and oral structures, 
abdomen and skin) similar to the CS section of 
OMIM. A subset of 152 records having 
corresponding OMIM identifier and ‘cardiovascular 
system’ as one of the major features were extracted. 

Matrix construction 

The pheno-matrix is a binary matrix in which all the 
rows are OMIM CVS and columns are clinical 
features which comprise both clinical symptoms and 
affected anatomy. We assigned a value of ‘1’ for the 
presence of clinical feature associated with an OMIM 
CVS and ‘0’for absence of feature. From the total of 
977 OMIM records, we took a subset, of 455 (46%) 
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having atleast one causative gene and a clinical 
feature. These 455 CVS are associated with 585 
genes.

Refining Clinical Features

We performed a three step process to refine and 
reduce the clinical feature dimensional space. 

• Semantic Normalization
• Utilizing subsumption relations 
• Principal Components Analysis (PCA)

Semantic Normalization

The TX and CS sections of OMIM and MF section of 
Syndrome DB are presented as loosely defined free 
textual descriptions. There is inconsistency in the use 
of clinical feature terms both semantically (e.g. 
increased sweating and diaphoresis) and syntactically 
(e.g. neonatal hypotonia and hypotonia, neonatal). In 
order to accomplish semantic normalization, based on 
several earlier approaches [3, 12], we have chosen to 
directly map these terms to Unified Medical 
Language System (UMLS) [8] concepts (CUIs), using 
MetaMap[9]. It’s a NLP (Natural Language 
Processing) tool which takes free text from 
biomedical domain and maps noun phrases to a 
potential list of matching concepts from UMLS 
metathesaurus. We used an online version of 
MetaMap program, available as part of Semantic 
Knowledge Representation project (SKR)
(http://skr.nlm.nih.gov/), which aims to provide a 
framework for exploiting UMLS knowledge 
resources for NLP. The MetaMap output was first 
refined by restricting the mappings belonging only to 
UMLS Semantic Network semantic types under 
‘disorders’ and ‘anatomy’ semantic groups. These 
sets are further refined between scores ranging from 
570 to 1000 and after careful manual curation, 
incorrectly assigned concepts were eliminated. 

OMIM TX section contains large sections of free 
text as opposed to small phrases in CS. SKR-
MetaMap works well for short phrases but throws
exceptions while handling the TX section of OMIM. 
As an alternative, we used GATE (General 
Architecture for Text Engineering [10], a text mining 
toolbox, for clinical feature entity recognition in the 
TX section of OMIM. GATE uses gazetteers, a
component to hold a list of members of a particular 
category.  Here, the input to gazetteers is a list of 
clinical feature keywords supplied from UMLS 
concept names and synonyms belonging to 
‘disorders’ and ‘anatomy’ semantic groups. GATE 
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scans through each OMIM TX section and identifies 
the clinical features matching to the keywords present 
in its gazetteers, a post-processing step is performed 
to find the appropriate UMLS concepts for the 
extracted clinical features. Figure 1 illustrates the 
significant difference, a 50% reduction in total 
features by using UMLS concepts instead of raw 
clinical terms from unstructured text. 

Figure 1: Reduction in Clinical features after 
semantic normalization. Count above each bar 
indicates the total number of features

Utilizing subsumption relations 

UMLS  Metathesaurus is a comprehensive database 
having terms from more than 100  various source 
vocabularies, which are mostly biomedical 
terminologies having hierarchical relations 
(parent/child) providing surrogate subsumption 
relations (is a, subclass of). MRHIER table from 
UMLS provides the required hierarchical relations 
between UMLS concepts.  As all the clinical features
in our data set are mapped to corresponding UMLS 
concepts, we devised a method to further reduce 
clinical feature space utilizing the subsumption 
relations present in MRHIER table. The entire 
clinical feature CUIs were scanned to find the most 
root parent concept for every specific subset of 
clinical features. OMIM CVS associated with that
particular subset of clinical features (child CUIs) are
now linked to the parent CUI instead of to the child 
CUI. By using subsumption relations and also 
ignoring clinical features associated with only one
specific CVS, the final clinical feature set was further 
reduced to 1916 features. 

Principal Components Analysis

Since the number of diseases (455 CVS) is much 
smaller than the number of the features (1916 clinical 
features from earlier step) and the features are all 
binary, the data contains a great deal of redundancy. 
We selected Principal Components Analysis in order 
to detect meaningful underlying dimensions from our 
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high dimensional data set, as it efficiently reduces 
high dimensional data into low dimensional map. To 
select the minimum number of principal components 
required for our analysis, we gathered literature 
evidences of similar diseases associated with Marfan 
syndrome[13] and Coronary heart disease[14]. From
the normalized cumulative sum (Figure 2), we see 
that only 68% spectrum energy for the top 82
principal components are good enough to reproduce 
the classifications. Selecting the top 82 principal 
components (from earlier 1916 clinical features 
obtained by using subsumption relations) clearly 
explicates an effective dimensionality reduction.
Matlab 7.0 (http:// www.mathworks.com/), a popular 
Mathematical toolset was used to perform PCA and 
to generate the plot. 

Figure 2: Plot of normalized cumulative sum versus 
dimension

Similarity measure and Clustering

The similarity between two CVS is calculated by 
measuring the cosine of angle between the associated 
clinical features vectors obtained after PCA. 
Hierarchical Clustering was performed on the 
resulting 455 x 455 phenomap (distance matrix 
obtained after applying cosine distance on the 455 x 
82 pheno-matrix, where 82 are the top principal 
components). ‘R’ statistical software package 
(http://www.r-project.org/) was used for this analysis. 

Results 

The average of 10 randomized phenomaps was used 
as a control for background signal. Clinical feature 
vectors were randomly permutated using Fisher –
Yates shuffling[15] before applying PCA and we
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                                       (a)                       (b)
Figure 3: Phenotype similarity versus gene annotation similarities (a) proteins associated with similar phenotypes 
and sharing at least one CDD domain (b) genes associated with similar phenotypes and sharing three or more GOA 
at the sixth or more detailed level. The average signal of 10 randomized phenomaps is at the lowest level. Disallow 
same gene analysis skips the disease pairs having same implicated gene.
considered the top principal components associated 
with 68% of spectral energy as like original matrix. 
We used similar validation approaches as [5], to test 
the initial hypothesis that similarities at the 
phenotypic level correlate to similarities in 
gene/protein function. Though we performed a 
thorough analysis correlating phenotype overlap to 
multiple levels of gene annotations, due to space 
limitations, here we present the results only for co-
occurring domains and GO annotations.

Phenotype similarity – Domain co-occurrence 

Proteins share functional domains and a mutation 
occurring in a shared domain might disrupt a specific 
biological process or a pathway leading to similar 
phenotypes [5].  Figure 3a shows the percentage of 
protein pairs that share a CDD domain as a function 
of the phenotypic similarity scores. The percentage of 
shared domains increases with increasing phenotype 
similarity score from 0.3% to 15%. For instance, 
‘Cardiomyopathy, Dilated, 1E’ [OMIM: 601154] is 
caused by a mutation in SCN5A [NCBI GENE ID: 
6331] and shares phenotypic characteristics with 
‘Jervell And Lange-Nielsen Syndrome’ [OMIM:
220400] that is caused by a mutation in KCNQ1
[NCBI GENE ID: 3784]. These two proteins have a 
common ‘sodium ion transporter’ domain [CDD:
70001]. 

Phenotype similarity – Gene Ontology 
correlations 
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To explore possible functional relations between 
genes associated with overlapping CVS, we 
compared GOA. Similar to the earlier work[16] , we 
defined GO similarity by the sharing of atleast three 
GOA at the sixth or more detailed GO level.  From 
Figure 3b the percentage of CVS pairs that share 
three or more GOA increased (from 1.15% to 
33.33%) as a function of the phenotypic similarity. 
The signal we find is well above the average of 10 
randomized matrices (~2%) over all bins.

Discussion and Conclusion

Though our work is closely related to [3, 5], we did 
deviate in several ways by using Syndrome DB in 
addition to OMIM and further reducing clinical 
feature dimension space by utilizing subsumption 
relations from UMLS and also implementing PCA 
were novel. Our work primarily emphasizes novelty 
in using combination of different existing methods in 
a sequential manner. We were not able to compare 
our results with the earlier work (analyzed 1653 
OMIM phenotypes) as here we concentrated on 
subset of OMIM diseases (455 CVS).  This approach 
substantially differs by work of others, such as Goh et 
al [17], who used OMIM information directly to link 
genes with diseases. Our approach has the advantage 
of using the breadth of symptomatic evidence to 
establish possible associations between different 
diseases, there by not relying solely on our current 
limited knowledge of the genetic basis. At present, we 
investigated how semantically rich information of 
symptoms can be used to relate their causative 
diseases to underlying genetic components. In 
previous work [18], we have shown how Semantic 
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Web (SW) standards can be used to aggregate broad 
sets of data, and prioritizing them for relative 
contribution using a page-ranking approach. We are 
currently working towards in combining these 
phenome networks obtained from clustering to 
integrated genome networks using SW standards and  
applying centrality analysis based ranking algorithms 
to discover the associated biological modules for 
definitive overlapping phenotypes. As more evidence 
and interpretations get compiled, we anticipate broad 
semantic analysis becoming more robust and yielding 
more insights. We believe the use of diverse sets of 
evidence and hypotheses will greatly advance the set 
of testable models for overlapping diseases 
mechanism and have a direct impact in the 
development of both new and re-directed therapeutic 
applications. 
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