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Abstract: Leishmania parasites cause leishmaniasis, one of the most epidemiologically important
neglected tropical diseases. Leishmania exhibits a high ability of developing drug resistance, and drug
resistance is one of the main threats to public health, as it is associated with increased incidence,
mortality, and healthcare costs. The antimonial drug is the main historically implemented drug for
leishmaniasis. Nevertheless, even though antimony resistance has been widely documented, the
mechanisms involved are not completely understood. In this study, we aimed to identify potential
metabolite biomarkers of antimony resistance that could improve leishmaniasis treatment. Here,
using L. tropica promastigotes as the biological model, we showed that the level of response to
antimony can be potentially predicted using 1H-NMR-based metabolomic profiling. Antimony-
resistant parasites exhibited differences in metabolite composition at the intracellular and extracellular
levels, suggesting that a metabolic remodeling is required to combat the drug. Simple and time-
saving exometabolomic analysis can be efficiently used for the differentiation of sensitive and
resistant parasites. Our findings suggest that changes in metabolite composition are associated
with an optimized response to the osmotic/oxidative stress and a rearrangement of carbon-energy
metabolism. The activation of energy metabolism can be linked to the high energy requirement during
the antioxidant stress response. We also found that metabolites such as proline and lactate change
linearly with the level of resistance to antimony, showing a close relationship with the parasite’s
efficiency of drug resistance. A list of potential metabolite biomarkers is described and discussed.

Keywords: leishmaniasis; metabolome; proton nuclear magnetic resonance spectroscopy (1H-NMR);
antimony; biomarkers of resistance level; oxidative stress balance; energy metabolism

1. Introduction

Leishmaniasis is a group of vector-borne tropical diseases considered to be one of the
most epidemiologically important as it affects approximately 2 million people per year [1,2].
Leishmaniasis is caused by Leishmania parasites, a genus of kinetoplastids that exhibit two
different stages during their life cycle: the promastigote stage adapted to survive in the
gut of phlebotomine sandfly vectors, and the amastigote stage, evolutionarily adapted to
survive inside the vertebrate host’s macrophages [3].

Once Leishmania is established in the vertebrate host, the clinical outcome is the result
of the integration of multiple factors including the Leishmania species and/or strain, the
host’s immune response, and the presence of coinfections. Consequently, the disease can
be present as a wide spectrum of clinical outcomes grouped in four clinical forms: simple
or diffuse cutaneous leishmaniasis (CL) characterized by local or diffuse skin ulcers; muco-
cutaneous leishmaniasis (ML) affecting mainly nasal mucosa; visceral leishmaniasis (VL), a
systemic infection affecting organs containing macrophages such as the bone marrow, liver,
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spleen, and lymph nodes; and Post-kala-azar dermal leishmaniasis (PKDL) considered a
dermal sequela of VL. Notably, the VL can be lethal in the absence of treatment [4].

For the last seven decades, pentavalent antimonial (SbV) has been used as the primary
leishmaniasis therapy. It is commonly accepted that SbV acts as a prodrug, requiring reduc-
tion to the active trivalent antimony (SbIII). Evidence shows that SbIII induces oxidative
and osmotic stress [5,6], inhibits the glycolytic pathway and fatty acid β-oxidation [7],
interferes with the purine salvage pathway [8], inhibits DNA topoisomerase I [9], and
competes with zinc (ZnII) for its binding to the CCHC and CCCH zinc finger domains [10].

Unfortunately, Leishmania has developed resistance to antimonials, leading to over
sixty percent inefficacy in Bihar, India [11], a phenomenon that has also been seen in North
Africa and Latin America [12–17]. Treatment failures due to drug resistant organisms are
very common for L. donovani, L. braziliensis/L. guyanensis, L. tropica, and L. major, species
responsible for visceral and cutaneous leishmaniasis. Hence, it is important for the clini-
cian to know the isolate’s drug resistance status in order to make the correct therapeutic
choice. Other drugs such as paromomycin, amphotericin b, and miltefosine, have been
employed, but Leishmania has also shown clinical resistance against all of them [18–20].
Furthermore, there is an evidence of cross-resistance between antimonial and other drugs
such as amphotericin b and paromomycin [19,21]. As a result, antimonials are still the
main therapeutic option in several endemic countries including Colombia, Venezuela,
and Brazil [22]. Together, these facts suggest that drug resistance can be considered one
of the main challenges to efficiently combat leishmaniasis, and antimony resistance is a
phenomenon with high clinical impact that needs to be further studied. However, no
molecular methods are currently validated to track drug-resistant isolates in clinical setting.
Therefore, there is an urgent need to identify biomarkers suitable to use in clinical set-
tings and develop standardized molecular methods to measure drug resistance in clinical
isolates [23].

“Omics” technologies constitute a powerful approach to analyze the molecular re-
modeling involved in different biological processes including drug resistance by offering
the opportunity to study massively, qualitatively, and quantitatively different types of
biomolecules such as genes, transcripts, proteins, lipids, or metabolites at a global cell
level [24].

Studies of resistance to antimony using omics technologies have mostly focused on the
genomic, transcriptomic, and proteomic levels [25,26]. Thus far, the evidence suggests that
SbIII-resistant parasites combat antimony in several main ways: (1) decreasing drug uptake
by downregulation of the aquaglyceroporin (AQP1) transporter [27]; (2) inhibiting drug by
formation of inactive thiol–SbIII complex and activating the thiol metabolism leading to the
production of trypanothione, an important molecule involved in antioxidant response [28];
(3) increasing drug efflux by overexpression of ABC transporters that transport the thiol–
metal complex toward vesicles that are secreted via exocytosis [29–31]; and finally (4)
remodeling of carbon and lipid metabolism, which has been consistently documented
in SbIII-resistant parasites, probably to optimize energy metabolism and modify the cell
membrane composition [26,32–34].

However, few studies address the metabolome of Leishmania’s resistant phenotypes.
Metabolomics is one of the latest omics technologies that has been applied successfully
in many areas of life sciences, being particularly useful for phenotypic analysis since
metabolites are the endpoints of the active pathways and therefore they are optimal
indicators of the cell’s physiology [35]. Because of this, metabolites could potentially be
used as biomarkers to differentiate antimony-resistant parasites.

Furthermore, studies have mainly focused on intracellular metabolism rather than
changes at the extracellular level [36–38]. Interestingly, the exometabolome or metabolic
footprinting is not only informative of the metabolic changes in response to different envi-
ronmental conditions but also it requires an easier sample preparation than intracellular
metabolomic analysis, offering the opportunity to simplify the phenotypic characteriza-
tion [39].
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Mass spectrometry analysis (MS) has shown that antimony-sensitive and -resistant
clinical isolates exhibit dramatic differences in metabolomic profiles, particularly in lipid
metabolism [40], sulfur-containing amino acids, and polyamine biosynthetic pathways [36].
13C-isotope-labeling and MS confirmed that the amino acid metabolism is remodeled by
involving activation of the redox system in antimony-resistant parasites [37].

However, due to Leishmania’s complexity, more studies are required to identify robust
and reliable biomarkers of SbIII resistance. For instance, it remains unexplored as to whether
the abundance of differentially expressed metabolites change proportionally to the level
of SbIII resistance. Indeed, these types of compounds could be more closely related with
the response required to combat the drug and more informative in predicting the level of
resistance to SbIII.

Additionally, metabolomics is based on two analytical methods, MS and nuclear
magnetic resonance (NMR), which are considered complementary techniques with different
advantages and disadvantages; yet, in the Leishmania antimony resistance field, most of
the studies have used MS. Although 1H-NMR is less sensitive, it is more robust and
reproducible, the sample preparation can be easier, and the sample is not lost during the
spectra acquisition, making this a valuable technique for the search of biomarkers [41,42].

This study aimed to identify the metabolites that can be potentially used as biomarkers
of the SbIII resistance level across 1H-NMR analyses from both intracellular and extracellu-
lar extracts of Leishmania promastigotes.

2. Materials and Methods
2.1. Reagents

Phosphate buffered saline (Santa Cruz Biotechnology, Dallas, TX, USA, product:
362182), Schneider insect medium (Sigma Aldrich, St. Louis, MI, USA, product: S0146),
potassium antimony (III) tartrate trihydrate (Sigma Aldrich, St. Louis, MI, USA, product:
28300-74-5), fetal bovine serum (Eurobio Scientific, Paris, France, product: CVFSVF0001),
penicillin and streptomycin (Thermo Fischer Scientific, Waltham, MA, USA, product:
15140122), deuterium oxide (Merck, Darmstadt, Hesse, Germany, product: 7789-20-0),
sodium azide (NaN3) (Merck, Darmstadt, Hesse, Germany, product: 26628-22-8), 3-
(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt or TSP (Sigma Aldrich, St. Louis, MI,
USA, product: 24493-21-8), and 2′,7′-dichlorodihydrofluorescein diacetate or H2DCFDA
(Thermo Fischer Scientific, Waltham, MA, USA, product: D399).

2.2. Parasites, Culture, and Drug Treatment

Three levels of SbIII-resistance were considered for the metabolomic analysis by 1H-
NMR. The Leishmania tropica wild type or antimony sensitive strain (WT), moderately
resistant (MR) isogenic derivative of WT, and highly resistant isogenic derivative (HR)
were used in this study. The WT, MR, and HR strains have a growing half-maximal
effective concentration (EC50) to SbIII of 10.4 ± 0.6, 377 ± 34.93, and 631.7 ± 73.7 µg/mL,
respectively, and thus they were chosen to represent a low, moderate, and high level of
SbIII resistance, respectively.

Both sensitive and resistant strains were independently grown in culture medium. In
each case, the promastigotes were seeded at 1 × 106 promastigotes/mL in a final volume
of 10 mL of Schneider insect medium supplemented with 10% of fetal bovine serum (FBS),
10 units/mL penicillin, and 0.1 mg/mL of streptomycin. The MR and HR strains were
treated with the drug at 5 and 10 times the estimated EC50 value for WT strain (EC50 for
WT strain = 10 µg/mL SbIII), respectively. These drug concentrations were used since they
correspond to the drug concentration used to select each strain during the drug resistance
stepwise selection. The WT strain was grown in drug-free medium.

Growth was monitored by evaluating cell count using a Neubauer chamber to com-
pare the growth phases per strain in order to synchronize the cell cultures and to avoid
technical variability.
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2.3. Extraction of Intracellular Metabolites

During the stationary phase, the promastigotes were diluted at 15–20 × 106 parasites/mL
using Schneider insect medium without fetal bovine serum. To isolate truly resistant
parasite population and avoid leakage of metabolites, we enriched the population of live
parasites or parasites without membrane damage by centrifugation of 3 mL of Ficoll-
Histopaque®-1077 and 6 mL of diluted parasite’s solution in 15 mL conical tubes at 1800× g
at room temperature for 10 min. After Ficoll gradient centrifugation, the parasite population
without membrane damage was enriched between middle and upper phase of Ficoll
gradient, and 2 mL of these phases were carefully recovered in a 15 mL conical tube
(Figure S1).

The parasite’s metabolism was quenched by incubating the tube containing the re-
covered parasites in −80 ◦C ethanol until they reached 4 ◦C (≈10 s). After that, any
manipulation was performed at 4 ◦C to avoid sample degradation [43].

The quenched parasites were harvested and washed twice in 1 mL of cooled PBS-1X at
1800× g, 4 ◦C for 5 min. The number of parasites between different samples was adjusted
to a total of 1 × 107 promastigotes, and the final pellet was obtained by centrifugation at
1800× g, 4 ◦C for 5 min, and immediately resuspended in 200 µL of methanol (−20 ◦C) for
metabolite extraction. To homogeneously release the intracellular metabolites, we treated
the parasites with 5 cycles of 1 min freezing in liquid nitrogen and thawed them at room
temperature with 20 s of 3400 rpm vortex (Labnet vortex mixer 120 V).

The tubes containing the lysate were shaken overnight at 250 rpm and 4 ◦C. Then,
the samples were incubated at −80 ◦C for 20 min and centrifuged at 20,000× g, 4 ◦C,
for 30 min to precipitate proteins. Finally, the samples were dried using a SpeedVac
concentrator (Thermo Fisher Scientific, Waltham, MA, USA, SPD111V P1) and used for
1H-NMR analysis [44].

2.4. Extraction of Extracellular Metabolites

During the stationary phase, 5 mL of medium was collected and filtered using a
0.22 µm acrodisc syringe filter, previously washed with PBS (10 times) to remove membrane
additives. The collected medium was mixed with 2 parts of methanol and incubated
overnight at −80 ◦C for protein precipitation. Then, the samples were centrifuged at
1600× g for 30 min, and each supernatant was recovered for lyophilization using a VirTis
Bench Top 4K SP scientific followed by 1H-NMR analysis [44].

2.5. Proton Nuclear Magnetic Resonance Spectroscopy 1H-NMR Analysis

The dried samples were reconstituted in 550 µL of deuterated phosphate buffer
(50 mM NaH2PO4, 0.02% NaN3, and 0.04 mM or 1.5 mM TSP for intracellular or extracel-
lular extracts, respectively, pH = 7.0 ± 0.04, and D2O).

After this the samples were vortexed for 30 s and centrifuged at ≈16,000× g at 4 ◦C
for 15 min to remove any insoluble material. Supernatants were then transferred to NMR
tubes with 5 mm of diameter and 7 inches of length (14219-032, VWR).

High resolution one-dimensional 1H-NMR spectra were obtained on a 600 MHz Bruker
Avance III spectrometer (Bruker BioSpin Ltd., Billerica, MA, USA), coupled to a 5 mm
Prodigy® TCI cryoprobe. Applying a standard Bruker 1D spectroscopy pre-saturation
pulse sequence (noesypr1d) with optimal water suppression and 256 and 128 scans for
intracellular and extracellular metabolome analysis, respectively [45]. D2O was used for
the internal lock signal and TSP-d4 as the internal standard with a chemical shift of δ 0.0 at
300 K. All raw 1H-NMR spectra are available under request. The samples were randomized
before analysis to avoid progressive bias.

2.6. Data Processing

The 1H-NMR data processing was adapted from Mickiewicz et al. (2019) [46]. The
spectra were processed in 2 different ways. First, the spectra were annotated to reveal
the type of metabolites that can be identified at the intracellular and extracellular level in
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L. tropica’s methanolic extracts using Chenomx software 8.5 (www.chenomx.com, accessed
on 23 April 2021, Edmonton, AB, Canada) in combination with the public database, human
metabolite database (HMDB, www.hmdb.ca; accessed on 13 March 2021).

Then, the spectra were processed in parallel using the software MestReNova 14.2.
This included the referencing to the TSP peak at 0.0 ppm, apodization along t1 with
an exponential of 0.5 Hz, phasing by Metabonomics algorithm, and baseline correction
applying the Whittaker Smoother algorithm. The phasing and baseline quality were
verified manually. Finally, the spectra were binned using the method average sum with
a width of each integral region of 0.04 ppm, from 0 to 10 ppm. Bins covering signals that
are not of interest, such as water and residual methanol signals, were manually removed
before statistical analysis.

2.7. Statistical Analysis

The datasets generated after spectra binning were normalized by probabilistic quotient
normalization (PQN) [47] and imported to SIMCA Umetrics V14.1 software (Umetrics,
Umeå, Sweden) for multivariate statistical analysis, adapting the strategy used by Mick-
iewicz et al. (2018) [48]. First, the datasets were scaled by the Pareto method [49]. Then,
principal component analysis (PCA) and orthogonal partial least squares discriminant
analysis (OPLS-DA) were completed as unsupervised and supervised multivariate meth-
ods, respectively.

The PCA was carried out to summarize the source of variation in each dataset and
explore the sample grouping and the presence of outliers. The OPLS-DA method was used
to extract maximum information on discriminant signals (compounds) from the spectra.

The OPLS-DA models were validated by sevenfold cross-validation (CV), calculating
the R2Y (the percentage of variation explained by the model), Q2 (the predictive ability of
the model), and CV-ANOVA (cross-validated analysis of variance) p-value with a cutoff
of 0.05 [50,51]. The significant metabolites were selected from the OPLS-DA regression
coefficients and variable influence on projection (VIP) scores higher than 1 using the
Jackknife technique as bias estimator (p-value ≤ 0.05).

S-line diagrams were performed to summarize the contribution of each VIP to the
OPLS-DA models. S-line plot visualizes the signals (chemical shift) distributed by p(ctr) [1]
loading and colored according to the absolute value of the correlation loading, p(corr) [1],
or modeled correlation. The top end of the color scale visualizes the NMR shifts that
influence the separation of the groups [52].

To identify metabolites linearly affected by the antimony resistance level, which can be
more precise and reliable for the prediction of resistant phenotypes, we calculated Pearson
correlation scores and filtered them by false discovered rate (FDR ≤ 0.05). The metabolites
with a higher absolute Pearson coefficient were prioritized and analyzed using an open
source receiver operating curve characteristics (ROC) analysis tool in MetaboAnalyst
5.0 [53].

2.8. Measurement of Reactive Oxygen Species (ROS) Levels

To measure the ROS production in antimony-sensitive and -resistant parasites, we used
hydrogen peroxide (H2O2) as an oxidative stress inducer, adapting the methodology used
by Karampetsou et al. (2019) [54]. Parasites were harvested by centrifugation at 1800× g
for 5 min and washed twice in 1 mL of PBS 1X. Then, the cell density was normalized at
1 × 106 parasites/mL. In each case, a group of parasites was incubated in PBS without any
additional treatment (control group). On the other hand, an additional group was treated
with 0.5 mM hydrogen peroxide (H2O2) for 4 h in a final volume of 1 mL. Once the period of
exposure was completed, the pelleted parasites were resuspended in 100 µL of H2DCFDA
at 0.4 µg/mL. H2DCFDA is an indicator for reactive oxygen species (ROS) production in
live cells. The samples were incubated for 1 h at room temperature in darkness. Then, the
parasites were washed in 1 mL of PBS and resuspended in 300 µL of fresh PBS. Staining
with propidium iodide (0.125 µg/mL) was used as a cell viability control. Finally, the

www.chenomx.com
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fluorescence of PI and H2DCFDA were acquired using 610/20 and 530/30 as detection
filters, respectively, in a LSRFortessa™ Becton Dickinson cell flow cytometer.

3. Results
3.1. Experimental Design

Several reports demonstrated that the most significant changes in the metabolite’s
composition occur during stationary phase [40,55]. Therefore, we collected samples from
this stage of parasite growth. To detect metabolomic changes in SbIII-resistant parasites,
we analyzed both intracellular and extracellular extracts of Leishmania’s promastigote in
at least three independent biological replicates. The intracellular metabolome reflects the
cell physiology, while the extracellular metabolome represents the metabolites uptake and
excretion in a particular condition.

In this study, we analyzed three strains (WT, MR, and HR) representing increas-
ing SbIII resistance levels because of a progressive stepwise resistance selection in vitro.
Since the strains show different phenotypes (SbIII resistance levels), they were considered
independent for statistical purposes.

The two resistant strains (MR and HR) were treated with SbIII to stimulate their
acquired mechanism of resistance, while the WT was grown without drug treatment and
used as a control since the sensitive parasite cannot grow until stationary phase in the
presence of the drug. Under the described experimental conditions, all strains showed a
similar growth curve, eliminating growth stage bias and allowing for the comparison of
1H-NMR profiling between groups (Figure S2).

Typically, a 1H-NMR spectrum shows the proton signals distribution based on their
chemical shift (a proton with a particular chemical environment) and their intensity (abun-
dance), offering the opportunity to characterize the type of compound (fingerprint or
signals pattern) and estimate its concentration (signal intensity). On this basis, the work-
flow represented in Figure 1 included sample preparation followed by 1H-HMR analysis.
Spectra annotation was performed assigning the corresponding compound to each detected
signal in order to define the Leishmania’s metabolome coverage detected by 1H-NMR. After
spectra binning, the multivariable analysis was used to identify the group of signals (bins)
significantly differentiating SbIII-resistant phenotypes or VIPs. The signals detected as
VIPs were matched with the previously annotated spectra, and the respective compounds
were suggested as potential biomarkers of SbIII resistance phenotypes, prioritizing those
that exhibited a significant linear correlation between metabolite concentration (signal
intensity) and SbIII resistance level. Finally, we interactively analyzed the intracellular and
extracellular metabolome to discuss the metabolic pathways potentially affected (Figure 1).



Cells 2021, 10, 1063 7 of 19

Cells 2021, 10, x FOR PEER REVIEW 6 of 20 
 

 

Then, the parasites were washed in 1 mL of PBS and resuspended in 300 µL of fresh PBS. 
Staining with propidium iodide (0.125 µg/mL) was used as a cell viability control. Finally, 
the fluorescence of PI and H2DCFDA were acquired using 610/20 and 530/30 as detection 
filters, respectively, in a LSRFortessa™ Becton Dickinson cell flow cytometer. 

3. Results 
3.1. Experimental Design 

Several reports demonstrated that the most significant changes in the metabolite’s 
composition occur during stationary phase [40,55]. Therefore, we collected samples from 
this stage of parasite growth. To detect metabolomic changes in SbIII-resistant parasites, 
we analyzed both intracellular and extracellular extracts of Leishmania’s promastigote in 
at least three independent biological replicates. The intracellular metabolome reflects the 
cell physiology, while the extracellular metabolome represents the metabolites uptake and 
excretion in a particular condition. 

In this study, we analyzed three strains (WT, MR, and HR) representing increasing 
SbIII resistance levels because of a progressive stepwise resistance selection in vitro. Since 
the strains show different phenotypes (SbIII resistance levels), they were considered inde-
pendent for statistical purposes. 

The two resistant strains (MR and HR) were treated with SbIII to stimulate their ac-
quired mechanism of resistance, while the WT was grown without drug treatment and 
used as a control since the sensitive parasite cannot grow until stationary phase in the 
presence of the drug. Under the described experimental conditions, all strains showed a 
similar growth curve, eliminating growth stage bias and allowing for the comparison of 
1H-NMR profiling between groups (Figure S2). 

Typically, a 1H-NMR spectrum shows the proton signals distribution based on their 
chemical shift (a proton with a particular chemical environment) and their intensity 
(abundance), offering the opportunity to characterize the type of compound (fingerprint 
or signals pattern) and estimate its concentration (signal intensity). On this basis, the 
workflow represented in Figure 1 included sample preparation followed by 1H-HMR 
analysis. Spectra annotation was performed assigning the corresponding compound to 
each detected signal in order to define the Leishmania’s metabolome coverage detected by 
1H-NMR. After spectra binning, the multivariable analysis was used to identify the group 
of signals (bins) significantly differentiating SbIII-resistant phenotypes or VIPs. The signals 
detected as VIPs were matched with the previously annotated spectra, and the respective 
compounds were suggested as potential biomarkers of SbIII resistance phenotypes, prior-
itizing those that exhibited a significant linear correlation between metabolite concentra-
tion (signal intensity) and SbIII resistance level. Finally, we interactively analyzed the in-
tracellular and extracellular metabolome to discuss the metabolic pathways potentially 
affected (Figure 1). 

 
Figure 1. Experimental design to differentiate the metabolomic profiles in antimony-resistant and -sensitive L. tropica
parasites. The workflow for intracellular and extracellular analysis is shown in parallel. (1) After parasite growth, the
cell pellet and supernatant were collected and used for intracellular and extracellular analysis, respectively. (2) The
methanol extracts were analyzed by 1H-HMR using a Noesygppr1d pulse. (3) Spectra processing included the annotation,
apodization, alignment, phasing, baseline correction, bucketing, data normalization, and data scaling, integrating the
following software: Chenomx v8.5, MestReNova v14.2, and SIMCA Umetrics v14.1. (4) Unsupervised multivariate analysis
by PCA for preliminary grouping visualization and outlier detection based on the Hotelling t-squared statistic with 95%
confidence limit. (5) Supervised multivariate analysis by OPLS-DA for the identification of statistically significant “variable
importance in projection” (VIP) or potential biomarker, filtering by the Jackknife method to correct estimation bias. (6)
Finally, the VIPs were analyzed to discuss the possible biological meaning.

3.2. Metabolomic Coverage in Intracellular and Extracellular Methanolic Extracts Using 1H-NMR

After 1H-NMR analysis, both intracellular and extracellular spectra were manually
annotated to define the metabolome coverage. Usually, the metabolome coverage is limited
by several factors including the metabolite concentration and the solvent. In our study
here, we employed a methanol solvent for extraction since it is recognized as having a
better metabolite coverage [56].

Excluding the reference compound and the solvent’s signals, we annotated 26 and 29
metabolites in the spectra from intracellular and extracellular extracts, respectively. The
same compounds were detected in both SbIII-sensitive and -resistant parasites (Figures 2 and 3,
Tables S1 and S2).

Considering that some metabolites are commonly detected at the intracellular and
extracellular level, a total of 40 different compounds were detected by 1H-NMR, 15 of
which were commonly detected in both intracellular and extracellular extracts. A total of
11 and 14 compounds were exclusively identified at the intracellular or extracellular levels,
respectively (Table S3).

The type of metabolites detected were mainly distributed in three metabolite classes:
amino acids (total matching compounds: 18), tricarboxylic acids (total matching com-
pounds: 3), and purines (total matching compounds: 2) (Table S4). Additionally, these
compounds were enriched significantly in six pathways of the KEGG database, including
aminoacyl-tRNA biosynthesis (total hits: 16); valine, leucine, and isoleucine biosynthe-
sis (total hits: 4); arginine biosynthesis (total hits: 4); alanine, aspartate, and glutamate
metabolism (total hits: 5); glyoxylate and dicarboxylate metabolism (total hits: 5); pan-
tothenate and CoA biosynthesis (total hits: 2); nicotinate; and nicotinamide metabolism
(total hits: 3) (Table S5).
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shift at δ 0.0. Only one spectrum is represented for simplification. The spectrum corresponds to the HR strain. 

Figure 2. 1H-NMR spectra of L. tropica intracellular extracts. (A) Full 1H-NMR spectrum from δ 0.0 to δ 9.3. (B) Enlarged
spectrum from δ 0.0 to δ 2.3. (C) Enlarged spectrum from δ 2.3 to δ 4.5. (D) Enlarged spectrum from δ 5.0 to δ 7.2. (E) Enlarged
spectrum from δ 7.1 to δ 9.3. Peaks of 26 compounds: 1, valine; 2, isoleucine; 3, propylene glycol; 4, 3-hydroxyisovalerate;
5, lactate; 6, alanine; 7, arginine; 8, acetate; 9, proline; 10, methionine; 11, succinate; 12, β-alanine; 13, malate; 14, lysine;
15, glycine; 16, glycerophosphocholine; 17, betaine; 18, IMP; 19, fumarate; 20, ∂-methylhistidine; 21, desaminotyrosine; 22,
xanthine; 23, hypoxanthine; 24, Formate; 25, AMP; 26, NAD. TSP-d4 as an internal standard with chemical shift at δ 0.0.
Only one spectrum is represented for simplification. The spectrum corresponds to the HR strain.
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Figure 3. 1H-NMR spectra of L. tropica extracellular extract. (A) Full 1H-NMR spectrum from δ 0.0 to δ 9.5 (TSP-d4 as an
internal standard with chemical shift at δ 0.0). (B) Enlarged spectrum from δ 0.0 to δ 3.1. (C) Enlarged spectrum from
δ 3.1 to δ 6.3. (D) Enlarged spectrum from δ 6.3 to δ 9.5. Peaks of 29 compounds: 1, leucine; 2, isoleucine; 2, valine; 4,
lactate; 5, threonine; 6, alanine; 7, lysine; 8, proline; 9, glutamine; 10, succinate, 11, ß-alanine; 12, malate; 13, aspartate; 14,
arginine; 15, glycine; 16, L-serine; 17, myoinositol; 18, trehalose; 19, uracil; 20, fumarate; 21, N-acetyl tyrosine; 22, tyrosine;
23, phenylalanine; 24, tryptophan, 25, methylhistidine; 26, hypoxanthine; 27, formate; 28, imidazole, 29, nicotinate. Only
one spectrum is represented for simplification. The spectrum corresponds to the HR strain.



Cells 2021, 10, 1063 9 of 19

3.3. 1H-NMR Spectra Efficiently Differentiated the Antimony-Resistant Phenotypes Both at the
Intracellular and Extracellular Levels

The PCA models were based on two principal components that in total summarized
74.2% and 43.2% of the variance in the dataset for intracellular and extracellular analysis,
respectively (Figures 4A and 5A). PCA score plots showed that resistant strains were
clustered away from the sensitive strain, suggesting that the metabolomic profiles were
different in both intracellular and extracellular extracts. Additionally, no outliers were
detected since all samples were distributed within the ellipse, representing Hotelling’s
T-squared 95% confidence interval (Figures 4A and 5A).
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Figure 4. Multivariate analysis showing significant differences between the metabolomic profiles
of sensitive and resistant Leishmania parasites at the intracellular level by 1H-NMR. (A) Score plot
of PCA. (B) OPLS-DA score plot comparing antimony-resistant vs. antimony-sensitive parasites.
(C) S-line plot highlighting the metabolites with major contributions to group separation. Each
individual dot in panel (A) or (B) represents an observation or sample. Some dots can be overlapped.
Blue dots: WT strain; green dots: MR strain; red dots: HR strain. The dotted ellipse of score plots
describe the 95% confidence interval of the Hotelling’s T-squared distribution. The color bar in the
S-line plot corresponds to the absolute value of the correlation loading in the discrimination model. A
total of 9 observations are shown distributed in 3 independent biological replicates per experimental
condition (WT, MR, and HR).
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shown in an S-line plot. A total of seven and five metabolites at the intracellular and ex-
tracellular levels, respectively, were selected as potential biomarkers of antimony re-
sistance. At the intracellular level, SbIII-resistant parasites showed an upregulation of ala-
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Figure 5. Multivariate analysis showing significant differences in metabolomic profiles of sensitive
and resistant Leishmania parasites at the extracellular level by 1H-NMR. (A) Score plot of PCA.
(B) OPLS-DA score plot comparing antimony-resistant vs. antimony-sensitive parasites. (C) S-line
plot highlighting the metabolites with major contributions to group separation. Each individual dot
in panel (A) or (B) represents an observation or sample. Some dots can be overlapped. Blue dots:
WT strain; green dots: MR strain; red dots: HR strain. The dotted ellipse of score plots describe the
95% confidence interval of the Hotelling’s T-squared distribution. The color bar in the S-line plot
corresponds to the absolute value of the correlation loading in the discrimination model. A total of
20 observations or independent biological replicates are shown, 8 of them correspond to WT, 6 to
MR, and 6 to HR group.

The OPLS-DA analysis was carried out to reveal metabolic differences between SbIII-
sensitive and SbIII-resistant parasites. Models were obtained using one predictive and
one orthogonal component. The OPLS-DA score scatter plots showed a clear separation
between SbIII-resistant (MR and HR strain) and SbIII-sensitive phenotypes (WT) at both
the intracellular and extracellular levels (Figures 4B and 5B). Furthermore, the models
were correctly validated, obtaining good correlation (R2Y) and predictive (Q2) scores and
significant CV-ANOVA p-values (R2Y > 0.6, Q2 > 0.6, R2Y 6= Q2 < 0.3, p-value < 0.05) (Table S6).

Major contributing metabolites for group separation were identified after the valida-
tion of the estimators (coefficient value and VIP score) using the Jackknife method as shown
in an S-line plot. A total of seven and five metabolites at the intracellular and extracellular
levels, respectively, were selected as potential biomarkers of antimony resistance. At the
intracellular level, SbIII-resistant parasites showed an upregulation of alanine, proline,
arginine, and lysine, and a downregulation of sn-glycero-3-phosphocholine, betaine, and
acetate (Figure 4C). Additionally, at the extracellular level, SbIII-resistant parasites showed
lower levels of proline, valine, lactate, and threonine (Figure 5C). Some of the signals with
high correlation values (color bars) are not shown because they were not significant by the
Jackknife method or because the associated metabolites could not be identified by signal
overlapping (Figures 4C and 5C). The VIP score and the coefficient size are summarized in
the Figure S3.
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3.4. Proline and Lactate Changed Linearly with the Antimony Resistance Level

Once the potentially important metabolites differentiating SbIII-sensitive and SbIII-
resistant parasites were identified from the OPLS-DA models, we then explored whether the
expression of those metabolites exhibited a significant linear correlation between the SbIII

resistance level and the metabolite abundance. Interestingly, proline metabolite abundance
showed a positive correlation with the SbIII resistance level in intracellular extracts, while
both proline and lactate metabolite abundance showed a negative correlation with SbIII

resistance level in extracellular extracts (Figures 6 and 7).
To evaluate the importance of discriminating metabolites, we applied the receiver

operating characteristic (ROC) curve analysis to the metabolites with a higher correlation
value as a binary classifier (sensitive vs. resistant strains). ROC analyses showed optimal
sensitivity and specificity scores with areas under the curve (AUCs) of 1 for all evaluated
metabolites in a univariate approach (Figures 6 and 7). However, these AUC scores should
be carefully interpreted since here we analyzed only one Leishmania species using an in vitro
approach, and consequently the metabolites were described as potential biomarkers.

Even though glycerol-phosphocholine and betaine did not show a significant Pear-
son correlation, they still showed a high capability to differentiate SbIII-sensitive and
SbIII-resistant parasites on the basis of the AUC score, and thus they were also included
(Figure 6).
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Figure 6. Proline, glycerol-phosphocholine, and betaine as potential biomarkers of antimony resistance at the intracellular
level. (A) Bar plot of metabolite concentration as the raw intensity values. (B) Box plot of metabolite concentration as
the normalized intensity values and showing the Pearson correlation scores. (C) Univariate ROC analysis comparing
SbIII-resistant (MR and HR) vs. -sensitive strains (WT). Coefficient of determination by Pearson correlation (R2). False
discovery rate of the p-values obtained for the R2 score (FDR). Significant high correlations (FDR ≤ 0.05) are highlighted
with a yellow star. Sensitivity or true positive rate (TPR). Specificity or false positive rate (FPR). Area under the curve for
univariate ROC analysis (AUC).
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Figure 7. Lactate, proline, and threonine as potential biomarkers of antimony resistance at the extracellular level. (A) Bar
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4. Discussion

Antimony resistance remains an important determinant in leishmaniasis treatment,
and biomarkers of resistant phenotypes can help to select an optimal medication. Here,
we applied metabolomics to L. tropica strains with different resistance levels to SbIII as
biological model. Clinical isolates of L. tropica are known to exhibit progressive reduction
of antimony susceptibility, demanding strategies to identify and prevent the dissemination
of drug-resistant strains [17]. Through the multivariate statistical analysis, we were able
to identify 10 different metabolites (proline, alanine, arginine, lysine, betaine, glycerol-
phosphocholine, lactate, acetate, threonine, and valine) differentiating the metabolic profiles
of SbIII-resistant and -sensitive parasites at the intracellular and/or extracellular levels
(Figures 4C and 5C).

Proline was the only significant metabolite differentiating antimony-sensitive and
-resistant parasites in both intracellular and extracellular extracts. Specifically, a decreased
proline abundance at the extracellular level and an increased proline abundance at the
intracellular level were representative features of the SbIII-resistant phenotypes. A similar
observation was reported also for another Leishmania species: L. infantum promastigotes
selected for SbIII resistance, and L. donovani promastigotes derived from clinical isolates;
both of which showed higher proline concentration at the intracellular level [37,40]. Addi-
tionally, proline upregulation was also observed during both logarithmic and stationary
phases of SbIII-resistant Leishmania growing under drug pressure [32]. However, these
studies did not include the exometabolomic analysis.

There was also the observation that the parasite showed better tolerance to SbIII in the
medium with high proline concentration but not against other drugs such as amphotericin
or miltefosine [57]. Remarkably, in our study, we found that proline concentration was
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differentially increased in SbIII-resistant parasites at the intracellular level. Additionally,
the exometabolomic analysis confirmed that resistant parasites depleted proline from the
medium at higher level. The fact that the changes of proline metabolism can be detected
at the extracellular level makes the exometabolomic analysis useful for SbIII resistance
profiling. Interestingly, in this study, both intracellular and extracellular analysis showed
that proline concentration changes linearly with the drug resistance level. This evidence
indicates that proline levels are closely associated with the parasite’s ability to efficiently
combat the drug and could be considered a robust metabolite biomarker of antimony
resistance in Leishmania (Figures 6 and 7).

In different types of eukaryotic cells including Leishmania, proline acts as an osmolyte
and regulates reactive oxygen species (ROS). Is commonly accepted that antimonials
induce a ROS imbalance [5,6]. Interestingly, here we also verified that the level of resis-
tance to SbIII was associated with better response to combat the oxidative stress induced
in vitro by hydrogen peroxide (H2O2). This free radical is commonly produced by the
host macrophages during phagocytosis, inducing promastigote death in an apoptosis-like
manner [58] (Figure S4).

Notably, proline analogues have been explored as promising therapeutic alternatives
in trypanosomes [59]. In Leishmania parasites, ω-amino acid 4-amino-butiric (GABA),
a proline analogue, inhibits the proline/alanine transporter and causes toxicity in both
promastigotes and amastigotes [60]. This indicates that proline transport inhibitors could
potentially be used to reverse SbIII-resistant phenotypes. More studies are needed to
evaluate the effect of combined proline analogue and antimonial therapy.

Alanine, another amino acid contributing to the osmotic balance in Leishmania, was
also found to be significantly increased in resistant parasites [61]. Both alanine and proline
have common transport in Leishmania and it has been hypothesized that the regulation of
the proline/alanine transporters such as LdAAP24 are key to osmotic stress responses in
environments such as those induced by SbIII [62]. Another study has also detected alanine
to be differentially expressed in sensitive parasites growing under SbIII pressure [36],
suggesting that the alanine increase may not be exclusive of resistant phenotypes.

At the intracellular level, betaine and glycerol-phosphocholine were significantly
decreased in SbIII-resistant parasites at the intracellular level. Betaine is a donor of methyl
groups while glycerol-phosphocholine is a precursor for choline biosynthesis [63]. Choline
can feed into phosphatidylcholine biosynthesis but also can be oxidized to produce be-
taine [64]. There is an evidence that phosphatidylcholine biosynthesis is decreased in
Leishmania SbIII-resistant parasites growing under drug challenge, supporting the idea that
glycerol-phosphocholine degradation taking place in SbIII-resistant parasites is necessary
to increase methyl donor availability [40,65].

Together, these observations suggest that the decrease detected in betaine and sn-
glycero-3-phosphocholine could be associated with their ability to donate or release methyl
groups. Methyl groups are highly required to feed the methionine cycle and then the
polyamine biosynthesis, two pathways interconnected by the decarboxylated S-adenosyl-
L-methionine. Consistently, polyamine biosynthesis and the downstream trypanothione
pathway have been widely recognized to be activated in SbIII-resistant parasites challenged
with SbIII [5,66].

Other amino acids were also differentially detected. Arginine was increased in
SbIII-resistant parasites at the intracellular level. This profile has been also detected in
L. infantum promastigotes [37], while an arginine downregulation has been associated with
sensitive parasites growing under antimony pressure [36]. It has been suggested that
Leishmania parasites can sense arginine availability regulating the expression of Leishmania
arginine transporter (AAP3) under stress conditions [67]. Interestingly, there is evidence
that the AAP3 transporter is upregulated at the mRNA level in SbIII-resistant parasites de-
rived from clinical isolates [68], which could explain the tendency toward a higher arginine
intracellular concentration in SbIII-resistant phenotypes. Arginine is also interconnected
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with polyamine metabolism, producing trypanothione downstream via arginase, which
catalyzes the enzymatic hydrolysis of L-arginine (L-Arg) to L-ornithine and urea [69].

We observed that lysine was increased in SbIII-resistant parasites at the intracellular
level during the stationary phase. Conversely, other studies found that lysine was signifi-
cantly increased in SbIII-resistant parasites during logarithmic phase [70]. It is possible that
these opposing findings could be explained by the fact that the analyses were completed in
different Leishmania species during different growth phases. However, more studies are
required to clarify the role of lysine in antimony resistance.

Besides amino acids, we also selected other metabolites that could be important to
differentiate the phenotypes of SbIII resistance. In Leishmania, acetate is produced from
acetyl-CoA, a product of the glycolytic pathway [71]. In trypanosomes, acetate has been
shown to be an important precursor for lipid biosynthesis [72]. It is possible that the
observed decline in acetate is associated with the energy and lipid production. This is
supported by evidence that suggests that energy metabolism and lipid remodeling play an
important role in SbIII resistance [40,73].

Additionally, other metabolites involved in energy metabolism were detected. Lactate
is a product of glucose catabolism. In Leishmania, glycolysis can take place in aerobic as well
as in anaerobic conditions, and the lactate product is secreted [71]. We detected that lactate
was increased in sensitive parasites at the extracellular level, suggesting that in response
to SbIII, there is a change in energy metabolism. Consistent with this, it is commonly
known that while the glycolysis is inhibited in SbIII-sensitive parasites, resistant parasites
overexpress this pathway [26,74,75].

Furthermore, our findings suggest that resistant parasites more efficiently utilize
threonine and valine since these metabolites were detected in lower concentrations in
extracellular extracts. Threonine is another exogenous amino acid that can be used by
Leishmania to supply protein synthesis and as a carbon source to feed the tricarboxylic
acid cycle (TCA) [76]. Valine has been shown to be critical for Leishmania viability, and
L-valine is degraded into pathways that lead to the production of succinyl coenzyme A, an
important precursor that can be used in TCA cycle or fatty acid β-oxidation [77].

In summary, the metabolomic profiling by 1H-HMR allows for a clear differentiation
between SbIII-resistant and -sensitive parasites (Figure 8). The metabolites identified in this
study were associated with two general processes. The first group of metabolites included
metabolites responding to osmotic and oxidative stress (proline, alanine, arginine, betaine,
glycerol-phosphocholine). Some of these metabolites also contribute to the activation of
thiol metabolism, which induces drug inactivation by production of the thiol–SbIII complex
and promotes the oxidative stress balance via trypanothione. Trypanothione system,
the parasite’s equivalent to the mammalian glutathione, is the main detoxifying system
against oxidative damage. Since Leishmania lacks catalases, trypanothione regeneration
relies on nicotinamide adenine dinucleotide phosphate (NADPH) [78]. As consequence,
thiol metabolism requires a large amount of energy, demanding continuous production of
reductant in the form of nicotinamide adenine dinucleotide phosphate (NADPH) [79].

The second group of metabolites (acetate, threonine, valine, and lactate) can contribute
to energy production via pathways such as the TCA cycle [80]. TCA cycle, malic enzyme, or
pentose phosphate pathway can fuel the NADPH required for thiol metabolism activation
(first group of metabolites). The coupling between the activation of thiol metabolism
and energy production is essential for resistant parasites to combat the drug efficiently
(Figure 8).

Currently, there are no reliable molecular methods to determine drug susceptibility in
clinical settings, and treatment failure due to drug resistance is a big problem in Leishmania
species [23]. In the absence of validated standardized methods and markers to track drug
resistance in clinical isolates, the further investigation and validation of identified drug
resistance biomarkers in a clinical setting is crucial. More studies are also required to
validate the proposed biomarkers in other Leishmania species due to the high complexity
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of the model. Likewise, studies using gene-editing techniques are needed to clarify the
metabolic adaptations under drug-induced stress conditions.
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as well as a rearrangement of the carbon metabolism possibly to compensate the produc-
tion of energy in form of reductant, typically required to keep the antioxidant response 
active. 

At the intracellular and extracellular levels, metabolites such as proline and lactate 
are informative not only of the resistant phenotype but also of the level of resistance, 

Figure 8. SbIII-resistant parasites showed a coordinated metabolomic remodeling to combat the stress caused by the
drug. Yellow boxes highlight some of the effects typically caused by SbIII in Leishmania parasites: glycolysis and β-
oxidation inhibition, osmotic and oxidative stress. Green boxes highlight the group of metabolites contributing to the
osmotic/oxidative balance and thiol metabolism activation. Blue boxes show the metabolites potentially contributing to
the energy metabolism required to fuel thiol metabolism in the form of NADPH. This coordinated metabolic response is
essential to develop resistance and combat the drug efficiently in Leishmania parasites. Metabolites increased in SbIII-resistant
parasites (↑). Metabolites decreased in SbIII-resistant parasites (↓). Metabolites differentially detected at the intracellular (In)
and extracellular levels (Ex).

5. Conclusions

SbIII-resistant and -sensitive parasites showed significant changes in the metabolite
composition and these phenotypes can be potentially predicted using 1H-NMR profiling.
The differences in metabolite composition suggest that the development of resistance to
SbIII involves an optimized response to the osmotic/oxidative stress induced by the drug as
well as a rearrangement of the carbon metabolism possibly to compensate the production
of energy in form of reductant, typically required to keep the antioxidant response active.

At the intracellular and extracellular levels, metabolites such as proline and lactate are
informative not only of the resistant phenotype but also of the level of resistance, suggesting
that the metabolic pathways in which these compounds are involved are closely related
with the mechanism activated to combat the drug, and consequently these metabolites can
be prioritized as a more robust biomarker of SbIII resistance.

In many studies, metabolomic analysis has been performed at the intracellular level;
however, our study showed that simpler and time-saving exometabolomic analysis can be
also efficiently used for differentiation of sensitive and resistant parasites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10051063/s1, Figure S1: Enrichment of parasites without membrane damage for in-
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tracellular metabolomic analysis. Figure S2: Comparison of the curves of growth between the 3
L. tropica strains. Table S1: Chemical shifts per compound detected in 1H-NMR spectra of Leishmania’s
intracellular extracts. Table S2: Chemical shifts per compound detected in a 1H-NMR spectrum
of Leishmania’s extracellular extracts. Table S3: Raw data from Venn diagram comparing the dif-
ferent and common compounds detected at the intracellular and extracellular level in Leishmania
parasites by 1H-NMR. Table S4: Total compounds detected by 1H-NMR in L. tropica distributed by
the metabolites main class. Table S5: Total compounds distributed by KEGG metabolic pathway.
Table S6: Comparison of statistical measures calculated for the supervised OPLS-DA models for the
differentiation of SbIII-sensitive and -resistant parasites at the intracellular and extracellular levels.
Figure S3: Regression coefficients and VIP scores based on the metabolomic profiling dataset for
the OPLS-DA models comparing SbIII-resistant parasites versus SbIII-sensitive parasites. Figure S4:
SbIII-resistant parasites showed better tolerance to oxidative stress induced by hydrogen peroxide.
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