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Low-frequency oscillations in 
coupled phase oscillators with 
inertia
Huihui Song1,3, Xuewei Zhang2,3, Jinjie Wu1 & Yanbin Qu1*

this work considers a second-order Kuramoto oscillator network periodically driven at one node to 
model low-frequency forced oscillations in power grids. The phase fluctuation magnitude at each node 
and the disturbance propagation in the network are numerically analyzed. the coupling strengths in this 
work are sufficiently large to ensure the stability of equilibria in the unforced system. It is found that the 
phase fluctuation is primarily determined by the network structural properties and forcing parameters, 
not the parameters specific to individual nodes such as power and damping. A new “resonance” 
phenomenon is observed in which the phase fluctuation magnitudes peak at certain critical coupling 
strength in the forced system. In the cases of long chain and ring-shaped networks, the Kuramoto 
model yields an important but somehow counter-intuitive result that the fluctuation magnitude 
distribution does not necessarily follow a simple attenuating trend along the propagation path and 
the fluctuation at nodes far from the disturbance source could be stronger than that at the source. 
These findings are relevant to low-frequency forced oscillations in power grids and will help advance 
the understanding of their dynamics and mechanisms and improve the detection and mitigation 
techniques.

Coupled phase oscillators described by the Kuramoto model have been extensively studied to understand syn-
chronization and other dynamic phenomena in complex systems1,2. Coupled phase oscillators with inertia, as 
an extension of the original Kuramoto model to the second order, have also received continuing research atten-
tion3–22. In early works3,4, mean field analysis showed that, in systems of globally coupled oscillators, the syn-
chronization exhibits a first-order phase transition and there is hysteresis between two synchronized states. After 
including noise, similar phenomena were observed5,6, and the effects of noise on phase synchronization were 
revealed7. In the thermodynamic limit, analysis of the problem formulated as a Fokker-Planck-type equation of 
one-oscillator probability density8 uncovered rich phenomenology when oscillator’s natural frequency follows 
certain distributions9. More recent developments in this field include conditions for frequency synchronization 
under local coupling10,11, low-dimensional behavior in complex networks12, interplay between network topology 
and system dynamics13–15, different types of chimera states16,17, effects of other factors such as frustration18 and 
time delay19, nonlinear transient wave propagation prior to synchrony20, and bi-stability21 multi-stability22 pat-
terns of synchrony.

Although significant progress has been made to understand conditions, transitions, and properties of syn-
chronized states, the “reverse” processes, i.e., dynamics of desynchronization due to instability, noise, or external 
excitation, remain to be explored. The patterns and mechanisms of desynchronization have been discussed in the 
context of other networked systems23–25 and considered as an important feature of some neurophysiological pro-
cesses26,27. While fluctuation-induced desynchronization in Kuramoto oscillators has been a recurrent research 
topic in the recent literature28–32, these studies mostly focus on the onset of desynchronization (i.e., stochastic 
escape). There are only a small number of works dedicated to the characterization of dynamical properties and 
evolution of desynchronized states under noise or external forcing. It is demonstrated in33 that desynchronization 
can be harnessed to reduce fluctuations. Interesting frequency response of a Kuramoto network driven by fluc-
tuations has been analyzed in34. Statistical characteristics of the propagation of non-Gaussian fluctuations in the 
network have been obtained in35.
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Figure 1. Phase fluctuation in a two-node network consisting of a generator (P1 =+ 1) and a load (P2 = −1) 
driven by an external periodic forcing A sin (2πft) where f = 0.2Hz. The forcing is added at t = 30 s and  
removed at t = 120 s. (a) Results when the forcing is applied to the generator node 1. Here k = 2, α = 0.5, A = 0.2.  
(b) Results when the forcing is applied to the load node 2 under the same conditions of (a). (c) The phase 
difference between the two nodes under the same conditions of (a). (d) Dependence of generator node phase 
fluctuation peak-to-peak magnitude Δ1 on the damping coefficient α and forcing amplitude A with k = 2.  
(e) Dependence of load node phase fluctuation peak-to-peak magnitude Δ2 on the damping coefficient α and 
forcing amplitude A with k = 2. (f) Dependence of phase fluctuation peak-to-peak magnitudes Δ1,2 on the 
damping coefficient α with k = 2 and 5 and A = 0.2.

Figure 2. Coupling strength (k) dependence of the phase fluctuation in the two-node network studied in Fig. 1a. (a) 
Peak-to-peak fluctuation magnitudes Δ1,2 under different coupling strength k when f = 0.5Hz, α = 0.1, A = 0.2. (b) Peak-
to-peak fluctuation magnitudes Δ1,2 under different coupling strength k when f = 1Hz, α = 0.1, A = 0.2. (c) Dependence 
of the “optimal” coupling strength on the driving forcing frequency f with A = 0.2 and various values of α. (d) 
Dependence of the “optimal” coupling strength on the driving forcing frequency f with α = 0.1 and various values of A.
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In this work, we analyze the response of second-order Kuramoto oscillator network motifs to sinusoidal 
forcing, the general model of which was first given in5. This problem is of specific relevance to power grid reli-
ability and stability. On the one hand, modeling power grid as Kuramoto oscillator networks has driven a new 
interdisciplinary research thrust in the last decade29,35–39 (some studies were based on first-order Kuromoto 
model40,41). Following the initial model formulation36, a study demonstrated that decentralized power sources 
might be conducive to self-organized synchrony, which would enhance gird robustness37. New synchroniza-
tion conditions were derived in terms of network topology and parameters to improve the practical applica-
bility of the theoretical results to smart grid dynamics and control38,39. Despite the simplifying assumptions 
and limitations37, this approach roots in the conceptual framework based on the electromechanical model of 
rotating electric machines and thus able to generate illustrative and insightful results justifiable for real-world 
applications42.

On the other hand, in electric power engineering, the dynamics of the grid under substantial oscillatory distur-
bances (desynchronized states that may have catastrophic consequences such as blackouts) has been investigated 
from two perspectives. The first considers the propagation of disturbances in the grid in the form of low frequency 
(order of 0.1-1 Hz) electromechanical waves43,44. A continuum model was constructed to describe the trave-
ling wave along transmission lines43, based on which a control method was proposed to damp the dynamics45.  
With the grid getting more and more extensive and complex, it is imperative to ensure that effective protection 
schemes are in place against damaging electromechanical waves46 and advanced techniques are used to monitor 
them47. The second perspective scrutinizes low-frequency (sometimes also called inter-area) oscillations observed 
at specific nodes48–50. Classical analysis based on equivalent oscillating circuit model48 explained how “natural” 
interaction among grid devices results in free oscillations. In contrast, forced oscillations, i.e., the grid (typically 
in the regime where free oscillations are inhibited) response to persistent external forcing, have become a growing 
concern in recent decades50, stimulating the development of detection algorithms51 and mitigation methods52.

The Kuramoto model is a promising alternative to the continuum model and the circuit model that not 
only captures disturbance propagation (like the continuum model) and forced oscillation (like the circuit 
model) in the grid but also sheds light on the effects of network topology (which continuum model is unable to 
show) and coupling strength (which circuit model does not clarify) on system dynamics. This work performs 
a numerical study of the desynchronization dynamics of some representative periodically-driven Kuramoto 
oscillator networks. In the context of this paper, desynchronization refers to a phase unlocked regime (the 
phase differences between nodes are no longer constant). As shown below, there is an “ac steady state” in which 
the phase of each node fluctuates at the same frequency as the external forcing around a state that deviates 

Figure 3. Phase fluctuation in the linear three-node network with driving forcing frequency f = 1Hz. The 
forcing is added to the left (red) node 1 at t = 30 s and removed at t = 250 s. The damping coefficient α = 0.5 
and forcing amplitude A = 1. (a) Results when P1 =+ 2,P2 = P3 = −1,k12 = 30,k23 = 15. (b) Results when P1 =+ 
2,P2 = P3 = −1,k12 = 15,k23 = 30. (c) Results when P3 =+ 2,P2 = P1 = −1,k12 = 30,k23 = 15. (d) Results when P3 
=+ 2,P1 = P2 = −1,k12 = 15,k23 = 30.
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from the synchrony. Special attention is paid to the magnitude of this type of phase fluctuation and the effects 
of network and forcing parameters on the magnitude. In power grids, the knowledge of phase fluctuation 
magnitude at each node will be essential to the specification of its hosting capacity as well as necessary control 
measures.

Model
The model in this work follows that of36,37, with the addition of sinusoidal forcing at a selected node. Consider a 
coupled network of N synchronous generators (production) and motors (load). Each node i(i = 1, …, N) can be 
described as a phase oscillator with its electromechanical phase θ φ= Ω +ti i, where Ω is the constant grid refer-
ence frequency and φi is the relative phase (or simply called phase here). For each oscillator, the generated (con-
sumed) power should balance the power transmitted to (received from) the grid plus (minus) that for local 
acceleration and dissipation. Assuming that Ω

φ
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dt
i , the governing equation of the system at node i is:

∑
φ

α
φ

φ φ δ ω= − − − + − − −
=

d
dt

P d
dt

K A u t t u t t tsin( ) [ ( ) ( )] sin( )
(1)

i
i i

i

j

N

ij i j il

2

2
1

1 2

where Pi and αi are the equivalent power and damping coefficient of the i-th oscillator, [Kij]N×N is the matrix of 
coupling strength with each element Kij being the product of the connectivity (1 if connected; 0 otherwise) and 
the coupling strength between nodes i and j, A and ω = 2πf are the magnitude and angular frequency of the exter-
nal forcing applied at node l in time interval [t1, t2], u(t) is the unit step function, and δil is the Kronecker symbol. 
Equation (1) is solved using the 4th order Runge-Kutta method.

In the un-disturbed case (A = 0), to reach synchrony, it is necessary that ∑ == P 0i
N

i1  (energy balance). 
Further, in this work, the coupling strengths are so chosen that ≥ | |

↔
K Pmin

j i
ij i  (j↔i means the two nodes are 

connected). This generally guarantees the existence of attractive fixed points (stable synchrony) of the system. 
It is also true in actual power grid since the capacity of transmission lines are by design higher than local gen-
eration or load. On the other hand, for each set of parameters (Pi, Kij) used in the simulations, we numerically 
solve the un-disturbed steady state equation of Eq. (1) and confirm that the system has only one attractive fixed 
point. The regime with multiple fixed points is avoided in this study to make the simulation results comparable 
and without ambiguity.

Figure 4. Coupling strength (k23) dependence of the phase fluctuation peak-to-peak magnitudes Δ1,2,3 in the 
linear three-node network studied in Fig. 3a under various driving forcing frequencies: (a) f = 0.2 Hz; (b) f = 0.3 
Hz; (c) f = 0.4 Hz; (d) f = 0.5 Hz; (e) f = 0.6 Hz; (f) f = 0.7 Hz; (g) f = 0.8 Hz; (h) f = 0.9 Hz; (i) f = 1.0 Hz. Other 
parameters are: k12 = 30, α = 0.2, A = 1.
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Under these conditions, for each numerical case, the un-disturbed oscillators’ initial phases are chosen randomly 
from [0, 2π). Once all φi’s reach equilibria, we record their equilibrium values as the initial conditions for solving Eq. (1). 
It is expected that before the application of external forcing, the system will remain in the initially synchronized state, 
and after the removal of forcing, the system will return to the initial state. Under the periodic forcing, the peak-to-peak 
magnitudes of all φi’s fluctuations are measured to see how seriously an oscillator is affected. To describe the disturbance 
propagation, we record the starting time of each oscillator’s forced oscillation practically defined as the time when φi 
first crosses a pre-set value between the initial synchronized state and the time average of the ac steady state. By com-
paring the starting times of the oscillators, one can analyze the speed and path of propagation.

Results
two-node networks. We start with the two-node network due to its simplicity. When P1 = −P2 = P0, α1 = α2 = α, 
and K12 = K21 = k, Eq. (1) is reduced to α φ ω= − − Δ ± − − −φ φΔ ΔP k A u t t u t t t2 2 sin [ ( ) ( )] sin( )d

dt
d

dt0 1 2
2

2  
where φ φ φ φΔ = − = −1 2 1 2, and the +/− means the forcing is applied at node 1/2. This is the equation of a damped 
nonlinear pendulum driven by an external force that has both dc (2P0) and ac (A sin (ωt)) components. Without the ac 
component, it can be shown that there exists an attractive fixed point at φ =− P karcsin( / )1 2 0  when < 1P

k
0 . This is the 

regime under study in this work, i.e., there is a steady state with constant φ1−2. Usually this means both φ1 and φ2 are 
constants. Although, as shown in37, for smaller k’s and certain initial conditions, φ1 and φ2 may show identical oscilla-
tions which will be canceled in φ1−2, we do not consider this rare case and choose a higher k or an initial condition that 
leads to constant φ1 and φ2. Now with the ac component included, φ1−2 will fluctuate around its steady-state value. We 
numerically solve this problem, and some representative results are shown in Fig. 1.

Comparing Fig. 1(a,b), one can see that due to symmetry, the two cases (the forcing at node 1 and node 2) have 
the same pattern of phase fluctuation. The phase fluctuation has the same frequency as the external forcing. 
Figure 1(c) shows that φ1−2 also reaches an ac steady state with the same fluctuation frequency. This is an interest-
ing result of relevance to the inter-area low-frequency oscillation in the power grid. The two nodes in Fig. 1 rep-
resent two grid zones where φ1−2 indicates the direction and amount of power flowing from node 1 to node 2. 
Under the conditions of Fig. 1, < 1P

k
0 , which practically guarantees that φ1−2 does not have sustained free oscil-

lations; however, with the periodic forcing, φ1−2 fluctuates around its normal operating point, which generally 

Figure 5. Phase fluctuation in a linear 20-node network driven by an external periodic forcing A sin (2πft).  
The damping coefficient α = 0.2 and forcing amplitude A = 1. (a) The network topology. The numbers in the 
circles indicate the power at the respective nodes. The forcing is added to the generator (red) node 1 at t = 30 s and 
removed at t = 250 s. (b) Propagation of phase oscillations along the chain with f = 0.2Hz and various  
global coupling strength k. The propagation is represented by the time the oscillation starts at each node.  
(c) Propagation of phase oscillations along the chain with k = 60and different driving forcing frequencies f.  
(d) Propagation of phase oscillations along the chain with k = 60, f = 0.2Hz, and different damping coefficients α.
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undermines the reliability and stability of a power grid. Note that the natural frequency of motion is k2  (no 
damping or forcing). The resonant frequency of the damped driven system is lower than this value. The closer the 
external forcing frequency f is to the resonant frequency, the higher the magnitude of the fluctuation. In the case 
of Fig. 1, =k2 2 Hz; so the most interesting results are to be observed in the low frequency range, i.e., f ≲ 2 Hz. 
Higher frequency fluctuations are less important in terms of magnitude (see Fig. S1).

Further, in Fig. 1(d,e), we present the phase fluctuation peak-to-peak magnitudes (Δ1,2) at the two nodes with differ-
ent damping coefficients (α) and forcing amplitudes (A). Keeping other conditions the same as Fig. 1(a), Δ1,2 increase 
about linearly with A, while increasing α results in higher Δ1 and lower Δ2. This counter-intuitive effect of damping is 
also plotted in Fig. 1(f), where, for comparison, the case of k = 5 is shown. Since this phenomenon can only be observed 
when f ≤ 0.2 Hz, its implication is that damping might not be effective for the reduction of very low-frequency phase 
fluctuations with relatively weak links. The detailed analysis will be reserved for continuing studies.

On the other hand, when f > 0.2 Hz, it is found that not only the dependency of Δ1,2 on α is similar to the case 
of k = 5 in Fig. 1(f), but also there is a “optimal” coupling strength k at which Δ1,2 peak. As shown in Fig. 2(a), 
when f = 0.5 Hz, both Δ1 and Δ2 reaches maxima at k ≈ 6. For smaller k’s, Δ1 > Δ2; for larger k’s, Δ1 < Δ2. Similar 
results are in Fig. 2(b) for f = 1 Hz, with the “optimal” coupling strength k ≈ 21. Note that in both cases, the forc-
ing amplitude A = 0.2, and the peak Δ1,2 can be several times higher than A. Unlike the majority of literature on 
synchronization that requires some critical (minimum) coupling strength38, it is a new finding that, in a system as 
simple as the two-node network, there is another critical coupling strength under which the forced phase fluctu-
ations resemble resonance. The difference is that here the variable is the coupling strength instead of the driving 
forcing frequency. In Fig. 2(c,d), we show that the “optimal” coupling strength k as a function of the forcing fre-
quency f is insensitive to other factors such as α and A, implying that this phenomenon is due to the nonlinear 
interaction between the two nodes. Interestingly, Fig. 2 bears some similarity to the frequency response of forced 
Duffing oscillator53 (more details in SI, Note 1).

three- and four-node networks. We now move on to three-node (and four-node) systems. Figure 3 pre-
sents the phase fluctuation in a linear three-node network with forcing (f = 1 Hz) applied to node 1. Comparing 
the four cases, one concludes that 1) the nodal power distribution has an insignificant (<2%) effect on Δ’s ((a) 
versus (c), or (b) versus (d)), and 2) the variation in coupling strengths can lead to distinct patterns of Δ ((a) ver-
sus (b), or (c) versus (d)). To confirm the first point, we perform more simulations for confirmation (see Fig. S2). 
The second point is consistent with what we have seen in the two-node network. It is worth mentioning that these 
conclusions also hold for circular three-node network and four-node network with a branch (see Figs. S3 and S4). 

Figure 6. Phase fluctuation peak-to-peak magnitude (Δ) distributions in the linear 20-node network in Fig. 5. 
(a) Results when global coupling strength k = 40 and driving forcing frequency f = 0.2,0.5,1 Hz. The damping 
coefficient α = 0.5 and forcing amplitude A = 1. (b) Results when global coupling strength k = 100 and other 
parameters are the same as (a). (c) Results when global coupling strength k = 40, forcing amplitude A = 1, 
frequency f = 0.5 Hz, and damping coefficient α = 0.2,0.5,0.8. (d) Results when global coupling strength k = 100, 
and other parameters are the same as (c).
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Physically, the nodal power serves as a dc driving force, so it is understandable that it has limited effect on the 
oscillatory motion. It is the interaction between nodes (characterized by the coupling strength) that “spread” the 
external forcing effects over the network.

The “resonance” phenomena are also found in the linear three-node network. In Fig. 4, keeping k12 = 30 and 
varying k23, we plot the phase fluctuation peak-to-peak magnitudes Δ1,2,3 under different forcing frequencies. 
Similar to the two-node case, when f > 0.2 Hz, the “optimal” coupling strength starts to appear at which at least 
one node’s Δ peaks. The “optimal” coupling strength also increases with increasing f. For 0.4 ≤ f ≤ 0.7 Hz, we have 
Δ3 > Δ1 > Δ2 at the “optimal” coupling strength; increasing f to 0.9 Hz, Δ1 becomes the highest and Δ2 does not 
show an obvious peak near the “resonance” point. Note that the forcing is added at node 1. In power grids, to 
detect forced oscillations, it would be desired to monitor a node with maximum Δ. From Fig. 4, one can see that 
this node is one of the end nodes.

Longer chains and rings. To study the forced oscillation in more complex systems, we consider the prop-
agation of phase fluctuation as well as the distribution of phase fluctuation magnitudes. Figure 5(a) illustrates 
the configuration of a linear 20-node network with global coupling strength driven by external periodic forcing 
at node 1. Figure 5(b) shows the propagation of the phase oscillations along the chain. The higher the coupling 
strength k, the faster the phase oscillation propagates to the last node in the chain. After k is over 100, this trend 
comes to saturation. Due to the limitation of the Kuramoto model, this cannot be directly related to the speed of 
propagation since there is no length for each link. Nevertheless, one can still see that stronger links facilitates the 
propagation of low-frequency phase oscillations. Additional results in Fig. 5(c,d) show that the forcing frequency 
and the damping coefficient have negligible impacts on the propagation. In Fig. 5(c), the apparent delay in the 
f = 0.2 Hz case results from the method used to measure tosc.

Figure 6 presents the distributions of Δ along the 20-node chain under various conditions. If Fig. 5 views 
the phase fluctuation as “traveling wave”, Fig. 6 displays something like “standing wave”. In Fig. 6(a), we find 
that the higher the forcing frequency, the more “bumps” there will be in the distribution of Δ. There is a 
decaying trend from node 1 to node 20, but the decay is not monotonic. Also in general, higher frequency 
corresponds to lower Δ. Comparing Fig. 6(b) with 6(a), one sees that the higher the coupling strength, the 
fewer “bumps” there will be in the distribution of Δ. Figure 6(c,d) indicate that the effect of the damping 
coefficient on the distribution of Δ is more significant under higher coupling strengths. Similarly, we obtain 
the distributions of ∆ along an N-node chain where 3 ≤ N ≤ 20 (Fig. S5). An interesting observation is that the 
fluctuation magnitude at node N is always a local maximum and in the cases of N ≥ 7, the value of ∆ at the 7th 
node counting backwards starting from node N is always a local minimum. In the cases of N ≥ 14, the value 

Figure 7. Phase fluctuation peak-to-peak magnitude (Δ) distributions in a circular 20-node network driven by 
an external periodic forcing A sin (2πft). The damping coefficient α = 0.2 and forcing amplitude A = 1. (a) The 
network topology. The numbers in the circles indicate the power at the respective nodes. The forcing is added to 
the generator (red) node 1. The coupling strength k12 = 40; all other coupling strengths except k1,20 are fixed at 10. 
k1,20 varies from 30 to 100. (b) Results when f = 0.2 Hz. (c) Results when f = 0.5 Hz. (d) Results when f = 1 Hz.
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of ∆ at the 8th node counting backwards starting from this local minimum becomes a local maximum again. 
This pattern continues with longer chains and under different parameter settings (e.g., when f = 0.5 Hz, the 
numbers will be 3 and 4 instead of 7 and 8). The distribution of fluctuation magnitudes can be qualitatively 
inferred from the node that is the farthest from the forcing node, while the common sense may suggest the 
other direction. In Fig. S6, we plot the values of ∆ at node N in all the cases above, which display an oscillatory 
damping trend as the chain elongates.

When a link is added between node 1 and node 20 in Fig. 5(a), the above network becomes a ring, as illustrated in 
Fig. 7(a). The resulting distributions of Δ are in Fig. 7(b–d). As expected, since there are now two pathways of prop-
agation, the distributions of Δ show a decaying trend along both pathways from node 1 to node 11. The three sets of 
results point out that the higher the forcing frequency, the more difficult it can “penetrate” the network (most links 
with coupling strength k = 10). In the case of f = 1 Hz, the phase fluctuations are localized near nodes 1, 2, and 20. This 
phenomenon could inspire the design of power grids to damp the forced oscillations and improve system stability.

To make it comparable with Fig. 6, we simulate the forced oscillation in the ring now with global coupling 
strength k. Figure 8(a) shows the propagation along the ring. Figure 8(b) presents the propagation times from 
node 1 to node 11 (the farthest one from external forcing) under various k’s and f’s. Again, the forcing fre-
quency does not affect how fast the phase fluctuations propagate. The higher the coupling strength, the faster 
the propagation. With f = 0.2 Hz and k in a range from 30 to 100, the distributions of Δ in the system are plot-
ted in Fig. 8(c). Different from the chain in Fig. 6, the ring’s Δ distributions have similar profiles under various 
k’s (increasing k tends to flatten the profile), and node 11 always has the highest Δ. In addition, as shown in 
Fig. 8(d), the ring’s Δ distributions are symmetric along the two pathways. In Fig. S7, we show the results of a 
ring with 19 nodes and other conditions the same as Fig. 8(d). Now there are two farthest nodes (10 and 11) 
and the distribution features are very similar. Therefore the Δ distribution is not determined by even or odd 
number of nodes in the ring.

conclusions
This work considers a second-order Kuramoto model periodically driven at one node as the model of forced 
oscillations in power grids. Note that the un-forced system stays within the regime of stable synchrony and the 
external forcing does not introduce new dynamic regimes or cause regime changes. Motivated by the power 
grid application, we study the phase fluctuation magnitude at each node as well as the disturbance propaga-
tion in the network. There are three major findings. Firstly, given the network topology, coupling strength, the 

Figure 8. Phase fluctuation in the circular 20-node network in Fig. 7. The damping coefficient α = 0.2 and 
forcing amplitude A = 1. (a) Propagation of phase oscillations along the ring with f = 0.2 Hz and the global 
coupling strength k varying from 30 to 100. The propagation is represented by the time the oscillation starts at 
each node. (b) Effect of the global coupling strength k and forcing frequency f on the start time of the oscillation 
at the most distant node (node 11) after the application of the external forcing. (c) Phase fluctuation peak-to-
peak magnitudes Δ with f = 0.2 Hz and various global coupling strength k. (d) Phase fluctuation peak-to-peak 
magnitudes Δ with global coupling strength k = 40 and different driving forcing frequencies f.
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external forcing, and the node where the forcing is applied, the patterns of phase fluctuation change little with 
the node powers or damping coefficients; in other words, the phase fluctuation is primarily determined by the 
network structural properties and forcing parameters, not the parameters specific to individual nodes. Secondly, 
a new “resonance” phenomenon is discovered in which the phase fluctuation magnitudes peak when the coupling 
strength takes certain critical value. Note that the coupling strengths in this work are large enough to ensure the 
stability of equilibria in the unforced system. However, under the low-frequency forcing, the system with the crit-
ical coupling strength experiences much higher fluctuations, which has relevance and implications to the mecha-
nisms of low-frequency forced oscillations in the power system. Finally, in the cases of long chain and ring-shaped 
networks, we show the disturbance propagation (its speed increased with coupling strength) and the distribution 
of the phase fluctuation magnitudes across the network. The Kuramoto approach captures an important but 
somehow counter-intuitive fact that the fluctuation magnitude distribution does not follow a simple attenuating 
trend and at some nodes far from the disturbance source, the fluctuation is even higher than that at the source.

This work has been an attempt to extend the previous studies on second-order Kuramoto oscillators from 
synchronization to one of the simplest desynchronized mode: ac steady state. It also contributes to the mode-
ling and understanding of power grid forced oscillations based on the Kuramoto model. Further simulations 
can be conducted to investigate low-frequency oscillations under more realistic or complex network topologies. 
Theoretical analysis and development will be needed to provide a detailed and coherent explanation of the phe-
nomena reported in this work.
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