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A B S T R A C T   

COVID-19 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early re-
ported symptoms include fever, cough, and respiratory symptoms. There were few reports of digestive symptoms. 
However, with COVID-19 spreading worldwide, symptoms such as vomiting, diarrhoea, and abdominal pain 
have gained increasing attention. Research has found that angiotensin-converting enzyme 2 (ACE2), the SARS- 
CoV-2 receptor, is strongly expressed in the gastrointestinal tract and liver. Whether theoretically or clinically, 
many studies have suggested a close connection between COVID-19 and the digestive system. In this review, we 
summarize the digestive symptoms reported in existing research, discuss the impact of SARS-CoV-2 on the 
gastrointestinal tract and liver, and determine the possible mechanisms and aetiology, such as cytokine storm. In- 
depth exploration of the relationship between COVID-19 and the digestive system is urgently needed.   

1. Introduction 

COVID-19, which is caused by SARS-CoV-2, is a significant global 
public health problem. As of 29 October 2020, there have been 
approximately 44,380,000 confirmed cases of COVID-19 and 1,170,000 
deaths worldwide [1]. SARS-CoV-2 belongs to the beta coronavirus 
family, which enters cells through the ACE2 receptor [2]. Symptoms 
involving the digestive system were not evident among patients 
suffering from the initial disease in Wuhan, China. Only 2.6 % had 
diarrhoea and 2% had chronic diseases of the liver [3]. As the case 
complexity grows, more and more patients have reported digestive 
system symptoms. The disorder, with diarrhoea arising most often, is 
marked by diarrhoea, anorexia, nausea, vomiting, abdominal discom-
fort, and gastrointestinal bleeding. Several potential mechanisms for the 
development of gastrointestinal problems have been suggested. These 
include virus-induced cytopathic impacts through ACE2, 
immune-mediated inflammatory cytokine storm, the function of the 
gut-lung axis as well as drug-related harm. These pathways can also 
contribute to sepsis and acute respiratory distress syndrome (ARDS), 
which are the leading causes of death in COVID-19 patients. However, 

the original underlying conditions can impact patient treatment and 
prognosis not only in COVID-19 cases but also in gastrointestinal 
diseases. 

The liver is the body’s largest digestive gland for biligenesis and 
detoxification. Liver damage is sometimes identified as a typical 
occurrence in COVID-19 patients. Through pathology and blood tests, 
the mechanisms of liver injury mainly arise from direct viral infection, 
drug cytotoxicity, and inflammatory immune response. Alternative ex-
planations include hypoxic hepatitis, hepatic congestion related to me-
chanical ventilation (PEEP), and gut barrier dysfunction [4]. Indeed, 
notable facts include the identification of ACE2-positive cells in liver 
tissues, which turn the liver into a potential target for SARS-CoV-2 
infection. Moreover, it has been shown that the associations between 
prior liver diseases and COVID-19 will contribute to worse clinical 
outcomes and should be taken seriously during care. Specifically, we 
focus on liver transplant recipients with COVID-19 due to their altered 
immune state and disease susceptibility. Further studies in COVID-19 
patients call for a better understanding of pathogenesis and for 
optimal treatment of COVID-19. 

Based on the above statement, we propose that the development and 
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progression of COVID-19 are closely related to the gastrointestinal tract 
and the liver. However, there are currently few studies available; thus, 
this article summarizes the relevant views and suggests potential 
mechanisms. 

2. Gastrointestinal tract involvement in COVID-19 patients 

2.1. Gastrointestinal symptoms in patients with COVID-19 

COVID-19 typically develops in patients as a respiratory disease, 
with some patients reporting gastrointestinal symptoms during disease 
episodes such as diarrhoea, anorexia, nausea, vomiting, stomach 
discomfort, and gastrointestinal bleeding. We analysed COVID-19 clin-
ical data to show gastrointestinal symptoms and their incidence in pa-
tients with COVID-19 (Table 1). Diarrhoea, with a rate ranging from 2.0 
to 47.9%, is the most commonly reported gastrointestinal symptom in 
COVID-19 patients [3,5–9]. Even though the first COVID-19 clinical 
article reported that only 1 in 38 patients had diarrhoea [3], the fre-
quency of diarrhoea is usually greater in later stages. A cohort of 73 
COVID-19 patients reported by Xiao et al. showed that diarrhoea was 
observed in up to 35.6 % of patients [8]. Similarly, the incidence of 
diarrhoea was up to 47.9 % in a cohort of 305 patients reported by Fang 
et al. [6]. 

Although rarely reported, anorexia can occur frequently once diag-
nosed. Wang et al. reported an incidence of up to 39.9 % and Fang et al. 
reported 33.1 % [6,7]. According to data, patients with nausea account 
for 1.0–19.3 % [5–7,9]. Vomiting, stomach discomfort and gastroin-
testinal bleeding can also be observed in COVID-19 patients, though 
with a low incidence. Regarding the available clinical studies, gastro-
intestinal symptoms are relatively common in patients with COVID-19, 
even though they only manifest in some cases [10]. 

In terms of pathology experiments, Xiao et al. [8] showed that H&E 
staining of the oesophagus, stomach, duodenum, and rectum showed no 
substantial mucosal epithelial harm. Occasional lymphocyte infiltration 
was observed in the oesophageal squamous epithelium in this study. 
Although the lamina propria of the uterus, duodenum, and rectum were 
found to display an excess of infiltrating plasma cells and interstitial 
oedema lymphocytes, ACE2 was rarely expressed in the oesophagus 
epithelium but abundant in the glandular epithelia cilia and in gastric 
and intestinal epithelial cell cytoplasm. The virus nucleocapsid protein, 
although not in the oesophageal epithelial cell, was found in the gastric, 
duodenal and rectal glandular cytoplasm. This means that SARS-CoV-2 
could directly target gastrointestinal cells, especially gastric and intes-
tinal epithelial cells, leading to inflammatory reactions. 

2.2. Virus-induced cytopathic effects through ACE2 

Many studies currently show that the gastrointestinal tract of COVID- 
19 patients is affected by viruses. Lin et al. [11] examined 95 
COVID-19-contaminated cases and performed endoscopic examinations 
on the gastrointestinal cases. The virus was shown in various sections of 
the gastrointestinal tract. Xiao et al. [8] studied 73 COVID-19 patients 
and found that more than 20 % were positive for virus in their stool, 
even after the respiratory tract was cleared of the virus. These studies 
demonstrated the presence of SARS-CoV-2 in the gastrointestinal tract of 

COVID-19 patients, which means that gastrointestinal symptoms could 
be correlated with viral infections in patients with COVID-19. In nearly 
half of the COVID-19 patients with digestive symptoms, viral RNA can 
be detected in their stool for determining the diagnosis and transmission 
[12]. The possibility of faecal–oral transmission of SARS-CoV-2 has 
important implications and needs further study. 

Research has shown that SARS-CoV-2 enters cells through the ACE2 
receiver [2]. Immunofluorescence data have shown that ACE2 protein is 
abundantly expressed in gastric, duodenal, and rectal epithelial glan-
dular cells, which promotes the possible entry of SARS-CoV-2 into host 
cells [8]. Moreover, a study has suggested a possible mechanism for the 
digestive symptoms in COVID-19 patients. ACE2 expression on the small 
intestine surface cells can mediate viral invasion and expansion, trig-
gering gastrointestinal inflammation [13]. SARS-CoV-2 invades intesti-
nal cells expressing ACE2, causing malabsorption, intestinal disorders, 
activation of the enteric nervous system, and, ultimately, diarrhoea. 
Interestingly, a previous study on other coronaviruses found that human 
intestinal epithelial cells’ high sensitivity to coronavirus increases their 
replicative capacity [14]. Moreover, this gastrointestinal tropism can 
explain the frequent onset of coronaviral diarrhoea (Fig. 1). 

2.3. Immune-mediated inflammatory cytokine storm 

The pathogenesis of COVID-19 is not yet clear at the moment. 
Cytokine storms and cellular immune responses are believed to play a 
key role in disease occurrence and development [15]. Cytokine distur-
bance is an abnormal, dynamic pathogenesis inflammatory reaction to 
external stimuli. SARS-CoV-2-infected cells release large numbers of 
inflammatory mediators and chemokines that cause neutrophil aggre-
gation. While neutrophils mainly have an antiviral function, their se-
cretions, cytokines, and chemokines also promote the accumulation of 
immune cells, which leads to over-reaction. The immune system of 
COVID-19 patients is, therefore, abnormal. Approximately 34.5 % of 
197 patients showed neutrophilia [16], which is known to be a trigger 
for ARDS and sepsis growth in COVID-19 patients. Secondary hemo-
phagocytic lymph histiocytosis (SHLH), an underrecognized hyper-
inflammatory syndrome, could also be a major factor in the 
development of COVID-19 as SHLH, which can cause fatal and fulminant 
multiorgan failure hypercytokinemia [15] (Fig. 1). 

In one clinical study, a high degree of IL-1B, IFN-т, IP-10, and 
monocyte chemotactic protein 1 (MCP-1) expression has been reported 
in infected patients [3]. These inflammatory cytokines can cause unique 
immune activation and activate Type 1 helper cells (Th1). Several re-
ports have also shown that cytokine rates in COVID-19 patients are 
positively associated with disease severity [17]. Briefly, an inflamma-
tory cytokine disturbance is triggered by SARS-CoV-2 infection in pa-
tients with COVID-19 (Fig. 1). 

Cytokine storm is correlated with the development of ARDS and 
multiple organ insufficiency outside the lung during COVID-19 pro-
gression [18]. Cytokine storms can also be a cause of worsening in 
COVID-19 patients, including those with gastrointestinal diseases. 

Table 1 
The incidence of gastrointestinal symptoms in patients with COVID-19.  

References Total patients Diarrhea Anorexia Nausea Vomiting Stomach discomfort Gastrointestinal bleeding 

Chen et al. 99 2 (2.0 %) – 1 (1.0 %) 1 (1.0 %) – – 
Fang et al. 305 146 (47.9 %) 101 (33.1 %) 59 (19.3 %) 32 (10.5 %) 12 (3.9 %) 2 (4.0 %) 
Huang et al. 38 1 (2.6 %) – – – – – 
Wang et al. 138 14 (10.1 %) 55 (39.9 %) 14 (10.1 %) 5 (3.6 %) 3 (2.2 %) – 
Xiao et al. 73 26 (35.6 %) – – – – 10 (13.7 %) 
Zhang et al. 140 18 (12.9 %) – 24 (17.3 %) 7 (5.0 %) 8 (5.8 %) –  
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2.4. Pathogenic links between the microbiota and gut-lung axis in COVID- 
19 

China’s Diagnosis and Treatment Protocol for COVID-19 (the 7th 
trial version) indicates that maintaining the intestinal microecological 
balance is one way to prevent secondary bacterial infections in COVID- 
19 patients. Why is the intestinal microbiota so important for COVID-19 
development? The role of the gastrointestinal tract and intestinal 
microbiota is closely linked. Although independent of one another, the 
digestive and respiratory tracts will influence each other through the 
gut-lung axis [19]. Therefore, we believe that enhancing gastrointestinal 
microecology will contribute to improved predictions for COVID-19 
patients. 

Although a limited case series from China reported that certain 
COVID-19 patients had decreased Lactobacillus and Bifidobacterium mi-
crobial dysbiosis [20], no definite research has shown that the intestinal 
microbiota is indeed linked to COVID-19. Nevertheless, previous 
research has shown that ACE2, the SARS-CoV-2 receptor, can adjust 
intestinal microbe homeostasis through amino acids [21]. Strong 
microbiota may ferment to generate fatty acids (SCFAs), and most SCFAs 
are metabolized. Unmetabolized SCFAs promote the development of 
naive CD4 + T cells to regulate cells in the peripheral circulation and 
bone marrow. Thus, immune response in the lungs would be impaired if 
the intestinal microbiota stability is disrupted (Fig. 1). 

As previously described, cytokines and inflammatory cells increase 
in COVID-19 patients, which is correlated with sepsis and ARDS com-
plications [16,17]. Studies have shown that cytokine storms can be 
inhibited by butyric acid provided by the intestinal microbiota [22]. 
Therefore, the incidence of sepsis and ARDS may be minimized by the 
intestinal microbiota, both of which have a high mortality risk in 
COVID-19. Moreover, some researchers consider the connection be-
tween sepsis and intestinal microbiota disorders to be jointly promoted 
[23]. This indicates that disease of the gastrointestinal microbiota cau-
ses the development of sepsis, and in effect, the stable structure of the 
intestinal microbiota is disrupted, followed by the creation of a 
destructive cycle (Fig. 1). In conclusion, we speculate that the intestinal 
microbiota is important for preventing and decreasing COVID-19 
complications. 

2.5. Patients with pre-existing gastrointestinal diseases 

Additionally, pre-existing disorders influence the prognosis of 
COVID-19 patients. Previous research has indicated that patients with 
cancer are more likely to be compromised than average individuals [24]. 
An analysis conducted in China indicated that 18 of 1590 COVID-19 
cases had a history of cancer, which revealed a higher incidence of 
cancer in COVID-19 patients than in the total population of China [25]. 
Among the 18 cancer cases, 3 had colorectal cancer [25]. COVID-19 
gastrointestinal cancer patients can be more vulnerable to serious 
incidents. 

The high-risk population for COVID-19 consists of persistent in-
flammatory bowel disease (IBD) patients [17]. As of 6 October 2020, 
2575 patients with IBD suffering from COVID-19 have been reported 
globally according to the Coronavirus and IBD Reporting Database 
(https://covidibd.org/current-data/). A cohort study including 525 IBD 
patients from 33 countries found that corticosteroids but not TNF an-
tagonists were associated with severe COVID-19 outcomes [26]. In 
China, various strategies were implemented to minimize the possible 
risk of SARS-CoV-2 infection in IBD patients since the COVID-19 
outbreak. Why are IBD patients more infectious? The ileum and termi-
nal colon of IBD patients is fragile [27], and ACE2 protein expression 
increases at inflammation sites. Moreover, ACE2 expression can also be 
improved at non-inflammatory sites [17]. In fact, IBD is typically treated 
with immunotherapy. This method can affect the body’s response to 
pathogen resistance and increase the risk of infection [28,29]. There-
fore, patients with IBD are more prone to SARS-CoV-2 infection, from 
the viewpoint of viral receptors and immunotherapy, but there is no 
consistent proof to date. 

3. Hepatic injury in COVID-19 patients 

3.1. Clinical features and pathological changes in hepatic injury in 
COVID-19 patients 

Previous reports have shown that approximately 60 % of patients 
with SARS developed liver damage, and RT-PCR detected positive SARS- 
CoV in liver tissues [30,31]. Similar to SARS-CoV, evidence has emerged 
that SARS-CoV-2 is associated with hepatic injury. According to the 

Fig. 1. Injury mechanism of SARS-CoV-2 on gastrointestinal tract Three possible mechanisms for the damage of SARS-CoV-2 to the gastrointestinal tract. 1. Viruses 
dysregulate intestinal microbiota. Increase the risk of cytokine storms and damage the immune system (especially in the lungs). 2. Viruses directly cause gastro-
intestinal tract cell disease and cause abdominal pain, vomiting, etc. 3. Viruses secrete inflammatory factors and chemokines in large quantities. Neutrophils increase 
the risk of sepsis and ARDS. It can also cause hypercytosis and multiple organ failure. 
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relevant data, the proportion of COVID-19 patients with various degrees 
of hepatic injury was estimated at 58%–78% [32]. Studies have found 
that some patients with COVID-19 had increased aspartate amino-
transferase (AST) and alanine aminotransferase (ALT) levels, both of 
which displayed mild elevation [3,5]. Furthermore, Zhang et al. [33] 
found that gamma-glutamyl transferase (GGT) was increased in 30 (54 
%) of 56 COVID-19 patients. They also suggested that COVID-19 pa-
tients may have a higher overall bilirubin levels and lower serum al-
bumin. Similarly, Zhou et al. found that elevated ALT levels and a 
reduced platelet count and albumin were correlated with a higher death 
rate [34]. For COVID-19 cases, liver damage is typically moderate and 
does not generally require care [35]. However, a case of severe liver 
damage with serum AST and ALT levels up to 1445 U/L and 7590 U/L, 
respectively, was also reported [5]. Parohan et al. [36] analysed 3,428 
COVID-19 patients including 1455 severe cases. Significantly higher 
serum AST, ALT, and total bilirubin levels but lower serum albumin 
levels were found in the severe group [36]. Moreover, activation of 
coagulation and fibrinolysis accompanied by thrombocytopenia was 
observed in severe COVID-19 cases [7]. Liver damage can be aggravated 
by the increase of COVID-19 infection severity, which indicates that the 
degree of liver damage may serve as an indicator of COVID-19 
progression. 

Autopsies of COVID-19 patients have provided conclusive evidence 
of secondary hepatic injury. Xu et al. [37] conducted an autopsy on a 
50-year-old woman who died of COVID-19. The results revealed that the 
patient had severe microvascular steatosis and mild liver lobular and 
portal activity. Liu et al. [38] autopsied a COVID-19 patient who was 
referred to the hospital for multiple cerebral infarction. They observed a 
grey liver and a swollen gallbladder, but there was no sign of liver 
failure. Wichmann et al. [39] conducted autopsies on many COVID-19 
events with pre-existing cardiac disease and found hepatomegaly, 
persistent inflammation, and fatty change. The current sample size has 

been small, and more histological samples are needed to understand the 
pathological changes in the liver due to SARS-CoV-2. 

3.2. Direct viral infection 

As mentioned above, SARS-CoV-2 uses the same receptor, ACE2, as 
SARS-CoV, which leads to direct infection of ACE2-positive cells [2]. 
Existing studies have shown that ACE2 is abundantly expressed on liver 
cells (2.6 %), bile duct cells (59.7 %) and liver endothelial cells [40,41]. 
Chai et al. [40] found that ACE2 expression levels in bile duct cells were 
slightly higher than those in liver cells and were comparable with 
alveolar epithelial type II cells. Given that bile duct cells play an 
important role in immune defence and liver regeneration, their 
impairment may serve as a major cause of virus-induced hepatic injury 
in COVID-19 patients [42]. 

Available COVID-19 data indicate that hepatic injury may be medi-
ated through direct virus-induced cytopathogenic effects (Fig. 2). Wang 
et al. [43] identified typical coronavirus particles characterized by 
spiked structures in the cytoplasm of hepatocytes. The ultrastructure of 
SARS-CoV-2-infected liver cells included endoplasmic reticulum 
expansion, mitochondrial swelling and a decrease in glycogen granules. 
Moreover, wide apoptosis of liver cells and abnormal binuclear cells 
were observed, with a paucity of CD4+ and CD8+ lymphocytes identi-
fied via immunohistochemistry [43]. In summary, these findings sug-
gested typical hepatic injury characterized by viral infection. A previous 
study on SARS-associated viral hepatitis found significantly increased 
mitotic cells, eosinophilic bodies, and balloon-like liver cells in the liver 
[31], which also indicated liver cell apoptosis and thereby the triggering 
of hepatic injury. Further research on the pathology of impaired livers in 
COVID-19 patients is urgently required. 

Fig. 2. Potential mechanisms of hepatic injury in patients with 
COVID-19 SARS-CoV-2 is capable of binding specifically to ACE2 
on hepatocytes, bile duct cells, and liver endothelial cells to cause 
viral hepatitis injuries. Besides apoptotic liver cells, fatty change is 
more frequent in COVID-19 patients. Immune-mediated inflam-
mation and drug toxicity may also lead to hepatic injuries. The risk 
of severe COVID-19 could be higher for liver transplant recipients 
using immunosuppressive drugs and especially for those with 
metabolic complications.   
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3.3. Drug hepatotoxicity 

Although several therapeutic agents have been evaluated for the 
treatment of COVID-19, few have been proven efficacious. Researchers 
worldwide are urgently looking for specific antiviral agents to comple-
ment basic supportive care. Remdesivir, an investigational drug, has 
shown in vitro antiviral activity against SARS-CoV-2 and a shorter re-
covery time in clinical trials [44]. However, due to the limited experi-
ence of using remdesivir for COVID-19 treatment, its adverse reactions 
and potential interactions with other drugs remain unclear. A case re-
ported that a 64-year-old man with COVID-19 underwent an acute in-
crease in alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) levels after using remdesivir for five days [45]. 
The immediate withdrawal of remdesivir resulted in a rapid decrease of 
ALT and AST to normal levels, which suggested that the hepatic injury 
was most likely caused by remdesivir. Elevated hepatic enzymes have 
also been reported as a major adverse drug reaction in other cases using 
remdesivir [44,46]. Considering the hepatotoxicity of SARS-CoV-2 it-
self, some studies attribute this abnormal increase to the impact of viral 
infection rather than the drug’s side effect [46]. Montastruc et al. pro-
posed that whether it was affected by SARS-CoV-2 or not, compared 
with other drugs, remdesivir did increase the risk of hepatic injury [47]. 
Since the FDA and EMA have recommended the use of remdesivir for 
COVID-19, we should be aware of this possible association and conduct 
liver monitoring in time. 

In addition to remdesivir, other drugs commonly used to treat 
COVID-19 patients are also related to liver damage because of drug 
hepatotoxicity, which can explain the different symptoms observed in 
different cohorts to some degree (Fig. 2). Fan Z et al. [48] stated that 
liver damage in COVID-19 patients might result from the use of lopi-
navir/ritonavir. Targeted drugs, such as ACE inhibitors and angiotensin 
II receptor blockers, were reported to cause elevated liver enzyme levels 
in COVID-19 patients, indicating the occurrence of liver damage [49, 
50]. As mentioned before, the moderate microvesicular steatosis and 
mild lobular and portal activity reported in autopsies of COVID-19 
deaths are probably associated with drug-induced liver damage [37]. 
Indeed, antibiotics used for the treatment of SARS patients (macrolides 
and quinolones), antivirals (ribavirin), steroids, and other medications 
may also induce liver damage [51]. All of these medicines can trigger 
liver injury during infection, but there is still not strong evidence [52]. 
Despite inadequate data, the value of drug use optimization in managing 
COVID-19 cannot be overlooked. 

3.4. COVID-19 in liver transplant recipients 

Liver transplant recipients taking immunosuppressive medications 
demand extra consideration for COVID-19 treatment. Owing to the 
absence of related studies, it is uncertain if immunosuppression syn-
drome will affect COVID-19 clinical outcomes. Bhoori, S et al. [53] 
investigated clinical data focused on SARS-CoV-2-infected liver trans-
plant recipients and concluded that immunosuppression did not appear 
to increase the risk of severe COVID-19. Nevertheless, there was also a 
report of a liver transplant recipient with quickly worsening COVID-19 
symptoms [54]. The potential danger of an adverse outcome cannot be 
underestimated. Notably, an increased risk of serious COVID-19 may be 
associated with the presence of metabolic comorbidities known to occur 
over time since liver transplantation [55]. Post-transplant metabolic 
problems (e.g., hypertension, persistent renal insufficiency, asthma, 
hyperlipidaemia, and weight gain) can be contributing factors for 
extreme COVID-19 [55]. Based on recent research, the American Asso-
ciation for the Study of Liver Diseases (AASLD) proposed that immu-
nosuppressant therapy patients should be regarded as high-risk groups 
for severe COVID-19 and be offered the priority of nuclear acid testing 
[56]. 

Whether liver transplant recipients are more vulnerable to severe 
COVID-19 is still unclear to date, and the therapeutic use of 

immunosuppressant and anti-infective drugs deserves full consideration 
(Fig. 2). Qin et al. [57] reported a prolonged period of virus infection in a 
liver transplant recipient afflicted with COVID-19, and noticed that the 
viral load increased as the immunosuppressant dose increased. To 
effectively treat transplant recipients suffering from COVID-19, reduced 
dosage or partial exemption from immunosuppressants combined with 
the application of anti-infective drugs can be chosen as a feasible 
strategy [58]. Given that inappropriate immunosuppression causes graft 
rejection and aggravated infection, we should attach importance to the 
management and immune monitoring of liver transplant recipients with 
COVID-19. 

3.5. Patients with pre-existing liver diseases 

Liver comorbidities such as hepatitis virus infection can cause 
abnormal liver function that manifests as jaundice, hepatalgia and he-
patomegaly. COVID-19 probably interacts with hepatitis progression. 
An early study on SARS has shown that hepatitis B virus replication can 
be enhanced during infection [59]. SARS patients with HBV infection 
are, therefore, more likely to develop viral hepatitis and liver damage. 
Likewise, SARS-CoV-2 infection may act in the same way to exacerbate 
pre-existing liver diseases. A large cohort study incorporated 2780 
COVID-19 patients with pre-existing liver disease and related comor-
bidities [60]. It revealed that fatty liver disease or non-alcoholic stea-
tohepatitis accounted for 42 % of patients, as the most frequent liver 
disease in all studied patients. Importantly, the fatality rate was signif-
icantly higher in patients with pre-existing liver disease, especially in 
those with cirrhosis [60]. In addition, serum albumin levels in COVID-19 
patients with liver diseases can be low [33,36], which is not conducive 
to the maintenance of liver function. The underlying liver disorders and 
COVID-19 demonstrate a clear correlation. However, in COVID-19 pa-
tients with severe liver diseases such as hepatitis, there have been no 
records of liver failure to date. 

4. Conclusion 

In short, it is not sensible to disregard the potential function of SARS- 
CoV-2 in the gastrointestinal tract and liver. It may enter cells directly 
via the ACE2 receptor, and thereby influences the usual operation of the 
gastrointestinal tract and liver. Different mechanisms, such as cytokine 
storm, the gut-lung axis, etc., are also possible. In the meantime, dis-
orders of the digestive system and COVID-19 are frequently linked, can 
worsen patient prognosis, and increase the likelihood of death. The 
underlying mechanisms of the interaction between COVID-19 and 
digestive system diseases are still not precise. Thus, we hope that future 
studies focus on this issue and propose more effective preventive mea-
sures, medical treatments, and clinical strategies. 
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