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Interference between the glass, 
gel, and gas-liquid transitions
José Manuel Olais-Govea1,2,3, Leticia López-Flores1*, Jesús Benigno Zepeda-López1 & 
Magdaleno Medina-Noyola1

Recent experiments and computer simulations have revealed intriguing phenomenological fingerprints 
of the interference between the ordinary equilibrium gas-liquid phase transition and the non-
equilibrium glass and gel transitions. We thus now know, for example, that the liquid-gas spinodal 
line and the glass transition loci intersect at a finite temperature and density, that when the gel and 
the glass transitions meet, mechanisms for multistep relaxation emerge, and that the formation of 
gels exhibits puzzling latency effects. In this work we demonstrate that the kinetic perspective of 
the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible 
processes in liquids provides a unifying first-principles microscopic theoretical framework to describe 
these and other phenomena associated with spinodal decomposition, gelation, glass transition, and 
their combinations. The resulting scenario is in reality the competition between two kinetically limiting 
behaviors, associated with the two distinct dynamic arrest transitions in which the liquid-glass line is 
predicted to bifurcate at low densities, below its intersection with the spinodal line.

Compressing and/or cooling a liquid may lead to its crystalline solidification or to its gas-liquid phase separation1. 
Gases, liquids and (crystalline) solids are equilibrium phases, in principle understood in terms of molecular inter-
actions thanks to Boltzmann’s fundamental expression for the entropy, S = kB lnW, and to the maximum-entropy 
principle2. A simple and intuitive use of these principles is illustrated by van der Waals explanation of the origin 
of gases and liquids and their coexistence3,4. In practice, however, compressing and/or cooling a liquid may also 
lead to the formation of compact and relatively homogeneous amorphous solids (glasses) and of more tenuous 
sponge-like amorphous materials (gels), that pervade our daily life5–7.

So far, however, we do not know how Boltzmann’s principle operates to govern the formation of these 
non-equilibrium amorphous solids that do not maximize entropy. Such fundamental knowledge would allow 
us to systematically build an understanding (even at “van der Waals” level) of the exploding experimental and 
computational information8,9 on the general phenomenology of these non-equilibrium phases. One of the most 
illustrative examples is the amazing behavior observed when the ordinary equilibrium gas-liquid phase transition 
interferes with the non-equilibrium glass transition10, leading to remarkable multistep relaxation processes11–13 
and puzzling delay (or “latency”) effects14–16 during the formation of gels by arrested spinodal decomposition.

The main aim of this work is to demonstrate that a microscopic statistical mechanical framework to under-
stand this interplay between gas-liquid spinodal decomposition, gelation and the glass transition, results from a 
straightforward application of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) 
theory of irreversible processes in liquids17,18 to a Lennard-Jones–like (“LJ-like”) simple liquid (pair interac-
tion = harsh repulsion + longer-ranged attraction).

The NE-SCGLE theory originates from a generalization of Onsager’s description of irreversible processes 
and fluctuations, to genuine non-equilibrium and non-linear conditions. Applied to the description of irrevers-
ible processes in liquids, this canonical and abstract formalism becomes a generic first-principles theory of its 
structure and dynamics, at equilibrium and during the non-stationary processes of equilibration or aging. In 
the Supplemental Material (SM) we briefly review the genesis and achievements of this non-equilibrium theory, 
and guide the reader through the pertinent references. There we also write in detail the self-consistent system 
of equations (Eqs (SM6)–(SM11)) that summarizes the simplest approximate version of the NE-SCGLE theory 
employed in this and in previous studies18–22.
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As recently shown19, the transformation of equilibrium hard-sphere (and soft-sphere) liquids into “repulsive” 
glasses, provided by the solution of these NE-SCGLE equations, naturally explains some of the most essential 
nonequilibrium signatures of the glass transition (such as the aging of the structure and dynamics)5–7. When 
applied to LJ-like simple liquids, the same NE-SCGLE equations predict new dynamically-arrested phases, identi-
fied with gels and porous glasses20, and provides a kinetic perspective of the irreversible evolution of the structure 
of the system after being instantaneously quenched to the interior of its spinodal region21,22. The main aim of the 
following discussion is to illustrate the NE-SCGLE prediction that the seemingly complex interplay between 
spinodal decomposition, gelation, glass transition, and their combinations11–13, may be simply understood in 
terms of two kinetically competing limiting behaviors, associated with the two underlying dynamic arrest transi-
tions predicted to exist20 in the gas-liquid spinodal region by the very same NE-SCGLE Equation.

Results and Discussion
As in refs.20–22, here we also refer for concreteness to a representative Brownian LJ–like model system, namely, the 
“hard-sphere plus attractive Yukawa” (HSAY) potential
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whose state space is spanned by the number density n and the temperature T, expressed in dimensionless form as 
[nσ3] and [kBT/] (with kB being Boltzmann’s constant), and denoted simply as n and T. We shall also refer to the 
hard-sphere volume fraction φ ≡ πn/6. Complementing the recent study of the evolution of the non-equilibrium 
structure factor S(k; tw)21, in this paper we shall discuss the full solution of the referred NE-SCGLE equations at 
all waiting times tw, but focusing now on the kinetics (i.e., the aging) of the non-equilibrium dynamic 
properties.

Let us assume that this system, initially in equilibrium at the state point (n, Ti), is instantaneously quenched 
at time tw = 0 to a final temperature Tf under isochoric conditions and in the absence of applied external fields. 
Then the NE-SCGLE description of the irreversible evolution of S(k; tw) for waiting times tw > 0 is provided20 by 
the solution of Eq. SM6, i.e.,
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In this equation D0 is the short-time self-diffusion coefficient (see the SM) and k( )f  is the Fourier transform 
(FT) of  r n T( ; , )f , which is the functional derivative  δβµ δ| − ′| ≡ ′r r n T r n T n r[ ; , ] [ [ ; , ]/ ( )] of the local chem-
ical potential (in units of the thermal energy kBT ≡ 1/β), evaluated at the uniform density and temperature pro-
files n(r) = n and T(r) = Tf. As in refs20,21, k( )f  will be approximated by its exact hard-sphere value  φk( ; )HS  plus 
the FT of the attractive Yukawa tail, φ β= +k n T k u k( ; , ) ( ; ) ( )f f HS A  .

The dimensionless mobility function b(tw) in Eq. 2 is in reality a state function, determined by the full set 
of NE-SCGLE equations, constituted by Eq. (2) itself, together with Eqs. (SM7)-(SM11). From the analysis of 
the long-time asymptotic solutions of these equations, it was shown in ref.20. that the liquid-glass transition of 
Lennard-Jones–like liquids (solid line of Fig. 1(a) for the HSAY model) indeed intersects the spinodal line, as 
previously discovered by simulations10. The NE-SCGLE theory, however, goes beyond, to predict in addition 
that below the intersection point (φb, Tb), the liquid-glass transition bifurcates in two dynamic arrest transitions 
(dotted and dashed lines of Fig. 1(a), explained in detail in ref.20). In what follows we shall demonstrate that, in 
addition, the other observed fingerprints of the interference between the glass and the gas-liquid transitions are 
also part of the unified and detailed scenario predicted by the NE-SCGLE theory.

The three downward arrows in Fig. 1(a) represent instantaneous temperature quenches along the isochore 
φ = 0.2 from a common initial temperature Ti = 1.5, to the indicated lower final temperature Tf. Quench 1 repre-
sents the regime of shallow quenches. Its final temperature Tf

(1) = 0.6 lies near but below the first non-equilibrium 
transition (dotted line). This “type-A” transition20 falls on top of the gas-liquid spinodal curve T = Ts(φ), and for 
this isochore, Ts(φ = 0.2) = 0.764. Quenches 2 and 3 are representative of the regime of deep quenches, where Tf 
lies in the neighborhood of the lower-temperature (“type-B”) gel-glass transition T = Tc(φ)20 (dashed line). This 
is clearly just the continuation inside the spinodal region, of the “ordinary” liquid-glass transition (solid line of 
Fig. 1(a)).

The irreversible structural relaxation that follows these quenches manifests itself most dramatically, and with 
rather unexpected consequences, in the evolution of the non-equilibrium dynamics, which exhibits a complex 
time-temperature-density dependence, as illustrated and summarized by the mobility b(tw). For example, the 
thick solid line of Fig. 1(b), labeled Tf = 0.6, corresponds to quench 1, and illustrates the most salient kinetic fea-
ture of shallow quenches: the inverse b−1(tw), expected to mimic the structural relaxation time or the viscosity, 
exhibits a remarkable “latency” period, of duration tl, in which it reaches a pseudo-equilibration plateau with 
constant value bl

−1. Within this latency time, the particles are able to diffuse a distance ≡d b t /6l l l . At the end of 
this latency period, b−1(tw) diverges with tw as dynamic arrest now fully develops.

As illustrated by the other (thinner) solid lines of Fig. 1(b) (which represent other shallow quenches), tl, bl 
and dl depend on the final temperature Tf of the quench, increasing monotonically when Tf approaches Ts from 
below. A more detailed calculation, illustrated in the inset, reveals that the predicted tl(Tf) actually diverges at 
the spinodal temperature Ts as tl ∝ (1 − Tf/Ts)−α, with an exponent α ≈ 2.5. It is natural to expect that this kinetic 
behavior of b−1(tw) will also be observed more directly in the aging kinetics of the viscosity and of the α-relaxation 
time. In fact, it is quite remarkable that this predicted latency effect has actually been experimentally observed in 
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rheometry experiments during gel formation in weakly attractive nanocolloid suspensions14. Thus, for quenches 
along the isochore φ = 0.2, the experimental latency time, denoted in14 as tG(Tf), was observed to diverge as 
tG ∝ (1 − Tf/T*)−α with α ≈ 2.5 (see Fig. 7(a) of14). The agreement of our theoretical prediction with these results, 
presented in the inset of Fig. 1(b), and discussed in more detail in the Supplemental Material, allows us to identify 
the singular temperature T* empirically determined in ref.14, with the spinodal temperature Ts.

In contrast to approaching the spinodal line from below, let us now go in the opposite direction (i.e., decreas-
ing Tf toward Tc). We then observe that tl(Tf) and bl(Tf) decrease with Tf until the latency plateau transforms into 
a mild and fading inflection point. This is illustrated by the solid curves in the inset of Fig. 2(a). The dashed lines 
correspond to final temperatures below the gel-glass transition T = Tc(φ), and serve to illustrate the complete 
absence of latency effects below Tc. In fact, the main feature to highlight in Fig. 2 is precisely this striking kinetic 
difference, predicted to occur when Tf crosses the gel-glass transition line. This is illustrated by quenches 2 and 
3, chosen such that Tf lies, respectively, slightly above (Tf

(2) = 0.23) and slightly below (Tf
(3) = 0.18) this transition 

(which occurs at Tc(φ = 0.2) = 0.22). In Fig. 2(a,b) this kinetic difference is exhibited in more detail in terms of 
the different pattern of aging of the mean squared displacement W(τ; tw, Tf) ≡ <[R(tw + τ) − R(tw)]2>/6σ2 of these 
two quenches, plotted as a function of the correlation time τ (solid lines), for the same sequence of values of the 
waiting time tw (equally-spaced in log tw).
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Figure 1.  (a) Dynamic arrest transitions of the HSAY liquid (z = 2) from ref.20: liquid-glass (solid line) and 
gel-glass (dashed line) transitions, and “type A” dynamic arrest transition (dotted line), which coincides with 
the spinodal line T = Ts(φ) to the left of the bifurcation point (solid diamond). Downward arrows 1–3 represent 
instantaneous temperature quenches discussed in the text. (b) Thick solid line: waiting-time dependence of the 
(inverse) mobility b(t) for quench 1 (final temperature Tf

(1) = 0.6), exhibiting the plateau bl(Tf) lasting a latency 
time tl(Tf). The other lines correspond to other values of Tf in the neighborhood but below (softer solid lines) 
and above (dashed line) the spinodal. The inset compares the predicted divergence tl(T) ∝ (1 − T/Ts)−2.5 (solid 
line) with the experimental data of ref.14 (circles), fitted by the same power law (dashed line).

Figure 2.  Mean square displacement W(τ; tw, Tf) as a function of correlation time τ for waiting times tw = 0 
(line with dark circles), tw = 100.5n, with n = −3, −2, −1, … (solid lines), and tw = ∞ (dashed lines) after a 
quench to final temperature Tf

(2) = 0.23 (main panel (a)), Tf
(3) = 0.18 (main panel (b)) and Tf

(1) = 0.60 (inset (b)). 
For reference we also include the asymptotic curves Wa(τ; Tf) ≡ W(τ; tw = ∞, Tf) (dotted lines) for Tf = 0.18 in 
(a) and Tf = 0.18 and 0.23 in the inset of (b). The inset of (a) contrasts the behavior of (the inverse of) b(t; Tf) for 
Tf slightly above (solid lines) and below (dashed lines) the gel-glass transition line.
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As observed in Fig. 2(a), quench 2 presents a remnant of latency effects, observed as the inflection point in the 
tw-dependence of b−1(tw) in the inset of Fig. 2(a) (thicker solid line), and in the crowding of the solid lines for 
W(τ; tw, Tf

(2)) corresponding to t tw l, relative to the kinetics of quench 3, presented in Fig. 2(b). The latter is 
pretty similar to the more uniform and faster aging pattern predicted and observed in the formation of repulsive 
glasses (see, e.g., Fig. 15 of23). Such pattern involves an asymptotic localization length λHS of about 0.14 σ, a value 
reminiscent of Lindemann’s criterion of melting, suggestive of a hard-sphere caging mechanism of arrest24. This 
is consistent with the formation of compact, but porous, repulsive glasses. In fact, a localization length λHS ≈ 0.14σ 
is predicted all along the gel-glass and liquid-glass portions of the glass transition line, up to the hard-sphere 
glass-transition at (φ = 0.582, T = ∞).

The other most notorious fingerprint of the interference between gelation and glass transition, predicted by 
the NE-SCGLE theory, is also illustrated by quench 2 in Fig. 2(a). This is in reality another manifestation of the 
inflection point exhibited by b−1(tw) for Tf slightly above Tc. We refer to the build-up, at long waiting times, of a 
two-step long-τ relaxation of the main dynamic properties. Notice, for example, that for waiting times smaller 
than the latency time ( t tw l), W(τ; tw, Tf

(2)) bends towards the asymptotic MSD Wa(τ; T(3)) ≡ W(τ; tw = ∞,Tf
(3)) 

of quench 3 (dotted line, with localization length λHS ≈ 0.14σ), thus suggesting an initial tendency to arrest 
through a hard-sphere caging mechanism.

At waiting times tw much longer than the latency time tl, however, this behavior is “corrected”, now bending 
toward the “true” predicted asymptotic MSD Wa(τ; T(2)) ≡ W(τ; tw = ∞, Tf

(2)) of quench 2 (dashed line), whose 
localization length λgel is a few times larger, reflecting the localization of the particles within the transient particle 
network of the gel phase12. This is highly reminiscent of the early proposal25 that colloid gelation is the result of 
a two-level dynamical arrest process, first at the level of the colloidal particles leading to clusters, and then at the 
level of clusters undergoing a glass transition. This notion, first formalized using mode coupling theory26, and 
later framed27 in terms of the Cauchy-Born theory of amorphous solids28, has been recently confirmed by exper-
imental observations using different techniques29. The present NE-SCGLE approach, whose equilibrium version 
is conceptually closer to MCT (see a recent and detailed discussion in ref.30), provides a complementary kinetic 
perspective, predicting the two-stage aging of the dynamics without assuming a priori a two-level arrest scenario.

It is important to mention that this complex pattern of aging has been observed in the simulation of the 
non-equilibrium dynamics of suspensions of HS-like particles transiently bonded by cross-linking polymeric 
agents, whose net effect is an effective attraction between the particles (see, e.g., Fig. 4 of11 and Fig. 11 of13). 
Although not shown here (see, however, the SM), the corresponding two-step relaxation is also exhibited by the 
self-intermediate scattering function (self-ISF) FS(k, τ; tw) ≡ <exp ik · [R(tw + τ) − R(tw)]>.

The main features of the NE-SCGLE predicted scenario of the interference between the gas-liquid and the 
glass transitions may thus be summarized by the conclusion that the latency time and the double relaxation are 
in reality the most representative manifestations of two competing and complementary extreme behaviors. The 
first of them was discussed in Fig. 1(b), and refers to the appearance of latency effects associated with the dynamic 
arrest transition line T = Ts(φ) (at which the latency time tl(Tf) diverges). Thus, while for Tf above Ts the system 
will always reach a homogeneous equilibrium state, for Tf below Ts no homogeneous equilibration is possible. 
Instead, for Tf below but sufficiently close to Ts, no signs of arrest may be observed, due to the very long latency 
time tl(Tf), thus allowing the system to undergo full inhomogeneous gas-liquid equilibrium phase separation.

Notice in the inset of Fig. 2(b) that in this regime of shallow quenches, the two-step relaxation is virtually 
absent. The occurrence of inhomogeneous phase separation, however, renders this observation rather irrelevant 
in practice. Nevertheless, it is still interesting to notice that the divergence of tl(Tf) and dl(Tf) when Tf approaches 
Ts from below, is a non-equilibrium dynamic counterpart of the diverging equilibrium correlation length31 
expected when we approach the critical point (or any point along the spinodal curve) from above. Both originate 
in the thermodynamic instability represented by the spinodal line, information that enters in the NE-SCGLE 
theory through the thermodynamic input k n T( ; , )f .

The second complementary extreme behavior is associated with crossing the gel-glass transition line T = Tc(φ). 
Thus, very deep quenches (Tf below Tc, illustrated by quench 3) lead to the formation of porous structures made 
of compact “repulsive” glasses (localization length λHS ≈ 0.14σ). In contrast, slightly shallower quenches (Tf 
immediately above Tc, quench 2), are predicted to form “fluffier” and less rigid (i.e., more viscoelastic) and highly 
heterogeneous materials, with localization lengths λgel several times larger than λHS. The kinetic and dynamical 
fingerprint of these materials, which we identify with gels, is the two-step pattern of structural relaxation illus-
trated in Fig. 2(a) by quench 2.

According to the predicted scenario, quenches whose Tf lies midway between these two extreme regimes, 
will involve kinetic processes featuring a combination of these two limiting tendencies. However, since near the 
spinodal line the unrestricted tendency to gas-liquid phase separation is expected to prevail over the predicted 
non-equilibrium divergence of tl(Tf) and dl(Tf), we must conclude that some form of smooth crossover, from full 
gas-liquid separation to the formation of gels, must occur somewhere between Ts and Tc. Although this would 
then imply that there is nothing like a sharp gel line, we might determine the “epicenter” T0(φ) of this postu-
lated crossover, as indicative of the rather diffuse boundary between heterogeneous gas-liquid separation and gel 
formation.

In ref.20 an empirical criterion was suggested to determine T0(φ), based on the Tf-dependence of the infinitely 
“aged” (tw → ∞) mean square displacement, Wa(τ; Tf) ≡ W(τ; tw = ∞, Tf) (illustrated by the dotted and dashed 
lines in Fig. 2(a,b)). The arrested plateau Wa(τ → ∞, Tf) defines the long-time asymptotic value of the squared 
localization length, λ2(Tf) ≡ Wa(τ → ∞, Tf), whose Tf-dependence is illustrated in Fig. 3(a) for the isochore 
φ = 0.2. For Tf above but near Tc, λ(Tf) increases exponentially with Tf, whereas for Tf below but near Ts, λ(Tf) 
diverges as (1 − Tf/Ts)−ν with ν = 0.75. As explained in ref.20. (where λ2(Tf) is denoted as γa(Tf)), this allows us to 
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determine a crossover temperature T0 between these two regimes. Applying this procedure at other isochores led 
to the determination of T0(φ) reported in Fig. 10 of ref.20, and reproduced here as the empty circles of Fig. 3(a).

Let us now mention that the same notion, derived in ref.20 from long-time asymptotic properties, also emerges 
from the Tf-dependence of finite-waiting-time properties, more specifically, of the latency distance dl(Tf). This 
provides us with a similar but independent determination of T0(φ). To see this, in Fig. 3(a) we present the pre-
dicted dl(Tf) as a function of Tf along the isochore φ = 0.2. As explained in detail in the SM, the Tf-dependence of 
dl(Tf) also happens to exhibit an exponential to power-law crossover, and hence, we can also determine a corre-
sponding crossover temperature T0(φ). The result of this procedure are illustrated by the solid circles of Fig. 3(b).

Clearly, both routes determine essentially the same location of the crossover temperature T0(φ). Although 
we have not demonstrated that these points correspond to the gel line, this coincidence is reassuring, and we 
may take them as indicative of the diffuse boundary, above which the system is more likely to phase separate, 
and below which it is more likely to form a gel. With this provision, the coincidence of both methods to deter-
mine T0(φ), lends additional support to the scenario proposed in ref.20, that regions I (T0(φ) < Tf < Ts(φ)), II 
(Tc(φ) < Tf < T0(φ)), and III (Tf < Tc(φ)) correspond, respectively, to full gas-liquid phase separation, to gel forma-
tion, and to the formation of porous glasses. This predicted non-equilibrium phase diagram (NEPD) is strongly 
reminiscent of the experimentally-determined NEPD reported in Fig. 4 of ref.32 and of the theoretically-proposed 
NEPD presented in Fig. 3 of ref.27.

Conclusion
Let us conclude with a word of cautious optimism. The scenario presented here and in refs20–22 illustrates the 
general features predicted by the NE-SCGLE theory regarding the non-equilibrium structural and dynamical 
evolution leading to the formation of arrested states after quenching a LJ-like simple liquid inside its spinodal 
region. Some detailed features, however, may depend on the detailed conditions, whose discussion was left out of 
the scope of this manuscript. We refer, for example, to the variation of the form and range of the pair potential and 
of the specific thermal manipulation protocol (beyond the most primitive one considered in this work, namely, 
the instantaneous homogeneous temperature quench).

The good news is that there seems to be no fundamental obstacles to incorporate these effects in additional 
applications of the NE-SCGLE theory, as we expect to illustrate in separate communications. For the time being, 
we may conclude that the qualitative scenario provided by the non-equilibrium SCGLE theory, within its simplest 
version and assumptions, seems to provide a sound and illuminating perspective to the understanding of the 
interference between one equilibrium phase transition (the gas-liquid phase separation in the present case) and a 
non-equilibrium kinetic arrest transition (represented here by the glass transition).
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