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Abstract

Alzheimer’s disease (AD) is a major risk for the aging population. The pathological hallmarks of AD—an abnormal deposition of amy-
loid β-protein (Aβ) and phosphorylated tau (pTau)—have been demonstrated in the retinas of AD patients, including in prodromal
patients with mild cognitive impairment (MCI). Aβ pathology, especially the accumulation of the amyloidogenic 42-residue long allo-
form (Aβ42), is considered an early and specific sign of AD, and together with tauopathy, confirms AD diagnosis. To visualize retinal
Aβ and pTau, state-of-the-art methods use fluorescence. However, administering contrast agents complicates the imaging procedure.
To address this problem from fundamentals, ex-vivo studies were performed to develop a label-free hyperspectral imaging method
to detect the spectral signatures of Aβ42 and pS396-Tau, and predicted their abundance in retinal cross-sections. For the first time,
we reported the spectral signature of pTau and demonstrated an accurate prediction of Aβ and pTau distribution powered by deep
learning. We expect our finding will lay the groundwork for label-free detection of AD.
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Significance Statement:

The spectral signatures of Alzheimer’s disease (AD) pathological hallmarks, amyloid β-protein (Aβ), and hyperphosphorylated
(p)Tau protein have been characterized in the human retina by a hyperspectral camera. The unique optical properties of Aβ42 and
pS396-Tau hallmark proteins on the broad visible light range enable label-free and high-resolution detection and virtual staining of
abnormal deposition in the retina tissue, which will lay the groundwork for AD early diagnosis and AD development quantification.

Introduction
Alzheimer’s disease (AD) and associated dementia are estimated
to afflict 50 million people worldwide, a number projected to triple
by 2050. This age-dependent epidemic is a major concern for the
aging population, with an incidence that rises sharply after 65 y
of age, affecting roughly 50% of individuals aged 85 and older (1).
While currently there is no cure, with early diagnosis, the progres-
sion of the disease may be slowed and the patient life style may
be changed (2, 3).

Although AD has been historically perceived as a brain disor-
der, recent studies indicate that AD also manifests in the eye with
mounting evidence of abnormalities in the retina, a sensory ex-
tension of the brain (4–6). Particularly, the hallmark pathological
signs of AD, amyloid β-protein (Aβ), and neurofibrillary tangles
(NFTs) comprised of hyperphosphorylated (p)Tau protein, which
have long been described in the brain, have also been identified

in the retina (5, 7). There is a growing number of reports that Aβ

deposits and pTau were discovered in the retinas of AD patients at
various stages, in stark contrast to non-AD controls (5, 6, 8–16). As
the only central nervous system (CNS) tissue not shielded by bone,
the retina offers unique access to study pathological changes in
the brain, noninvasively and with unprecedented high spatial res-
olution. The evidence of Aβ accumulation in the retina at early
stages of AD (5, 13) and the accumulation of retinal NFT and pTau
(6, 8, 12) lends credence to the notion of the eye as a site for
presymptomatic stage imaging. Notably, Koronyo-Hamaoui group
and other teams revealed that retinal Aβ plaques, Aβ oligomers,
and pTau tangeles in transgenic AD-model mice appear at the
presymptomatic and early stage and prior to detection in the brain
(5, 17–19). Moreover, a correlation has been found between the
severity of cerebral and retinal Aβ burden, in both in-vivo and ex-
vivo examinations (6, 11, 20).
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It has been reported that in about 30% of aged cognitively nor-
mal people there is accumulation of Aβ in the brain, as measured
by positron emission tomography (PET)—amyloid imaging (6, 8,
20, 21). These individuals are considered to be either resilient to
disease process or in the preclinical stage of AD. Although some
older individuals can show accumulation of Aβ, in mild cognitive
impairment (MCI) and AD patients there are significantly higher
accumulation, which means increased Aβ levels were specific to
AD. Further, it is important to note that per the National Institute
on Aging (NIA) and the Alzheimer’s Association guidelines (22),
the presence of brain Aβ is a prerequisite for definitive AD diag-
nosis, which were shown to occur decades before the clinical stage
of the disease.

Despite holding great promise for early diagnosis of AD, visu-
alization of retinal Aβ and pTau deposits is nontrivial. Because
Aβ and pTau deposits have a similar visual appearance to nor-
mal tissue, conventional fundus photography provides little con-
trast. To increase visibility, state-of-the-art methods use exoge-
nous fluorophores, and they have visualized retinal Aβ and pTau
deposits with a high resolution (5–7, 15, 20, 21, 23–29). However, ad-
ministrating contrast agents in humans complicates the imaging
procedure, hindering its scalability for population screening. To
date, only curcumin, a natural fluorochrome, has been tested and
used in clinical trials to label retinal Aβ (6, 20, 21, 24, 25), whereas
fluorophores used to visualize retinal pTau in vivo are more lim-
ited. Therefore, there is an unmet need to develop label-free, high-
resolution imaging techniques to visualize retinal Aβ and pTau
deposits for early AD screening and disease management.

Over the past decade, hyperspectral imaging (HSI) has been in-
creasingly used in various medical applications, and it has shown
promising results for detecting various cancers (30–38), diagnosis
of cardiac (39, 40) and retinal diseases (41–43), and assessment
of brain functions and activities (44–46). The overall rationale of
using HSI for medical imaging is that the tissue’s endogenous op-
tical properties, such as absorption and scattering, change during
the progression of the disease, and the spectrum of light emitted
from tissue carries quantitative diagnostic information about tis-
sue pathology. Rather than measuring only light intensities at a
2D grid, HSI captures a series of images at different wavelengths
and forms a 3D datacube (x, y, λ) (x, y, spatial coordinates; λ,
wavelength) also known as a hypercube. The rich spatio-spectral
information obtained enables the classification of chemical con-
stituents of the tissue without fluorescence labeling.

By virtue of its label-free imaging ability, several pioneer groups
have explored HSI in examining the optical characteristics of Aβ

in paired brain and retina tissues from both transgenic AD mouse
models and human AD patients (16, 47–53). It has been found
that the effect of Aβ can be dictated by a characteristic light re-
flectance spectrum, and the magnitude of the spectrum varies
with the AD development, in stark contrast to non-AD population
where no evident differences are detected. However, the HSI ex-
periments performed so far lack validation against fluorescence-
staining ground truth images, and their methods are inadequate
to reveal the precise locations and types of Aβ deposits on the
retina. Moreover, despite being equally important in AD pathology,
to our knowledge, the spectral signature of pTau and its label-free
detection by HSI have not been reported.

In this paper, we present a quantitative study on HSI of Aβ and
pTau deposits in human retinal cross-sections from neuropatho-
logically confirmed AD patients. For the first time, we identified
the spectral signature of pTau and demonstrated an accurate
prediction of amyloidogenic 42-residue long (Aβ42) alloform and
pS396-Tau deposits in the retina by utilizing a deep-learning (DL)

approach. The Aβ42 and pS396-Tau markers were selected due to
their recognized role in AD pathogenesis. For validation, we com-
pared HSI prediction results with peroxidase-based immunostain-
ing (also referred to as DAB staining) and immunofluorescent
staining on the same imaging sections, which are both gold stan-
dards in quantifying Aβ and pTau deposits in retinal tissues (6,
8, 12, 13). By feeding the spatio-spectral features associated with
Aβ42 and pS396-Tau into a generative adversarial network (GAN),
our method can also transform a label-free HSI image to either
a DAB or an immunofluorescent stained image with high fidelity.
The work presented here, therefore, lays the foundation for using
HSI for noninvasive early AD diagnosis.

Results
Detection of retinal Aβ42 and pS396-Tau spectral
signatures by HSI
Using a custom HSI microscope equipped with a liquid crystal
tunable filter (detailed configuration in the “Methods” section), we
imaged unstained postmortem retinal cross-sections from neu-
ropathologically confirmed AD patients in the transmission mode.
The retina cross-sections were prepared undergone tissue iso-
lation, processing, and sectioning of superior-temporal (ST) and
inferior-temporal (IT) strips. The hypercubes obtained contain the
spatio-spectral information of endogenous chromophores in the
retinal tissues. To guide spectral profiling, we immunostained
retinal cross-sections specifically against Aβ42 and pS396-Tau
and labeled either with peroxidase-based DAB substrate (3,3’-
diaminobenzidine; brown) or immunofluorescence and reimaged
it under a brightfield or fluorescence microscope, respectively
(Zeiss Axio Imager Z1). We further registered the unstained hy-
perspectral images with the immunolabeled DAB or fluorescently
stained images (Methods) and located the enriched areas of Aβ42

and pS396-Tau in the hyperspectral images. The spectral signa-
tures of retinal Aβ42 and pS396-Tau were identified by averaging
the pixel spectra in those regions (Figures 1 and 2), where Aβ42

and pS396-Tau exhibit distinct spectral profiles (more results are
available in Figures S2 to S4). Noteworthily, although the spectrum
of Aβ42 has been previously reported, this is the first time the spec-
trum of pS396-Tau is identified.

Consistent with previous studies (6, 7), the immunolabeling
with DAB or immunofluorescence-stained images indicate that
pTau mostly aggregates in the retinal outer plexiform layer (OPL),
inner plexiform layer (IPL), and ganglion cell layer (GCL), and in
structures that resemble NFTs (Figure 1b and c). We also found
pS396-Tau in the innermost retinal layers, along the nerve fiber
layer (NFL), though it is variable from patient to patient and gen-
erally to a lesser extent (Figure S3a). We examined these loca-
tions in the unstained HSI images. Figure 1c shows the distribu-
tion of pS396-Tau deposit from the central to peripheral retina.
The pS396-Tau clusters exhibit a unique spectral profile that
significantly differs from that of “normal” retinal tissues—they
have a much higher and uniform transmittance for light in the
550∼650 nm range, resembling a “flat hat.” This dominating fea-
ture indicates that pTau-enriched tissues have a reduced opti-
cal density in this spectral range, likely due to a smaller absorp-
tion coefficient of constituent chromophores. This prompted us to
further examine the HSI images at these wavelengths. We found
that the pTau aggregated in the OPL—which appears dark brown
with DAB substrate and red in the immunofluorescence-stained
images—correlates with higher pixel intensities in the grey-level
HSI images (Figures 1b and 2). A similar correspondence has also
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Figure 1. HSI of (a) 12F4+-Aβ42 and (b) pS396-Tau deposits on postmortem retinal cross-sections of AD patients. The Braak stages for patients are both
V. AD patient in (a) is a female aged 90 with an Alzheimer’s Disease Neuropathologic Change (ADNC) score of A2, B3, and C3 (A: Aβ plaque score, B:
NFT stage, C: Neuritic plaque score). AD patient in (b) is a female aged 85 with an ADNC score of A3, B3, and C3. From left to right, unstained
hyperspectral intensity images, spectra at arrow-pointed locations (green for Aβ42, red for pS396-Tau, and black for control), and DAB labeled images.
The hyperspectral intensity images were normalized at each wavelength with respect to the value at its peak emission. The purple arrow is indicating
an NFT-like or cellular structure (b, right) in the OPL. (c) A tile image of a large portion of retinal cross-section strip from a confirmed AD patient
immunolabeled for pS396-Tau and DAB substrate. Scale bar of (a) and (b), 50 μm.

been identified in the pS396-Tau aggregated region in the NFL
(Figure S3a), corroborating our finding on the spectral transmis-
sion property of pTau. Notably, this is the first demonstration of
pS396-Tau in human retina.

Besides the spectrum of pTau reported above, we also observed
the known spectrum of Aβ. The DAB- or immunofluorescent-
stained images show that specifically 12F4+-Aβ42 is most abun-
dant in the retinal NFL, GCL, OPL, and the outer nuclear layer
(ONL; Figures 1a and 2a to d). Moreover, Figure 2f indicates that
the important vascular Aβ42 distribution is typical along the reti-
nal cross-section strip. The spectra extracted at these locations in
HSI images (Figures 1a and 2b) show a lower transmission in the
450 to 600 nm range, which were hypothesized to be caused by an
elevated level of Rayleigh scattering in Aβ42-enriched tissues (54).
We validated the consistency of the spectrum of Aβ42 in across all
retinal layers including within blood vessel walls (extended data
in Figures S2 and S4). Noteworthily, although the spectral signa-
ture of retinal Aβ has been previously reported, this is the first
time retinal Aβ42 has been reported and quantified at locations
verified by fluorescence and nonfluorescence ground truth.

GAN network for retinal histopathology image
prediction
Using the spatio-spectral information in hypercubes, we can
classify the HSI images and generate abundance maps of con-
stituent components. The images so obtained can be further ren-
dered to resemble DAB and immunofluorescence staining using
a pseudo-colormap. Among the state-of-the-art HSI classification
approaches, DL is the most attractive option because it is robust
against noise (55, 56). Conventional DL methods classify HSI im-

ages pixel-wise solely based on the pixel’s spectral information
(57, 58). However, this usually leads to unsatisfactory results due
to the missing link to the spatial features. Later endeavors im-
prove the model by classifying the images in patches, followed by
mosaicking the resultant abundance maps (59, 60). Nonetheless,
the resultant classified images suffer from a low resolution, and
it is challenging to form a histopathology-like image.

To solve these problems, we adapted a GAN for HSI classifica-
tion of Aβ and pTau and image transformation. GAN is a compet-
itive network consisting of a generator and a discriminator. The
discriminator network is trained to classify the real inputs and the
fake inputs generated by the generator network. This adversar-
ial training increases the generalization capability of the discrim-
inator and it is particularly effective when the training dataset is
limited.

For HSI classification, it is important to combine the complex
spectral information of every pixel with the neighboring pixels’
information in a considerably efficient way. Most spatio-spectral-
based classification methods use only a small neighboring region
to construct a spatio-spectral vector (61–63). Although this can
improve the classification accuracy than extracting only spectral
information, the classification accuracy is limited by the size of
the selected region. In contrast, the GAN network in our method
considers the spatio-spectral features in the entire region imaged
to assign a value for each pixel.

We developed a workflow to transform unstained human reti-
nal cross-sections into two types of standard histopathology im-
ages (immunofluorescence and DAB) (Figure 3). We first convert an
acquired hypercube (x, y, λ) to a three-channel image by principal
component analysis (PCA) to represent the significant differences
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Figure 2. HSI of Aβ42 and pS396-Tau deposits on postmortem retinal cross-sections of AD patients guided by immunofluorescence staining. (a) Merged
fluorescence images of four channels. (b) Unstained hyperspectral intensity images. (c) Spectral signatures of Aβ42 and pS396-Tau in the human retina
confirmed by combined fluorescence staining specific for 12F4+-Aβ42 and pS396-Tau. (d) Aβ42 channel of (a) with green pseudo color. (e) pS396-Tau
channel of (a) with red pseudo color. (f) A tile image of a large portion of retinal cross-section strip from a confirmed AD patient (female, Age: 90, Braak
stage: V, ADNC: A2, B3, C3) immunolabeled with combination antibodies against Aβ42 (green), pS396-Tau (red), and GFAP-astrocytes (white), and nuclei
counterstained with DAPI (blue). Scale bar, 50 μm.

of the imaged pixel spectra. This significantly reduces the data
load for training while preserving most of the variability (>85%) in
the original hypercube. We then pair this extracted three-channel
HSI image patch with the corresponding histopathology image
and pass this image pair to the adapted GAN network for train-
ing. After training, we have four models for Aβ42 and pS396-Tau
with two staining contrasts. The transformed histopathology-like
images are output from the models and stitched to form a mean-
ingful ROI.

In immunofluorescent image transformation, we employed the
green and red channels of the merged fluorescent images in

Figure 2a as the ground truth for Aβ42 and pS396-Tau classifi-
cation. In Aβ42 and pS396-Tau immunofluorescence stained (Cy5,
green and Cy3, red pseudocolors, respectively) images, there were
distinct signals for each marker and no autofluorescence signal
in the lumen of blood vessels (Figure 2a and d to e). Although,
autofluorescence signals were occasionally found at the blood
vessel lumen (Figure 2f). Such signals will mislead the network
training and prevent the true Aβ42 and pS396-Tau signals from
forming proper contrast in the analyzed region. To solve this is-
sue, we removed the lumen signals by labeling them as negative
and enhanced the contrast of true Aβ42 and pS396-Tau signals
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Figure 3. The DL workflow of Aβ42 and pS396-Tau deposits prediction. (a) (1) The process of retina cross-sections preparation: donor eye fixation,
neurosensory retina isolation to flatmounts, creating four retinal quadrants (S: superior, T: temporal, I: inferior, N: nasal), and sectioning of ST and IT
strips. (2) The retina cross-sections are imaged by our HSI microscope before immunostaining. Raw data are normalized and go through PCA process
to convert to RGB images. (3) and (4) are two different staining techniques used for comparison of the HSI analysis. (b) HSI images are registered with
fluorescence and DAB staining images. Patches of size 256 × 256 pixels are cropped from the HSI and staining images. Corresponding images form
training pairs for the GAN. (c) We input the ROI patches to the trained model and get the inference patches for Aβ42 and pS396-Tau with different
immune contrasts.

(Figure S4). The models were trained by feeding green and red
fluorescence data separately. The transformed immunofluores-
cent image patches of Aβ42 and pS396-Tau were stitched to a
larger field-of-view (FOV) and shown in Figure 4a and b, re-
spectively. In the zoomed insets, the predicted distributions of
two AD-hallmark proteins in the region of interest match well
with the ground truth. The Figure S7 shows the vascular wall
Aβ42 deposit prediction with a negatively labeled lumen, and the
Figure S9 shows various pS396-Tau deposits. In general, using
immunofluorescence-stained image as the ground truth yields an
accurate prediction for Aβ42 and pS396-Tau deposit distribution.
The specific signals in the actual histopathology image can also be
identified in the transformed image. For instance, we found corre-
spondence in the ground truth image for both the recovered Aβ42

signal pattern in Figure 4a and the transformed pS396-Tau in OPL
image in Figure 4b.

Besides immunofluorescence staining, we also stained the reti-
nal cross-sections with the same primary monoclonal antibodies
and using a highly sensitive immunoperoxidase-based DAB sub-
strate (6, 13). The DAB-stained retinas have only one channel for
the specific labeled protein, and we imaged them using a bright
field microscope. The image so obtained has accurate single pro-
tein contrast and provides a better view of tissue structures. For
DAB image transformation, the networks were trained to assign
classification values to pixels and learn the color scheme that
appeared in DAB images. The trained DAB models can map the
extent of Aβ and pTau deposits in a broad range with the DAB
brown-color scheme. In Figure 4c, the transformed DAB-pS396-
Tau image clearly shows layers of pTau deposits from the inner-
most layers to the OPL. In the OPL region, the structure of NFTs
can be identified and visualized by our model (zoomed insert).
There is also a signature band in the transformed DAB-pTau im-
age, highlighting the pS396-Tau aggregation in the OPL with ap-
parent deposit patterns. In some regions or patients, the inner
retina has comparable pS396-Tau aggregates to that in the OPL,
appearing in dark brown spots and most connected, as shown in
Figure 4c and Figure S8. More results showing pS396-Tau OPL ag-
gregation across retinal layers are provided in Figures S5c and
S8. On the other hand, the DAB-Aβ (12F4 mAbs clone) images

show that Aβ42 deposits appear in most retinal cell layers of cross-
sections, a distribution that differs from pTau. The zoomed insert
image in Figure 4d shows the predicted NFL/perivascular Aβ42 ac-
cumulation, a location where prominent Aβ42 signals have been
found in our previous studies (6, 13). Additionally, Aβ42 distributes
in NFL and GCL to a large extent, which can be seen in other
FOVs as well (Figure S10b and c, right). In this human cohort,
Aβ42 deposits have also been found in the outer retina, especially
in the ONL close to the outer limiting membrane, including the
photoreceptor layer. Overall, Aβ42 in confirmed AD dementia pa-
tients usually presents in both the inner and outer layers of retinal
cross-sections.

The GAN network is essential for learning the complex spec-
trum difference and distinguishing biomarkers in the microenvi-
ronment of retinal tissues, assessing their distributions, and po-
tentially generating histopathology-like images to facilitate AD
diagnosis. To build the model, we excluded the regions to be
analyzed when preparing the training datasets. Also, to avoid
inaccurate classification caused by the overlay of channels in
immunofluorescence staining, we trained the network with the
Aβ42 and pS396-Tau channels separately. We enlarged all datasets
by data augmentation, mimicking the registration error between
HSI and ground truth images (Methods), which, in turn, made
the network more robust. The output prediction, a transformed
histopathology-like image, correlates well with the ground truth.
Compared with other spectral-based algorithms that take all
spectral bands into training, our method requires less extensive
computation, reduces network complexity, and makes training
more efficient.

Evaluation of the GAN-transformed
histopathology images
We adopted a structural similarity index measure (SSIM) to as-
sess the similarity between the transformed histopathology im-
ages by the GAN network and the actual stained images. SSIM
is a perception-based image quality metric (64), which has been
widely used to evaluate the structural similarities between syn-
thesized images in DL-based methods. SSIM equals one means
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Figure 4. Stitched ROIs of the trained GAN models output. (a) Aβ42 fluorescence model. (b) pS396-Tau fluorescence model. (c) pS396-Tau DAB model,
with a focus on a retinal NFT structure. (d) Aβ42 DAB model. From left to right: HSI intensity image, transformed HSI images, zoomed prediction
images of specific feature, ground truth images, and zoomed ground truth images of specific feature. Scale bar, 50 μm for large FOV images, 10 μm for
bordered inserts.

Figure 5. Averaged structural similarity index and peak signal-to-noise
ratio (in dB) of the four models with error bars (SD). DAB-pTau/Aβ:
models used to transform HSI image to peroxidase-based
immunostaining image. Fluo-pTau/Aβ: models used to transform HSI
image to immunofluorescence staining image.

a perfect match, whereas close to zero indicates hardly similar
images.

Figure 5a shows the averaged SSIM values for the four
trained models: DAB-pTau, DAB-Aβ, immunofluorescence-pTau,
and immunofluorescence-Aβ. DAB-pTau has the highest SSIM
value of 0.8714 (+/−0.0122), while immunofluorescence-Aβ has
the lowest SSIM value of 0.8128 (+/−0.0219). Overall, the DAB
models have a higher transformation performance than im-

munofluorescence models in our study when predicting the same
biomarker deposits, and Aβ42 histopathology images have lower
transformation accuracies than pS396-Tau in both stains. This is
possibly due to the fact that Aβ42 is more abundant in the retina
of AD patients than pS396-Tau, and it is highly dependent on dis-
ease development and assembly types, while pS396-Tau is found
to be more layer-specific. Due to sample deformation during im-
munofluorescence staining, the HSI images could not be precisely
registered to the immunofluorescence images, a fact that also
lowers the SSIM values of immunofluorescence models.

The quantitative evaluation implies that the DL framework can
transform the HSI images to histopathology images in high accu-
racy with a minimum SSIM of 0.8128. For the DAB-pTau model,
we obtained an SSIM of 0.8714, which indicates the network can
successfully recover the immunostaining color scheme and dis-
criminate retinal pS396-Tau deposits. For comparison, a previous
study that used a GAN network to transform quantitative phase
images to H&E images achieved an SSIM value of only 0.80 (65).

In addition to SSIM, the peak signal-to-noise ratio (PSNR) was
used as the second metric to evaluate the image quality of the
transformed histopathology images (Figure 5b). The images gen-
erated by the immunofluorescence-pTau model have the high-
est PSNR of 32.9626 (+/−1.03) dB. The immunofluorescence-Aβ

images have the second-highest PSNR of 26.3196 (+/−1.63) dB.
The DAB-pTau and DAB-Aβ models have a PSNR value of 23.3136
(+/−1.27) dB and 21.1323 (+/−1.29) dB, respectively. All four
models provide a PSNR value greater than 20 dB, indicating a
high image quality. The immunofluorescence models have better
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image transformation quality than DAB models regarding PSNR.
This might be because immunofluorescence-stained images have
a less complex color assignment and a black background com-
pared with DAB staining. Notably, the two pTau transformation
models still outperform Aβ models like that in the SSIM metric.
All SSIM and PSNR values were summarized in Table S1.

Discussion
We demonstrated an HSI platform that enables label-free, high-
resolution structural, and molecular imaging of Aβ and pTau de-
posits in human retinas. The advantage of HSI is its label-free
imaging ability by capturing tissue spectrum across a broad spec-
tral range. Our system illuminates the sample using a simple
broadband halogen lamp and scans the sample wavelength us-
ing a liquid crystal filter. The quantified intensity values from
the spectral channels imply the optical characteristics of the AD
biomarkers, Aβ and pTau. The discovered Aβ42 and pS396-Tau
spectral signatures are highly consistent in various regions of reti-
nal cross-sections and among the patients. We also examined the
consistence of the HSI data by reimaging the samples in an ex-
tended period of time (14 d), and we found that the spectral signa-
tures of both Aβ42 and pS396-Tau remain the same. More impor-
tantly, we are the first to report the pS396-Tau in the human retina
and its spectral signature. We further visualize pS396-Tau with a
label-free imaging technique. Our method, which can probe pTau
deposits, has the potential to advance AD quantification and diag-
nosis. Seeing its label-free imaging ability and system simplicity,
we also anticipate the presented HSI method will become an alter-
native or complementary approach to histopathological analysis
of Aβ and pTau in CNS organs and other tissues.

We imaged the entire strips of the retinal cross-sections of AD
patients, followed by immunofluorescence labeling. The AD char-
acteristic deposits of Aβ42 and pTau were found to occur at specific
locations of the strip. Selected regions without signals for Aβ42 or
pS396-Tau, which we refer to as “lack of signal” regions, served as
internal controls; this should be considered more rigor than using
another subject’s tissue. The main goal of this feasibility study
is not to differentiate between populations with or without AD,
rather, it is to identify for the first time the spectral signatures of
retinal Aβ42 and pS396-Tau and compare to previous signatures of
retinal Aβ deposits. The strip portions with little deposits can be
reasonably considered as normal Aβ42 and pTau deposits in the
aging development like in a non-AD patient, as our previous re-
sults show that the amount of normal accumulation significantly
differs from the AD characteristic deposits (9, 13). In future stud-
ies, we aim to scan variety of strips in attempt to quantify and
possibly distinguish between individuals with high and low AD
pathology.

In the current study, because the samples are optically thin and
directly accessible to the microscope, we normalized the spectral
intensities at each wavelength with respect to the value at the
peak emission. For in-vivo patient imaging, the normalization pro-
cess is complex because spectral transmission of the ocular lens
is generally unpredictable in the elderly population. Because pre-
vious studies show that both retinal Aβ and pTau are primarily
distributed in peripheral superior and inferior retinal quadrants
(5, 6, 9, 12), a possible solution for in-vivo spectral normalization
is to use a control area in the nasal retinal quadrant of the same
subject.

Our findings on the spectral signature of Aβ echo many pioneer
works in the field. For example, Xavier Hadoux et al. (16) discov-
ered a significant difference in ocular reflectance among patients

with and without moderate-to-high Aβ levels, and they confirmed
their findings through imaging the paired brain samples. As an-
other example, More’s group (47–49) reported the spectral signa-
ture of Aβ42 in both retina and brain tissues in human and trans-
genic mouse. Nonetheless, all these previous studies lack a direct
validation through immunostaining. Moreover, because the mea-
surements were performed in the widefield imaging mode, the
distribution of Aβ in retinal cross-sections remains elusive. Our
findings presented herein, therefore, provides the basis for the pre-
vious research.

In addition, we developed a framework to facilitate the classi-
fication of the spectral signatures of retinal Aβ42 and pS396-Tau
and transformed the unstained HSI images to histopathology-like
images. Our GAN network is robust to local misalignments in reg-
istration and staining overflow because we created augmented
training data to mimic those influences. This is especially use-
ful for immunofluorescent image transformations because the
staining process is more complex and less specific than the DAB-
staining. The inaccuracies in the staining and image acquisition
processes must be taken into consideration to avoid confusing
the network. Another benefit of using the transformation frame-
work is that it can be trained to generalize the variations of the
histopathology stained tissues across different sections and pa-
tients with sufficient datasets.

The Aβ42 and pS396-Tau in the two standard staining tech-
niques, DAB and immunofluorescence, were trained separately as
four models. Multichannel immunofluorescence transformed im-
ages of a single tissue region can be achieved by combining the
generated Aβ42 and pS396-Tau images in green and red channels.
An advantage of training separately, especially for immunofluo-
rescence stains, is avoiding overlapping between two channels.
With a well-trained transformation model, the histopathology im-
ages can be generated instantaneously, without the need for te-
dious pathological processing.

In conclusion, we developed a label-free HSI method as a
tool to report Aβ42 and pS396-Tau spectral signatures and a DL-
based framework to transform the unstained HSI image to a
histopathology-like image. Our method thus democratizes the im-
munofluorescence/DAB staining and makes them accessible to
general labs. Also, our entire workflow (Figure 3) is time-efficient.
Scanning the sample and computing the transformed images take
less than 30 min, which is only a fraction of the time typically
needed when the sample undergoes the conventional pathologi-
cal processing (2 to 4 d). We expect our method will lay the foun-
dation for future label-free AD screening and diagnosis using HSI
approaches.

Methods
Human eye donors
Postmortem human eyes were obtained from the Alzheimer’s Dis-
ease Research Center (ADRC) Neuropathology Core in the De-
partment of Pathology (IRB protocol HS-042,071) of Keck School
of Medicine at the University of Southern California (USC, Los
Angeles, CA). USC-ADRC maintains human tissue collection pro-
tocols that are approved by their managerial committees and
subject to oversight by the National Institutes of Health. Histo-
logical studies at Cedars-Sinai Medical Center were performed
under IRB protocols Pro00053412 and Pro00019393. For the histo-
logical examination, 12 retinas were collected from deceased pa-
tient donors. The retinas from 10 donors with clinically and neu-
ropathologically confirmed AD (n = 2), MCI (n = 3), and cognitively
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normal (CN; n = 5) were used in the early stage of the training
phase of immunostaining (demographic data on human donors
are given in Table S3). Addionally, n = 3 neuropathologically con-
firmed AD dementia patients were used for histological and HSI
analyses followed by network training; donors’ age, gender, eth-
nic background, premortem and final diagnosis, Braak stage, Clini-
cal Dementia Rating (CDR) and/or Mini-Mental State Examination
(MMSE) score, and postmortem interval (PMI) of tissue collection
are detailed in Table S4. All samples were deidentified and could
not be traced back to tissue donors.

Clinical and neuropathological assessments
The USC ADRC Clinical Core provided clinical and neuropatho-
logical reports on the patients’ neurological examinations, neu-
ropsychological and cognitive tests, family history, and medica-
tion lists. Most cognitive evaluations had been performed annu-
ally and, in most cases, less than 1 y prior to death. Cognitive test-
ing scores from evaluations made closest to the patient’s death
were used for this analysis. Two global indicators of cognitive sta-
tus were used for clinical assessment: the CDR scores (0 = nor-
mal; 0.5 = very mild dementia; 1 = mild dementia; 2 = moderate
dementia; or 3 = severe dementia) (66) and the MMSE scores (nor-
mal cognition = 24–30; MCI = 20–23; moderate dementia = 10–
19; or severe dementia ≤ 9) (67). In this study, the composition
of the clinical diagnostic group (AD, MCI, or CN) was determined
by source clinicians based on findings of a comprehensive battery
of tests including neurological examinations, neuropsychological
evaluations, and the aforementioned cognitive tests. To obtain a
final diagnosis based on the neuropathological reports, we used
the modified Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) (68) as outlined in the NIA/Regan protocols with
revision by the NIA and Alzheimer’s Association.

Preparation of retinal cross-sections
Fresh-frozen eyes and eyes preserved in Optisol-GS were dissected
with anterior chambers removed to create eyecups. Vitreous hu-
mor was thoroughly removed manually. Retinas were dissected
out, detached from the choroid, and flatmounts were prepared
(13). By identifying the macula, optic disc, and blood vessels, the
geometrical regions of the four retinal quadrants were defined
with regard to the left and the right eye. Flatmount strips (2 to
3 mm in width) were dissected along the retinal quadrant mar-
gins to create four strips: ST, TI, inferior-nasal—IN, and superior-
nasal—NS, and were fixed in 2.5% PFA for cross-sectioning. Each
strip was approximately 2 to 2.5 cm long from the optic disc to the
ora serrata and included the central, mid, and far retinal areas.
All the above stages were performed in cold phosphate-buffered
saline (PBS) with 1 × Protease Inhibitor cocktail set I (Calbiochem
539,131). Eyes that were initially fixed in 10% NBF or 2.5% PFA were
dissected to create eyecups, and the retinas were dissected free.
Vitreous humor was thoroughly removed and flatmounts were
prepared. As described above, a set of flatmount strips, ST, IT, IN,
and NS, was dissected (2 to 3 mm in width), washed in 1× PBS, and
processed for retinal cross-sectioning.

Flatmount strips were initially embedded in paraffin using
standard techniques, then rotated 90◦ horizontally and embed-
ded in paraffin. The retinal strips were sectioned (7 to 10 μm
thick) and placed on microscope slides that were treated with
3-Aminopropyltriethoxysilane (APES, Sigma A3648). Before im-
munohistochemistry, the sections were deparaffinized with 100%
xylene twice (for 10 min each), rehydrated with decreasing con-

centrations of ethanol (100% to 70%), and then washed with dis-
tilled water followed by 1× PBS.

Hyperspectral imaging
We built an HSI system based on an Olympus IX83 microscope.
Figure S1 shows the photographs of the system parts. The sam-
ples are illuminated by a broadband halogen lamp, and the trans-
mitted light is collected by a 10× objective lens (Olympus, 0.25
NA). The output image is filtered by a liquid crystal tunable fil-
ter (KURIOS-VB1, Thorlabs) in narrow bandwidth setting (10 nm
FWHM at λ = 550 nm). The spectral range is from 420 to 720 nm,
with a wavelength scanning step of 2 nm. We collected the image
data using a monochrome sCMOS camera (CS2100M, Thorlabs).
In total, 151 spectral images were captured for one FOV. The en-
tire cross-section of the retina ST was scanned with a 1/3 over-
lap between adjacent FOVs for image stitching. A sample not in
imaging was attached to a glass slide without a cover glass and
kept in PBS 1× solution. When performing imaging, we placed a
cover glass on top of the sample and replenished it with PBS 1×
solution to keep the tissue moist. All retinal cross-section sam-
ples were kept in PBS 1× solution over 2 weeks and reimaged
multiple times. Upon completion of scanning, we stitched all the
FOVs at the selected wavelength to a whole strip view of the retina
cross-section.

Light source calibration
Because the sCMOS camera has different spectral responses to
different wavelengths, the acquired HSI data must compensate
for the system response. We used a benchmark fiber spectrome-
ter (O STS-VIS-L-25–400-SMA, Ocean Optics) to measure the lamp
spectrum at the sample stage and imaged the slides with a blank
FOV. The calibration coefficients for all the spectral components
were obtained by dividing the average image intensities by mea-
sured spectral values. The calibration coefficients were fine-tuned
by imaging a color checker (X-Rite Color Checker). The final cali-
bration coefficients were saved and used in the following HSI data
processing.

HSI data processing
The spectral signature of retinal tissue was examined in an aver-
age manner by area, consisting of a minimum of 3 pixels. Each
raw HSI tiff stack file contains 151 image slices. All the slices
were read in and formed into a data cube format for efficient pro-
cessing. The intensity at each spectral band was averaged over
the selected area. Then the intensity values were calibrated by
the precalculated calibration coefficients. The overall intensity
of the imaging spectral range was normalized. We used the
stained most adjacent slides (5 μm distance) as a guidance and
scanned the correspondence neighboring areas with marked de-
posits to reveal the spectral signature of retinal Aβ42 and pTau.
Analyzed regions were selected from mixed data cubes that were
captured over an extended time period (Figure S6). Control regions
were selected as regions from the immunostaining images with
neither Aβ42 nor pTau deposits and without cellular structures.
We also randomly scanned across the tissue vertically and hori-
zontally among the mixed data cubes to locate characteristic ar-
eas and plotted all the spectra. Then we classified the spectrum
into several categories. They were matched with the occurrence
coordinates. The spectral graphs in Figures 1 and 2 are represen-
tative examples of the reported Aβ42 and pTau spectral signatures.
More representative spectra graphs of various retinal locations
can be found in the Supplementary Material.
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Immunofluorescent staining of retinal
cross-sections
After deparaffinization, retinal cross-sections were treated with
antigen retrieval solution at 99◦C for 1 h (PH 6.1; Dako #S1699) and
washed in 1× PBS. Retinal sections were then incubated in block-
ing buffer (Dako #X0909) and adding 0.2% Triton X-100 (Sigma,
T8787), for 1 h at RT, followed by primary antibody incubation
overnight in 4◦C with the following combination: mouse anti-
Aβ 1–42 antibody, 12F4 (1:500, BioLegend #805,502), and rabbit
anti-pTau antibody, pSer396 (1:2500, AS-54,977). The 12F4 anti-
body is specific to the detection of amyloid beta x-42, without
cross reacting with amyloid beta x-40 or amyloid beta x-43. Reti-
nal sections were then washed three times by 1× PBS and incu-
bated with secondary antibodies (1:200; Cy5 conjugated donkey
antimouse and Cy3 conjugated donkey antirabbit, Jackson Im-
munoResearch Laboratories) for 2 h at RT. After rinsing with 1×
PBS three times, sections were mounted with Prolong Gold an-
tifade reagent with DAPI (Thermo Fisher #P36935). Fluorescence
images were repeatedly captured at the same focal planes with
the same exposure time using a Carl Zeiss Axio Imager Z1 fluores-
cence microscope with ZEN 2.6 blue edition software (Carl Zeiss
MicroImaging, Inc.) equipped with ApoTome, AxioCam MRm, and
AxioCam HRc cameras. Tiling mode and post-acquisition stitching
were used to capture and analyze large areas. Multichannel im-
age acquisition was used to create images with multiple channels.
Images were captured at 20 ×, 40 ×, and 63 × objectives for differ-
ent purposes. Routine controls were processed using identical pro-
tocols while omitting the primary antibody to assess nonspecific
labeling.

Peroxidase-based immunostaining of retinal
cross-sections
Retinal cross-sections after deparaffinization were treated with
target retrieval solution at 99◦C for 1 h (pH 6.1; Dako #S1699)
and washed with 1× PBS. In addition, treatment with 70% formic
acid (ACROS) for 10 min at RT was performed on retinal cross-
sections before staining for Aβ and pTau. For a list primary anti-
bodies and dilutions, see above under Immunofluorescent stain-
ing. Following the treatment with formic acid, the tissues were
washed with wash buffer 1× (Dako S3006) and adding 0.2% Tri-
ton X-100 (Sigma, T8787) for 1 h, then were treated with 3% H2O2
for 10 min and washed with wash buffer. Each primary antibody
was diluted with background reducing components (Dako S3022)
and incubated separately with the tissues overnight in 4◦C. Tis-
sues were rinsed with wash buffer three times for 10 min each on
a shaker, then incubated separately for 30 min at 37◦C with sec-
ondary Ab (antimouse ab HRP conjugated, DAKO Envision K4001
or antirabbit ab HRP conjugated, K4003). Next, tissues were rinsed
with wash buffer three times for 10 min each on a shaker. Liq-
uid DAB + Substrate Chromogen System (DAKO K3467) was used,
then slides were immersed in dH2O and washed with wash buffer
for 5 min, then washed with slow running tap water for another
5 min. Tissues were mounted with Faramount aqueous mounting
medium (Dako, S3025). Routine controls were processed using an
identical protocol while omitting the primary antibodies to assess
nonspecific labeling. Brightfield images were repeatedly captured
at the same focal planes with the same exposure time using Carl
Zeiss Axio Imager Z1 microscope equipped with AxioCam HRc
camera. Images were captured at 20 ×, 40 ×, and 63 × objectives
for different purposes. Tiling mode and post-acquisition stitching
were used to capture and analyze large areas.

Image registration
The retinal HIS cross-sectional images were co-registered with
the immunofluorescence/DAB-stained images of the same tissue
section, for the purpose of analyzing the spectral signature and
forming training pairs as the ground truth images for the trans-
formation framework training. One spectral channel image with
the most contrast was selected, and registered with immunos-
tained images using affine transformation. The intensity values
of immunofluorescence images (8-bit) were subtracting 255 from
each image pixel to get a complement image. First, apparent tis-
sue features such as blood vessels and edges are used to crop
the corresponding immunostained images to the same FOV of HIS
images. Then rotation, translation, and scaling operations are ap-
plied on immunostained images to produce a nonreflective sim-
ilarity transformation. In cases that the affine registration is not
sufficient by visual inspection, an optional control-point registra-
tion is applied using control point pairs selected from the tissue,
such as blood vessel edges. The control point registration is im-
plemented by a local weighted mean of inferred second-degree
polynomials from each neighboring control point pair to create a
transformation mapping.

GAN models
The GAN network used in our study is adapted from a conditional
GAN (69). The generator network is based on a U-net using Py-
torch. We incorporated an SSIM component into the generator
loss function as −ν × log[(1 + SSIM(G(x), y))/2]. Mean absolute er-
ror (L1) loss is used to regularize the generator to transform the
input image accurately and in high resolution. SSIM is used to bal-
ance the L1 loss of learning correct features rather than the pixel
accuracies. The loss function has the following form:

Generator:

L (G; D) = − log D (G (x)) + λ × L1 (G (x) , y)

− ν × log [(1 + SSIM (G (x) , y)) /2] ,

Discriminator:

L (D; G) = − log D (y) − log[(1 − D (G (x))] ,

where x is the PCA-compressed HSI image, y is the ground
truth image, and G/D denotes the forward pass of the genera-
tor/discriminator network, λ and ν are weights to control the
loss of L1 and SSIM terms. The network utilizes both spatial
and spectral information to classify Aβ/pTau. The transformed
histopathology images output from the generator were evaluated
by a three-layer discriminator. We trained the compressed HSI im-
ages of Aβ and pTau and the two corresponding immunostainings
separately and obtained four trained models. The four models
were used to transform the test HSI images to Aβ and pTau stained
immunofluorescence and DAB images. The weights for the loss
function components were set as 100 for L1 loss and 100 for SSIM
term. We achieved optimal results with learning rates of 5 × 10−6

for the immunofluorescence models and 1 × 10−5 for the DAB
models using the adaptive moment estimation (Adam) optimizer.
The batch size was set to one under the instance normalization.
The epoch number was in between 120 and 150, with 50 epochs for
decayed learning rate. Training time was approximately 47 h for
immunofluorescence models and 82 h for DAB models. The net-
work was implemented with one GTX TITAN graphical processing
unit (GPU) using Pytorch 1.6.0, and Python version 3.6.8 on a desk-
top installed with Ubuntu 16.04 operating system. The desktop is
equipped with CPU Intel Core i7-6900K@3.20 GHz and 64 GB RAM.
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Training data preparation
The input format of our GAN network is an image pair consist-
ing of one compressed HSI image and the corresponding ground
truth image in 8-bit. We compressed the HSI data by applying PCA.
The HSI image slices were cropped to only keep a small portion
of the background next to the retinal tissue, to ensure most HSI
data contained tissue spectral information. The first three princi-
pal components representing the spectral information were fed in
order into the red, green, and blue channels. The PCA-compressed
HSI image was cropped out as 256-pixel × 256-pixel × 3 patches,
the corresponding ground-truth patches were cropped from the
previous co-registered immunostained images. The selected ana-
lyzed regions of stained tissue were left and cropped as test image
patches, with 1/3 to 1/2 overlap. This is to avoid the discontinu-
ous intensities when stitching the transformed patches. The other
parts of image were cropped and separated into training and val-
idation set. Validation data was randomly selected from training
data. The numbers of image pairs used for the four models train-
ing are given in Table S2. The patches containing damaged tissue
regions and severely deformed staining tissue that leading to an
unreliable registration during staining process were discarded.

Data augmentation
We implemented the traditional data augmentation techniques
to enlarge our data size and make the network more robust to ac-
commodate the offset that remained after the image registration.
The operations include translation, rotation, flipping, scaling, and
stretching, most of which were also applied in the registration pro-
cess. These similar transformations make the network adapt to
the registration offset. By generating data under those conditions,
we increased our dataset size by a factor of 12 and improved the
spatial criteria confidence.

Image stitching
The ground truth images, immunofluorescent staining, and
peroxidase-based immunostaining retinal cross-sections, were
acquired at 20× using titling mode (multiple focus points were
set) and stitched by the image stitching tool on Zen Blue Soft-
ware to capture and analyze the entire retinal strip. For HSI reti-
nal cross-section images, we chose one image slice at one well-
contrasting wavelength and stitched all connected FOVs using the
Image Composite Editor software. We stitched the output images
from the trained GAN models with a self-derived algorithm. The
algorithm iterates to find the best connective coordinate by scan-
ning the corresponding overlap region of the two adjacent image
patches, then stitches the images at this position. For the several
cases when images have connective artifacts, we averaged the in-
tensities of neighboring columns of the connective coordinate.

Quantification metric
The model output transformation images are compared to the
corresponding ground truth using SSIM index and PSNR as simi-
larity and quality measures. SSIM compares the transformed im-
age with ground truth images in three measurements: luminance,
contrast, and structure. PSNR is a common tool to assess the im-
age reconstruction quality and it is used to assess the compres-
sion ratio of the transformed image. For each output image patch,
an SSIM value and a PSNR value were calculated. The average and
SD values were calculated for each model group. The SSIM met-
ric is calculated between the transformed image i and the ground

truth image j as

SSIM (i, j) =
(
2μiμ j + c1

) (
2σi j + c2

)
(
μ2

i + μ2
j + c1

) (
σ 2

i + σ 2
j + c2

) ,

where μi and μ j are the averages of i and j; σi and σ j are the SDs
of i and j; σi j is the covariance of i and j; and c1 and c2 are regu-
larization constants to avoid instability when the other variables
are close to zero.
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