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Abstract

When radiation is focally delivered to brain tissue at sub-ablative doses, neural activity may be altered.
When done at a specific brain circuit node or connection, this is referred to as “radiomodulation.” Radiation-
induced effects on brain tissue, basic science, and clinical research that supports the radiomodulation
hypothesis are reviewed in this article. We review progress in defining the necessary parameters in terms of
dose, volumes, and anatomical location. It may be possible to deliver therapeutic neuromodulation that is
non-invasive, non-destructive, and durable.
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Introduction And Background

Behavioral diseases and other functional disorders result in incalculable human suffering and tremendous
economic losses [1]. Recent advances in basic neuroscience inform us that the function of discrete,
pathological brain circuits underlie such functional disorders [2]. With this understanding, various
techniques have been developed for altering pathologic circuit function, and in doing so have fostered and
validated the concept of clinical neuromodulation. By manipulating the function of these circuits at specific
targets in human subjects, former hypotheses have been validated and are now the rationale for clinical
neuromodulation.

Radiosurgery has been proposed as a method of producing neuromodulation by Regis et al., who noted
radiosurgery effects on epileptic tissue that otherwise seemed to retain basic neurological function

[3,4]. Schneider et al. proposed that the radiation-induced neuromodulation principle could be applied to
targeted locations within known brain circuits for the treatment of some severe and refractory psychiatric
and behavioral conditions [5]. When a focal radiation dose is administered to a node or connection within a
known brain circuit for a specific intended effect, this is referred to as “radiomodulation.” More work is
required to establish that this research hypothesis can be effective, safe, and durable. In particular, it will be
important to establish correct network targets and the pertinent volumes and doses.

Review
Neuromodulation

One aspect of neuromodulation is the alteration of activity levels in the brain through targeted delivery of a
stimulus, e.g., electrical pulses. In this way, errant neural activity may be normalized. Neuromodulation may
be applied directly to the location of a neurological problem (e.g., a seizure focus in epilepsy [6]), or to a node
or edge in the brain circuit, in which modulation of the target produces an intended net output from the
circuit as a whole, such as the subthalamic nucleus (STN) in Parkinson’s disease [7]. Non-invasive
neuromodulation methods include repetitive transcranial magnetic stimulation (rTMS) and transcranial
direct current stimulation (tDCS). Both may be effective in certain clinical conditions, such as rTMS in
depression, and have low side effect profiles. However, they are relatively non-focal and thus reserved for
large swaths of the superficial cortex on the brain. They lack anatomical specificity, particularly at depth,
even when targeted using computerized stereotactic image guidance [8]. Furthermore, rTMS, in particular, is
not practical for continuous stimulation throughout the day, every day. The ability to treat clinical
conditions by modulating specifically targeted brain circuits remains limited. Surgically implanted electrical
stimulation of the brain, such as deep brain stimulation (DBS) and cortical stimulation, are approved for use
in most of the world for the treatment of Parkinson’s disease, essential tremor dystonia, obsessive-
compulsive disorder, and epilepsy. Implanted stimulation is also promising in investigational use for

chronic pain, depression, and addiction [9-11]. While potent and anatomically specific, this approach
requires invasive neurosurgical procedures, which are accompanied by the inherent risk of surgery within the
brain, including bleeding and infection. Further, implanted stimulators are expensive and typically require
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periodic hardware replacement procedures throughout the patient’s life.

From radiosurgery to radiomodulation

The virtues of these sundry neuromodulation methods range from high anatomic precision and potency to
less invasive, less potent, and less anatomically specific. It would seem reasonable that the optimal
neuromodulation is non-invasive and both highly focal and durable in its effect. With this objective, the
authors examine the utility of non-ablative, small-field ionizing radiation delivered to brain tissue. This
class of procedure is termed “radiomodulation” by a small number of researchers currently exploring the
field.

Stereotactic radiosurgery has been used for decades for functional neurosurgery [12,13], including
thalamotomy for chronic pain [14-16], pallidotomy for movement disorders [17], and ventral anterior
capsulotomy for obsessive-compulsive disorder [18,19]. However, these procedures were intended to
truncate or ablate neural connections by inducing cell death [12,13,18]. By contrast, the sine qua non of
radiomodulation is the alteration in function of living, viable neurons and glia.

Radiation-induced effects

Almost a century of research on the biological effects of ionizing radiation on tissue has revealed five factors
that are critical in determining the net effect [20,21]: (1) repair of sublethal cellular damage, (2) repopulation
of cells following radiation, (3) redistribution of cells within the cell cycle, (4) reoxygenation of the surviving
cells, and (5) the radiosensitivity of the tissue and cells within. Accordingly, the post-radiation period
involves a complex set of changes to neurons, glia, immune cell populations, and vascular and perivascular
cells.

Immediate and early radiation effects occur from the first few minutes to the first few days following
exposure. Irradiated tissue absorbs energy, causing changes in enzyme activity, primarily deactivation
involving nicotinamide adenine dinucleotidase, adenosine triphosphatases, acid and alkaline phosphatases,
cathepsin-type C esterases, glutamate dehydrogenases and synthases, and succinate dehydrogenases. Some
enzymes increase in activity due to metabolic reactions. Enzymes are destroyed via free radicals

produced through changes in structure by splitting off amino acids and through denaturation. There is an
increase in activity of other enzymes, an accumulation of substrates of these enzymes (primarily glycogen
and glycoproteins), and changes in the distribution of electrolytes. Perhaps, most famously, there is
radiation damage to the karyoplasm, with damage and loss of DNA. In neurons, there is acute edema and
tigrolysis within 30 minutes as ribosomes are lost [21]. In the vasculature, arteries spasm and capillaries
show endothelial cell changes within minutes of exposure, with lysosomes increasing and pinocytic vesicles
multiplying. Endothelial cells are desquamated, thrombi appear, and interstitial spaces surrounding the
capillaries disappear. As a consequence, there is retardation of blood flow. Among glia, astrocytes manifest
the first signs of irradiation, with hypertrophic cytoplasm and feet, as well as nuclei with dilated pores.
Microglia show dystrophy with pyknotic nuclei and swelling of cell bodies. Unlike astrocytes,
oligodendrocytes do not show observable early changes [21].

Radiation-induced edema is frequently evident in clinical experience. Because magnetic resonance (MR)
imaging principally reflects a shift in hydrogen resonance, it is sensitive to changes in water in the white
matter. As a result, asymptomatic MR hyperintensity on T2-weighted MR imaging following radiation
usually represents edema. In most cases, the edema completely resolves over time and does not equate with
necrosis [22]. Post-radiation white matter changes may result from an increase in extracellular fluid rather
than the locally delivered dose as inflammation has been shown to assume a neuroanatomic distribution and
not a radiation dose-related distribution pattern [4].

Late radiation-induced changes may be seen after months and may continue progressively for more than a
year [23]. Necrosis usually occurs one to two years after radiation, but latency as short as three months and
as long as 30 years has been reported [24,25]. Vascular degeneration is manifested by telangiectasis, capillary
proliferation, wall thickening, perivascular edema, thrombosis, and petechial hemorrhages. Conversely,
capillaries and small venules may widen. Glial atrophy, which first appears in short-term effects, may
continue for years. Leukoencephalopathy is white matter injury, with histopathology showing thinning of
white matter, loss of oligodendrocytes, reactive astrogliosis, and areas of necrosis [27]. Generalized atrophy
of nervous tissue probably caused by glial cell depletion without clear signs of vascular injury or necrosis

can occur even at low doses and after long follow-up times [23].

These features of focal radiation-induced changes, both short-term and late-term, are exploited in the
clinical setting today, mainly to control cancer cell growth or to promote the destruction of vascular
formations. However, there is both animal and human research that radiation may also modulate neuronal
transmission in unique pathways.

Animal studies that suggest a radiomodulation effect

Key pre-clinical studies that suggest a radiomodulation effect are summarized in Table I. They show
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evidence of inhibition of sodium channels, reduced synaptic transmission, hyperpolarization of neurons,
necrosis at high target volumes, reduced epileptiform spiking, reduced pre-synaptic and post-synaptic
responses, reduction of inhibition, and shortened action potentials.

Reference Paradigm Effect observed
Mullin et al. 1-100 Gy to the whole brain of a live rat. Observations ex-vivo
Radiation causes an inhibitory effect on voltage-sensitive sodium channels
[27] immediately post-radiation
Tolliver et Guinea pig at various dose rates. Observations ex-vivo in hippocampal
Reduced synaptic transmission efficiency
al. [28] slice immediately post-radiation
Pellmar et Guinea pig hippocampus: 5-65 Gy to the whole brain of a live animal. Radiation causes chronic hyperpolarization of neurons and reduced ability of synaptic potential to generate a spike; however, synaptic
al. [29] Observations in slice immediately post-radiation efficiency increases
‘Yamaguchi Small cell infiltration after 6 months. Necrosis at 9-15 months, with vascular narrowing. More cells in the reproductive phase post-
Dog: 15 Gy to the whole brain. Observations 3-30 months post-radiation
etal. [30] radiation. DNA transcription at a maximum after 9 months and a minimum after 3 months
Chen et al. { driven firing ilepti spiking by 55%, with effect sustained for months. Reduced seizure
Rat epilepsy model: 20 Gy and 40 Gy gamma knife with 4 mm collimator
[31] frequency. Cell death in 7% of the targeted tissue

Brismanet  Rat hippocampus: 90 Gy proton beam to rat brain, observations 3

Higher voltages required to elicit post-synaptic potentials. Reduced response pi i and post:
al. [32] months post-radiation

Dagneetal. Rat: whole-brain radiation at 60 Gy, observations at 1 day and 1 week
60 Gy produced a reduction of GABA 5 slow inhibition

[33] post-radiation
Yehetal. Pigs: 10-120 Gy 7.5 mm diameter targets in M1 and internal capsule. PET
Doses 60 Gy and above reduces FDG-PET signal at M1 target. Doses 10-40 Gy increases PET signal
[34] and MRI: baseline to 9 months post-radiation
Gilly et al. Squid: 140-300 Gy to 9 mm diameter target on stellate ganglion 24 hours Action potential recorded from the giant motor axon in response to electrical stil ion showed an i i rate of fall and
[35] post-radiation a shortened action potential duration

TABLE 1: A summary of animal studies suggesting a radiomodulation effect.

DNA: deoxyribonucleic acid; FDG-PET: 18 F-fluorodeoxyglucose-positron emission tomography; GABA,: gamma-aminobutyric acid type A; MRI:
magnetic resonance imaging; PET: positron emission tomography

Any of these effects observed could plausibly result in up-regulation or down-regulation of the targeted
brain region. For example, the inhibition of sodium channels in an inhibitory brain circuit node would
plausibly result in net up-regulation of the output of that node.

Animal studies have also suggested a novel bimodal effect of radiation on motor cortex activity, depending
upon the dose. Yeh et al. utilized 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET)
imaging to identify areas of increased or decrease brain metabolism following stereotatic radiosurgery in a
healthy Lee Sung miniature pig model [34]. Following the identification of the left primary motor cortex (M1)
nine pigs were treated using isocentric target doses of either 0, 10, 20, 30, 40, 60, 80, 100, or 120 Gy (Dyax)

to the left (unilateral) 10 Gy to 120 Gy (Dyyay) Using a 7.5 mm collimator. The animals were followed for nine

months with MR imaging sequences to assess for structural changes and with FDG-PET as an indicator of
metabolic activity, both every three months. In a demonstration of bimodal effects of focally delivered
radiation on neural metabolic activity, it was shown that the ratio of PET standardized uptake value at the
targeted M1 relative to the non-targeted contralateral side was significantly lowered from baseline at a dose
of 60 Gy or greater at nine months post-radiation. By contrast, doses of 10 to 40 Gy (but not 0 Gy) yielded
increased PET signal relative to the contralateral. A lesion using T2-weighted MR imaging was visible only in
the animal treated with 120 Gy at nine months post-radiation (Figure /) [34]. No changes in motor function
were observed. While exploratory, further study of these animals with histological analysis will provide
insight into dose tolerance thresholds with respect to structural tissue changes (pending publication,
personal communication).
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Reference

Smith et al. [36]

Borchers et al. [37]
Gorgulho et al. [38]
Steiner and Lindquist [39]
Steiner et al. [40]
Barbaro et al. [41]

Warnke et al. [42]
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FIGURE 1: Yeh et al. showed 10-40 Gy increases and 60-120 Gy
decreases in metabolism by PET in a focal cortical brain region. A 7.5-
mm diameter radiosurgical target in the left primary motor cortex. FDG-
PET signal at target relative to the contralateral region followed up to
270 days post-radiation.

FDG-PET: 18 F-fluorodeoxyglucose positron emission tomography; M1: primary motor cortex; PET: positron

emission tomography; SUV: standardized uptake value at target zone versus contralateral zone

Reprinted with permission with annotations (Yeh et al. [34])

Clinical studies that suggest a radiomodulation effect

There are also observations in human patients that suggest radiation-based neuromodulation. For example,
a subset of patients being treated for trigeminal neuralgia, for unclear reasons, experience near-immediate
pain relief following radiosurgery. By contrast, the known cellular changes expected from this procedure
require several months to manifest. This observation suggests that radiosurgery may modulate neuronal
transmission in grossly intact neurons. Additional clinical evidence may be seen following radiosurgical
treatment of brain arteriovenous malformation (AVM) with associated seizures. Post-procedure, seizure
frequency decreases, despite the persistence of residual AVM. It may be that the seizure focus in the
neuronal tissue around/within the malformation is affected by the radiation dose received, independent of
the intended long-term sclerotic effect on the vascular tissue.

Some key clinical observations that suggest a radiomodulation effect in humans are summarized in Table 2.

Effect observed

Paradigm

SRS for trigeminal neuralgia Immediate effect of SRS on trigeminal nerve pain
AVM with seizures SRS for AVMs reduces seizure frequency
Pharmacoresistant unilateral MTLE at 24 Gy to the 50% isodose SRS reduces seizure frequency

Radiation it density of i i at the target

y of sei; ing gliomas

TABLE 2: A summary of supporting clinical literature supporting a radiomodulation effect.

AVM: arteriovenous malformation; MTLE: mesial temporal lobe epilepsy; SRS: stereotactic radiosurgery

There is growing evidence that focal brain activity may be modulated via radiosurgery in the absence of a
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visible lesion on MR imaging or computed tomography. Radiomodulation studies to date, however, have
been designed in narrowly constructed paradigms, and there remains much to be learned. While both the
animal and human studies offer clues, they are disparate in their designs and execution. Perhaps most
conspicuously, they vary greatly in terms of dose, treatment volume, anatomical target, and intended effect.
Limitations in our understanding include knowledge of the lower threshold of the dose required to modulate
specific nodes within specific brain circuits and the upper thresholds at which cellular damage and lesion
formation occurs. Is the gray matter of the superficial cortex of the same or different radiosensitivity than
the cingulate cortex or subcortical nuclei? The long time course required to evaluate for the development of
post-radiation changes, particularly at the histological level, also makes investigation challenging and
necessary. Other hurdles to adoption include direct comparison to existing approaches, namely, DBS. While
focal radiation is not “reversible” like DBS, it does not share the same surgical risks as passing an electrode
deep within the brain. With a better understanding of effective doses and targets, focal radiation may prove
to be an effective neuromodulation tool.

Conclusions

Radiomodulation may provide an opportunity for the non-invasive treatment of dysfunctional brain circuits
in human disorders. In principle, this would permit the neuromodulation of targeted brain circuits in
functional conditions including movement disorders and some psychiatric disorders. Much work remains to
be done in order to define necessary parameters and brain targets.
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