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a b s t r a c t 

Using computer-vision and image processing techniques, we aim to identify specific visual cues as induced 

by facial movements made during monosyllabic speech production. The method is named ADFAC: Automatic 

Detection of Facial Articulatory Cues. Four facial points of interest were detected automatically to represent head, 

eyebrow and lip movements: nose tip (proxy for head movement), medial point of left eyebrow, and midpoints 

of the upper and lower lips. The detected points were then automatically tracked in the subsequent video frames. 

Critical features such as the distance, velocity, and acceleration describing local facial movements with respect to 

the resting face of each speaker were extracted from the positional profiles of each tracked point. In this work, 

a variant of random forest is proposed to determine which facial features are significant in classifying speech 

sound categories. The method takes in both video and audio as input and extracts features from any video with 

a plain or simple background. The method is implemented in MATLAB and scripts are made available on GitHub 

for easy access. 

• Using innovative computer-vision and image processing techniques to automatically detect and track keypoints 

on the face during speech production in videos, thus allowing more natural articulation than previous sensor- 

based approaches. 
• Measuring multi-dimensional and dynamic facial movements by extracting time-related, distance-related and 

kinematics-related features in speech production. 
• Adopting the novel random forest classification approach to determine and rank the significance of facial 

features toward accurate speech sound categorization. 
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trajectories. Speech Communication. 2019, 113, 47–62. 
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Introduction 

Background 

Different research articles have reported different methods to acquire and analyze visual speech 

articulatory movement data. In one commonly used method (e.g., [6] ), human annotators watch a

video recording of a speaker and then annotate the facial speech articulatory movements. This method

has several limitations that make them unsuitable for replication in a different lab. For example,

the movements observed by the human annotators are limited by their attention field, and thus are

judged in a subjective manner. Moreover, the observed movements are only limited to the number

of occurrences of a particular event (e.g., number of times head moved up and down), whereas

quantitative measurements such as the intensity, magnitude, and temporal information of the motion 

are not possible. 

Sensor-based approaches are considered more quantifiable and precise in measuring and tracking 

the movements than human annotators. A variety of sensor-based methods are reported in the 

literature such as the use of electromagnetic (electromagnetic articulography, EMA) and optical 

(OPTOTRAK) motion tracking systems. For example, the study of tone-vowel co-production by Shaw 

et al. [17] used EMA. This method involves putting sensor coils on the various parts of a speaker’s

face and mouth, including lips, tongue, and jaw. An induction current is induced in the sensor coils

by external coils placed around the head. The amount of current induced can be used to estimate

the position of the sensor and its movement over time, thus making it possible to measure the

spatial variations of articulatory displacement and distance with millimeter precision. Additionally, 

a number of studies (e.g., [1 , 2 , 10] ) used the OPTOTRAK (Northern Digital Inc.) system. This system

involves putting infrared emitting sensors/markers on various locations of the head and face. For 

example, OPTOTRAK has been used to capture eyebrow and jaw movements for sentence focus, 

with measurements of the displacement and peak velocity of these movements [10] . Another similar

sensor-based method using the motion capture system involves attaching retro-reflectors (Qualisys 

AB) to the speaker’s face for recording, allowing analysis of lip, eyebrow, and head displacement

magnitude and movement velocity [16] . These sensor-based systems have limitations of their own. 

The placement of actual physical sensors on the speaker’s face or tongue may interfere with the

natural facial movements and may cause discomfort over long durations. Furthermore, although 

sensor-based methods are more precise in capturing motion than annotation-based methods, only 

limited regions where the sensors are placed can be analyzed. 

The current method 

Our proposed method (ADFAC) tackles the current limitations in articulatory measurements by 

making the measurements free from any sensor placement so that the articulations can occur in
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atural settings without any discomfort to the speakers. In this paper, recent advancements in

omputer vision and image processing techniques are leveraged to propose an automatic way to

uantify various movements of keypoints on the face. Our method has the advantage that it does not

nvolve any human annotators or placement of any sensors. Furthermore, with the proposed method,

ifferent f eature types and dimensions such as distance-based, time-based and kinematics-based can

e extracted from the articulatory movements recorded in the video. These features are useful in

nderstanding speech articulation and perception. 

ADFAC can be used in several under-explored research areas for understanding the role of visual

ues in speech production. Firstly, it is unclear which specific visual cues reflect individual linguistic

eatures. Since previous research employed a variety of data acquisition and analysis techniques and

ocused on different facial regions, there is a lack of consistency and comparability in the findings

cross studies. 

The present method uses computer-vision and image-analysis techniques to systematically identify

nd examine the features extracted from motion captures of speakers’ productions of Mandarin tones

n single words [8] . Mandarin tone is used as a test case in this study because the production of lexical

one, as a prosodic entity, has been claimed to involve additional visual cues (e.g., head and eyebrow

ovements) beyond mouth movement cues primarily associated with segmental speech production.

hus, our method captures a wide range of visual facial cues in speech production. The novelty of our

ore method lies in connecting all the building blocks (e.g. keypoint detection, tracking and feature

xtraction) together to create a functional pipeline. Further, the method is customized to provide more

recise segmentation boundaries and to handle problematic cases by analyzing image frames using a

olistic combination of heuristics. 

In addition to tracking and feature extraction, we also proposed a novel analysis method based

n random forest for classification task. Random forest has several advantages including that it can

ifferentiate and quantify which features are important for a particular class, which has not been

reviously examined. In our analysis we used a variant of random forest that can also test the

ignificance of each feature along with the feature importance. 

ethod details 

ideo analysis 

The ADFAC was implemented in MATLAB. This fully automatic computer-vision based method is

ivided into the following steps: 1) Segmenting videos into separate tokens; 2) Detecting keypoints

n the face such as the tip of the nose, cupid bow of the lips and the center point of the eyebrow;

) Tracking keypoint over the duration of the utterance of a token; 4) Computing features from the

racked keypoints. 

egmenting speech tokens on video 

In our collected data, multiple word tokens were recorded in a single video. So the first step

s to segment each of the tokens into a separate video token file. This is done automatically with

he help of the audio signal as suggested in Garg et al. [7] . Briefly, the method works by looking

t the amplitude of the audio signal and wherever the magnitude goes over a certain threshold

alue (that was determined empirically and was set at 20% of maximum amplitude), the video

ignal is segmented. Anything lower than the determined threshold value is considered noise such

s sounds of the keystrokes of the keyboard or cough and is subsequently removed from the video

ecordings, leaving behind the video recording of the token-word utterance. In order to accommodate

egmentation-related errors, a fixed number of frames are added on either side of the segmented

ideo. In our experiments, the video frame rate was 29.97 frames/s and the audio signal was sampled

t 16 kHz. Additionally, a fixed buffer of 10 frames i.e. equivalent of 0.3 s of the video token is added.

his step of video segmentation is optional if the data is already saved in separate word tokens instead

f one continuous video. 
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Identifying regions-of-interest 

Once the tokens are segmented, the video of a sample token is read frame by frame. On the first

frame of the video, different regions of the face are identified that will be used to localize keypoints

on the face. In the proposed method, focus is given specifically to three regions-of-interest (ROI);

namely, the head, the eyebrows and the lips. These regions are sufficient in most articulatory studies

but can be easily extended to other regions such as chin. To identify the regions, we used cascade

filters as proposed by Lienhart et al. [11] . The output of a cascade filter is a bounding box around

the ROI. Once a rough bounding box is obtained, part-specific detectors are then used to refine these

localizations and to obtain keypoints from the bounding boxes. Next, we discuss these part-specific

detectors in detail: 

Face : In order to reduce the search space and make the detection of ROIs more reliable, the location of

the face is detected first. The face detection is implemented using Local Binary Pattern (LBP) cascade

filters [14] . In our recorded videos of human speakers, there is one face in each of the video frames.

In case of multiple detections by the cascade filter, the bounding boxes are merged together to yield

one box. The number of detections can be controlled by the merge-threshold parameter in MATLAB.

In order to detect one bounding box, a predefined range of values for merge-threshold is used one

by one until an output with just one bounding box is obtained. In the MATLAB implementation, the

merge-threshold controls the number of bounding boxes where multiple detections around the area of 

interest are detected. As the name suggests, the co-located detections that meet the threshold value

are merged to produce one bounding box around the target object. The larger the value of merge-

threshold the more detections will be merged and fewer bounding boxes corresponding to the region

of interest will be returned to the user. However, in real experiments, one fixed value does not always

work so the best merge-threshold value is iteratively decided automatically. Merge-threshold is set 

to a low value and its value is incrementally increased until the function returns one bounding box

corresponding to one face in the video. Once a face bounding box is obtained, all further searches are

narrowed down within this box. Limiting the search space to the face region helped reduce a large

number of false positive detections. In our experiments, merge threshold was varied from 1 to 150

with increments of 10. 

Head: Since the nose lies at the center of the head and cannot move independently of the head, the

movement of the nose is a good estimate of the movement of the head. Previous studies (e.g., [3 , 19] )

have also used the nose as a marker for head movement. Further, the nose can be located by using

a predefined LBP cascade filter in MATLAB. Again, the value of the merge-threshold is varied to get

one bounding box. In order to track the movements of the head, one consistent point on the nose is

needed that can be detected in different speaker videos. For this purpose, the nose tip is chosen as

it lies on a well-defined edge. The lower edge of the nose is detected using an active contour model

where initial contour is defined by the bounding box detected earlier and is subsequently refined

iteratively. The smoothness of the contour is a parameter that can be controlled in MATLAB. In our

experiments, an edge-based model with smoothness factor of 2 was used to evolve the contour at

each iteration step. The contour was evolved up to a maximum of 500 iterations. 

Eyebrows: Eyebrows are detected in two steps. In the first step, the eyes are located and in the second

step the position of the eyebrows is found based on the information obtained from the first step.

The eyes are again located using a set of LBP cascaded filters. MATLAB contains two different types

of LBP filters: One that detects the location of the pair of eyes together and another set of filters

that detect the left and right eye separately. Although we are interested in the eyes separately, our

experiments show that detecting the eye pairs first is more robust with fewer false positives and

immensely improves the detection of separate eyes. This is due to the fact that the individual eye

bounding box should lie within or near the detected eye-pair bounding box. Again, merge-threshold

is used to robustly detect the eye pairs bounding box. The merge threshold is varied from 1 to 150

and the increments are adaptively chosen based on the number of bounding boxes returned by the

function. When we have a reliable eye-pair bounding box then left-eye specific filters are used to

detect the left eye only. This left-eye specific filter returns multiple bounding boxes for the left eye

which are then refined and selected based on the distance from the top left corner of the bounding
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ox of the detected eye-pair to the left eye bounding box. The box with a minimum distance was

elected. Once the bounding box around the eye is obtained, local information is used to refine the

osition of the eyebrows based on several different factors such as color and contour. Using the local

nformation, the contour of the eyebrow (i.e. the superciliary ridge line) is extracted as described

elow. 

1) Based on color: Since the eyebrows are darker in color, their pixel intensities are relatively

smaller in value than the skin around it. This information is used to narrow down the location

of the eyebrow. A patch of PxP pixels ( P = 10% of the height of the detected eyebrow box) is

compared to the adjacent patch below it. If the sum of pixels in a patch is larger than in the

adjacent patch below it then that patch is considered a potential candidate for the eyebrow

line. Similarly, every pixel inside the eye bounding box and adjacent area on top of the box is

evaluated. Every pixel is then assigned a probability of it belonging to the eyebrow ridge line. 

2) Based on edge: Since the skin is detected better in HSV space, the RGB image around the eye is

first converted to HSV using rgb2hsv MATLAB function and then a Canny edge detector is used

to determine the edges around the eyebrow. The detected edges in the top half of the box mark

the area where the superciliary ridge line has the highest probability. 

3) Based on active contour model: Active contour model is used to detect the top edge of the

eyebrow. The eyebrow bounding box estimated from the position of the eye acts as an initial

contour in the active contour model. This contour is then refined with every iteration. A

maximum of 400 iterations are run. The Chan and Vese region-based energy model [5] is

used to stop the contour on the eyebrow ridge line boundary. All the probabilities from the

above three methods are added up and the line with the largest value is considered to be the

superciliary edge of the eyebrow. 

ips: The last region of interest is the lips. To get the initial bounding box around the lips, the mouth

ascade detector is used as suggested in CastrillÌon et al. [4] . The lips can be better segmented in HSV

pace rather than RGB space as the edges of the lips are well defined in HSV space. So, in the first step

he video frame is converted from RGB to HSV space. Then the HSV space is binarized by thresholding

 and S space using imbinarize function. If more than 48% of pixels were turned ON by the

hreshold operator in both H and S space, the intersection of the ON pixels in both H and S space

s selected; otherwise, the ON pixels from the dominant space are selected. The binary image thus

btained is fed into bwareafilt MATLAB function. bwareafilt function labels different binary

bjects by size and picks the object with the largest size. In our case, the largest size corresponds to

he lips. The binary mask thus obtained is then dilated with a spherical structuring element of size

. This dilated mask acts as an initial contour for the active contour model which is then refined to

btain a smoother contour of the lips. 

racking keypoints 

The detection of ROIs is performed only on the first frame of the video. Instead of tracking all the

etected points, representative points were selected from each ROI. These extracted representative

eypoints are then tracked automatically in the video. The keypoints are decided based on where

arger movements are expected. For the nose and eyebrow, the geometric means of the contours

etected by the active contour model on the face, respectively, are selected as a keypoint. For the

ips two keypoints are selected, one on the upper lip and another one on the lower lip. The upper

eypoint is Cupid ’s bow corner of the lip and the lower keypoint is indicated by the center point

etween the two oral commissures. Fig. 1 shows all the selected keypoints that are tracked in the

egmented video. 

The tracking of the detected keypoints is performed using a feature tracking algorithm known

s Kanade-Lucas-Tomasi (KLT) as proposed in Lucas et al. [13] and Tomasi et al. [18] . The tracking

ethod is computationally efficient. It adopts a registration-based robust technique that uses intensity

radients to find a correspondence between two adjacent frames in the video. A set of motion

rajectories for each keypoint is obtained. Translational head movement is subsequently removed

rom the eyebrow and the lips by subtracting the head displacements from the displacement of the

yebrow and lip keypoints. 
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Fig. 1. Detected points of interest (POI) for tracking in video. 

Table 1 

POI detection and tracking accuracy as estimated using human annotations created by a volunteer on randomly drawn tokens. 

Detection accuracy using 

14 randomly drawn tokens 

Mean (SD) in % 

Tracking accuracy using 

2 randomly drawn tokens 

Mean (SD) in% 

Male Female Male Female 

Upper lip 0.71 (0.33) 0.86 (0.41) 0.45 (0.10) 0.77 (0.21) 

Lower lip 0.68 (0.59) 0.49 (0.28) 0.22 (0.21) 0.49 (0.13) 

Left eyebrow 0.54 (0.21) 0.61 (0.22) 0.64 (0.16) 0.44 (0.27) 

Nose 0.47 (0.27) 0.50 (0.22) 0.49 (0.223) 0.24 (0.17) 

 

 

 

 

 

 

 

 

 

 

Error analysis 

In order to measure performance of the automatic method, we compared the detection and

tracking results using manual annotation on a subset of data. A volunteer (not involved in the study)

was presented with the image on a computer screen and was asked to trace out the curves on the

left eyebrow, nose and the lips. MATLAB’s ginput.m function was used to record the clicks of the

mouse along the curve. To compare the results of the detection, the volunteer was presented with

the first frame of one randomly sampled token from 14 subjects (9 females, 5 males). For tracking,

we extracted frames #4, 8, 16, 64, and 128 from two randomly sampled video tokens: one of each

gender. These were manually annotated as described above by the same volunteer. 

The distance from the automatically detected POIs to each of the manually traced points on the

curve was computed and the minimum Euclidean distance between them was considered an error. 

These errors were computed in pixels. Next, the computed errors were converted to percentages based

on the image resolution of the videos (1080 × 1920). The errors are reported in Table 1 below. 

Errors remain well below 1%, ranging from 0.22% to 0.86%, suggesting that our automatic landmark

detection method is highly accurate and reliable. 
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Fig. 2. The measurements shown are normalized measurements (normalized to the head size). 
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xtracting features 

Fig 2 . shows an example of computed motion trajectories in a randomly selected video token.

he top panel of Fig. 2 shows the distance of the keypoint from the first frame that is used as a

eference frame. All motion is computed from the reference frame with the landmark points identified

n the reference frame as origin. The middle and bottom panels of Fig. 2 correspond to velocity and

cceleration, respectively. The velocity and acceleration are computed from the distance plot by taking

he time derivatives. The derivatives are computed by taking the difference in measurement between

he subsequent frames. 

Once the keypoint tracking trajectories and their derivatives are computed, different features

an thus be computed depending on what is of interest to the user. In the proposed method, we

ompute a number of features that summarize the trajectories obtained from each of the four tracked

eypoints. 

The computed features are categorized as distance-based, time-based and higher order kinematics-

ased. For the distance-based measures we capture the maximum distance traveled, minimum

istance traveled and other statistics such as average and total distance traveled from the initial

esting position. For time-based features, the relative time when the keypoint reached a maximum

r minimum in the video token is measured. This is to capture whether the rising or lowering motion

appened early on or later in the utterance. Lastly, the kinematic-based features are computed from

he distance trajectories such as maximum velocity, minimum velocity and maximum acceleration

uring the utterance. 
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Table 2 

The set of features used to represent each video token. ROI is a region of interest. Please refer to text for details. 

ROI Index Category How this feature is computed 

Head 1 Distance Maximum displacement of the head while head-raising from its 

starting position 

Head 2 Distance Maximum displacement of the head while head-lowering from its 

starting position 

Head 3 Distance Average distance head moved during the utterance 

Head 4 Distance Total distance traveled by head during the utterance 

Eyebrow 5 Distance Maximum displacement of the eyebrow keypoint from its starting 

position 

Eyebrow 6 Distance Maximum displacement of the eyebrow while eyebrow-lowering from 

its starting position 

Eyebrow 7 Distance Average distance eyebrow moved during utterance 

Eyebrow 8 Distance Total distance eyebrow moved during the utterance 

Lips 9 Distance Maximum lip-opening distance 

Lips 10 Distance Maximum lip-closing distance 

Lips 11 Distance Average distance lips moved during utterance 

Lips 12 Distance Total distance lips moved during the utterance 

Head 13 Time The relative time at which the displacement of the head while 

head-raising was maximum 

Head 14 Time The relative time at which the displacement of the head while 

head-lowering was maximum 

Head 15 Time The relative time at which the head velocity was maximum during 

head-raising 

Head 16 Time The relative time at which the head velocity was maximum during 

head-lowering 

Eyebrow 17 Time The relative time at which the displacement of the eyebrow while 

eyebrow-raising was maximum 

Eyebrow 18 Time The relative time at which the displacement of the eyebrow while 

eyebrow-lowering was maximum 

Eyebrow 19 Time The relative time at which the eyebrow keypoint reached maximum 

velocity during eyebrow-raising 

Eyebrow 20 Time The relative time at which the eyebrow keypoint reached maximum 

velocity during eyebrow-lowering 

Lips 21 Time The relative time at which the amount of lip-opening reached 

maximum 

Lips 22 Time The relative time at which the amount of lip-closing reached 

maximum 

Lips 23 Time The relative time at which the lip velocity during lip-opening was 

maximum 

Lips 24 Time The relative time at which the lip velocity during lip-closing was 

maximum 

Head 25 Kinematic Maximum head velocity during head-raising 

Head 26 Kinematic Maximum head velocity during head-lowering 

Head 27 Kinematic Maximum absolute acceleration of the head 

Eyebrow 28 Kinematic Maximum eyebrow velocity during eyebrow-raising 

Eyebrow 29 Kinematic Maximum eyebrow velocity during eyebrow-lowering 

Eyebrow 30 Kinematic Maximum absolute acceleration of the eyebrow 

Lips 31 Kinematic Maximum lip velocity during lip opening 

Lips 32 Kinematic Maximum lip velocity during lip closing 

Lips 33 Kinematic Maximum absolute acceleration of the lips 

 

 

 

 

A summary of all the extracted features is listed in Table 2 . These features were chosen to capture

the different variations that could be introduced by the pronunciation of different Mandarin tokens 

used in Garg et al. [8] . ( Table 3 ). 

In total, 33 features from the motion trajectories were extracted. Since the videos of the speakers

were recorded from slightly variable distances from the camera, the features were first normalized 

to adjust this variance in order to run further statistical analysis. Furthermore, to compensate for

different head sizes of the speakers, normalization was performed by dividing the obtained feature 

values by the shortest distance between the nose tip and the line joining the two eyes. The obtained
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Table 3 

Parameters that were used in the code at various steps. 

Code Listing Parameters 

Data 

Audio sampling rate 16,0 0 0 

Video sampling rate 29.97 frames/s 

Video Segmentation 

Short Time Energy window step size = 1 

Median Filter Filter order = 5 

Clusters related to noise threshold < 35% of 

maximum cluster length 

Face 

facedetector = vision.CascadeObjectDetector(’FrontalFaceLBP’, 

’MergeThreshold’,i); 

Merge threshold Merge threshold = 1 to 150 

with increments of 10 

Left eye vision.CascadeObjectDetector(’EyePairBig’, ’MergeThreshold’,a); 

Merge threshold Merge threshold = 0 to 150 

with increments of 10 

vision.CascadeObjectDetector(’LeftEye’, ’MergeThreshold’,i); 

vision.CascadeObjectDetector(’LeftEyeCART’, ’MergeThreshold’,i); 

Merge threshold Merge threshold = 4 to 150 

with increments of 10 

Eyebrow 

Color probability threshold 0.2 

rgb2hsv(img); 

edge(img(:,:,3),’canny’); 

activecontour(rgb2gray(img),mask,400); iterations = 400 

Nose Merge threshold Merge threshold = 1 to 150 

with increments of 10 

activecontour(rgb2gray(img),mask,500,’edge’,’SmoothFactor’,2); iterations = 500 

Lips vision.CascadeObjectDetector(’Mouth’, ’MergeThreshold’,i); 

Merge threshold Merge threshold = 4 to 150 

with increments of 10 

rgb2hsv(img); 

strel(’sphere’,7); 

bwareafilt(lip,1); Number of objects to 

keep = 1 

imdilate(bwconvhull(big),se); spherical structuring 

element of radius = 7 

activecontour(rgb2gray(img),mask,500,’edge’,’SmoothFactor’,2); Number of iterations = 500 

Random Forest Trees Number of trees = 500; 

Repeat sampling N times from the larger class 100 

mafdr(pval11,’BHFDR’, true); p value = 0.05 

B = TreeBagger(ntree,[ train X interaction ],trainY,’OOBPrediction’,’On’, 

OOBPredictorImportance’,’on’,’MinLeafSize’,20,’Method’,’ 

classification’); 

Random seed = 1 

Min Leaf size = 20 

OOBPrediction = on 

OOBPredictorImportance = on 

f  

t

 

a  

f  

i  

d  

c  

d

eature values are measured in pixels and are also converted to the physical units (mm) by measuring

he head size of the speaker in physical units. 

Since the raising and lowering of pitch has been shown to be linked to the up and down

rticulatory movements [9 , 10] , only the vertical movement of the keypoints is extracted and the

eatures are measured in the vertical direction. Any movements in the horizontal direction are ignored

n Garg et al. [8] , but can be included in the analysis when needed. Fig. 3 (a) shows a schematic

iagram illustrating how the distance-based features and kinematic features are related. We also

omputed the relative time at which the minimum or maximum occurred with respect to the total

uration. 
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Fig. 3. (a) Schematic diagram showing the position and direction of movement of the 4 tracked points. The shadows near 

eyebrow/jaw/nose indicate motion. (b) A visual summary of the different features we extracted from the 4 tracked keypoints. 

In (b), the blue regions mark the time instances when a tracked keypoint moved downward and hence represent the lowering 

movements of the head and eyebrow, or closing of the lips, while the green region represents rising movements of the head 

and eyebrow, or the opening of the lips. Note that velocity is indicated by the slopes of the curve (i.e., computed as rate of 

change of the curve) and the acceleration is computed by the rate of change in velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two-part analyses of the extracted features 

We used the classification of Mandarin tone to evaluate the extracted articulatory features. 

Mandarin has four distinct tones: high-level, mid-high rising, mid-low dipping and high-falling. In 

order to determine which features characterize each tone, a two-step analysis was performed. In

the first step we identified which features differentiate each tone from the other tones by training

a classifier. Once we found the significant features that characterize a tone, in the second step, we ran

post-hoc analysis to compare the magnitude of the movement for that tone as compared to the other

tones. 

Since our problem consists of multiple classes (four classes corresponding to four tones), multi- 

class classification problem is transformed to binary class problem using one-versus-all (OVA) 

approach. In this approach, the features obtained from video tokens belonging to one tone are

compared to features from all the other tones. 

In our experiments, a random forest (RF) classifier is used to perform the classification tasks. RF

was introduced by Breiman et al. [20] for binary and multi-class classification. An RF classifier consists

of several decision trees that independently generate an output label given the features. Each tree

is trained on a random subset of features using a random subset of data samples. The final label is

assigned based on the majority vote of all the output labels by each of the trees. The random sampling

of the features prevents the random forest from overfitting. 

This approach was later extended by Paul et al. [15] to determine the significance of each feature

toward classification. They showed that using only the significant features led to improvement in the

performance compared to using all the features. The MATLAB implementation of RF provides a ranking

of feature importance based on the feature weight derived from the training data. The significance is

determined by evaluating the impact of each feature on classification performance, when the feature 

is randomly permuted. After training the RF classifier, each feature dimension was randomly permuted 

across the out-of-bag samples. Changes in the distribution of the class votes obtained by permuting

a particular feature were then measured via a contingency table that summarizes the classification 

and misclassification rates (i.e. True Positive, True Negative, False Positive and False Negative) when 

the feature in question is permuted (or not). This procedure is repeated multiple times. A set of

p -values were then obtained by running Pearson’s χ2 test of independence on these measures

using testcholdout MATLAB function. After corrections for multiple comparisons, features with 

adjusted p -values that are below the standard confidence level ( p < 0.05) are henceforth regarded as

“significant”. 
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Note that using the dataset with class labels of more than two classes as OVA classification in

he same way as for a multi-class problem naturally leads to imbalanced classes. To address this, we

mployed bootstrapped sampling [12] so that the number of random samples (r) drawn for each class

s the same. This step was repeated N times to eliminate bias towards any class. 

In our experiments, we set r = 500 and set N empirically to 300 (we did not find any difference

n classification performance when N > 100). We also employed t = 500 random trees for each tone

lassification task. Lastly, 90% of the samples in the entire dataset was used for training and 10% was

sed for testing in each of the sampling iterations. 

oftware implementation and the application example 

We present an algorithm to automatically detect salient regions on the face and track them

n a video that can be later related to linguistic features such as tone in Mandarin Chinese. The

oftware produced in this study was implemented in MATLAB (version 2017a). MATLAB provides a

arge collection of inbuilt libraries and is useful for quick prototyping. It contains several computer

ision and audio processing related packages that can be used to extract meaningful features from

he video data. The software code used in the study is made available on GitHub at: https://github.

om/srbhgarg/avc.git . In the repository, avc_main.m is the main file that automatically reads all the

PEG-4 files present in the data directory and calls all the other functions to extract the features.

ome samples of video data files are also provided in the GitHub repository in the data folder to

est and play the code. The software uses native MATLAB functions such as VideoReader to read

ideo data; audioread to read audio data; activecontour uses the Sparse-Field level-set method,

imilar to the method described in [3] for implementing active contour evolution. We used MATLAB’s

ision.PointTracker implementation of KLT to track the keypoints in the video. 

TreeBagger function in MATLAB was used for Random Forest classifier. 500 trees were trained in

he random forest with parameter MinLeafSize set to 20. MinLeafSize controls the minimum number

f observations each leaf should have. This parameter controls the depth of the tree. The larger the

umber the shallower the tree will be. This in return reduces model complexity and computational

ime. In MATLAB, OOBPredictorImportance was also set so as to rate the different f eatures in

rder of their importance for the classification task. Since random forest samples data randomly, for

ach feature separately, 50 different iterations were performed to get a robust estimate of the feature

mportance. 

iscussion 

In this paper, we present a method and release software code that can be used to automatically

etect and track landmark points on the face. Our work can be useful in research that involves

he understanding of the movements of the facial landmarks made during speech production. The

roposed pipeline’s detection and tracking performances have error rates less than 1% of the image

rame when evaluated using annotations created by a naive human annotator. Currently, our method

an correct for the translational movements of the head. Other movements of the head such

s rotations and tilts can be corrected using image registration (e.g. correct by registering each

rame to a reference frame using external libraries such as OpenCV ( https://www.learnopencv.com/

ead- pose- estimation- using- opencv- and- dlib/ ). 
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