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Abstract: Soybean (Glycine max (L.) Merrill) seeds are abundant in physiologically active metabolites,
including carotenoids and chlorophylls, and are used as an affordable source of functional foods that
promote and maintain human health. The distribution and variation of soybean seed metabolites
are influenced by plant genetic characteristics and environmental factors. Here, we investigated the
effects of germplasm origin, genotype, seed coat color and maturity group (MG) on the concentration
variation of carotenoid and chlorophyll components in 408 soybean germplasm accessions collected
from China, Japan, the USA and Russia. The results showed that genotype, germplasm origin, seed
color, and MG were significant variation sources of carotenoid and chlorophyll contents in soybean
seeds. The total carotenoids showed about a 25-fold variation among the soybean germplasms, with
an overall mean of 12.04 µg g−1. Russian soybeans yielded 1.3-fold higher total carotenoids compared
with Chinese and Japanese soybeans. Similarly, the total chlorophylls were substantially increased in
Russian soybeans compared to the others. Soybeans with black seed coat color contained abundant
concentrations of carotenoids, with mainly lutein (19.98 µg g−1), β-carotene (0.64 µg g−1) and total
carotenoids (21.04 µg g−1). Concentrations of lutein, total carotenoids and chlorophylls generally
decreased in late MG soybeans. Overall, our results demonstrate that soybean is an excellent dietary
source of carotenoids, which strongly depend on genetic factors, germplasm origin, MG and seed
coat color. Thus, this study suggests that soybean breeders should consider these factors along with
environmental factors in developing carotenoid-rich cultivars and related functional food resources.

Keywords: carotenoid; chlorophyll; germplasm origin; seed coat color; maturity group; regression
analysis; soybean (Glycine max (L.) Merrill)
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1. Introduction

Carotenoids are lipophilic pigments that occur widely in nature and are distributed
in plants, insects, fish, birds, algae, yeasts, archaea, fungi, bacteria and animals [1]. They
are in the class of C40 isoprenoids comprising a large family with more than 750 members
that are responsible for the red, yellow and orange colors of flowers, fruits and other
plant organs [2]. Carotenoids can be categorized in to two groups based on their chemical
composition: carotenes containing hydrocarbon only, and xanthophylls with one or more
hydroxyl groups. Xanthophylls are oxygenated derivatives that include lutein, zeaxanthin,
and β-cryptoxanthin, while carotenes include α-carotene, β-carotene, and lycopene. These
components are the most abundant carotenoids in human blood plasma which account for
more than 95% of the carotenoids found in human blood plasma [3].

Chlorophylls, fat-soluble plant pigments, comprise two major components: chlorophyll-
a (chl-a) and chlorophyll-b (chl-b), which are green pigment photoreceptors found in all
photosynthetic organisms. Carotenoids and chlorophylls are both chloroplast pigments
involved in different functions, such as light harvesting, energy transfer, photochemical
redox reaction, and photoprotection [4]. Carotenoids reflect a wide range of color pigments
in plants and act as accessory pigments to chlorophylls in photosynthesis. Furthermore,
both carotenoids and chlorophylls are well known for their nutritional and health benefits,
involved in health promoting functions including anticarcinogenic, antioxidant and inti-
inflammatory activities, as well as being used as food additives in various food industries,
mainly due to their physico-chemical properties, and also the color that they impart to our
food [5–7].

The vast majority of animals do not synthesize carotenoids de novo, and thus must
obtain them through diet or partly modified through metabolic reaction [1]. Similarly,
humans cannot synthesize carotenoids; instead, they ingest them in food or via supplemen-
tation. Humans get these health-promoting phytochemical compounds from different plant-
derived food diets. Dark green leafy vegetables, colored fruits, root and tuber crops, cereals,
legumes and unicellular microalgae are rich dietary sources of natural carotenoids [8].
It has been reported that legumes are rich sources of secondary metabolites (including
carotenoids), well known for their potential benefits to human health [9,10].

The germplasm collections of soybean (Glycine max (L.) Merrill), which is among the
globally staple legume crops, largely vary in their origins [11]. Soybean seed has been
used as food and feed sources in many countries in the world and is an important part of
traditional foods in many Asian countries due to its nutritional properties and functional
characteristics. Nutritionally, soybeans are not only the primary source of protein and oil
but also the world’s most important sources of secondary metabolites such as isoflavone,
tocopherols, saponins, lipids and carotenoids, which are of strong therapeutic value [12,13].

The chemical composition of soybean seeds can be affected by genotype, planting
location, environmental conditions, cultivation year, maturity group (MG) [14–16] and seed
coat color [17]. Some studies have investigated the influence of geographical origins in
various nutritional components (including isoflavones, protein, oil, fatty acids, tocopherols
and folates) of soybean varieties [12,13,18–21]. Similarly, other recent studies evaluated
soybean accessions of different origins and maturity groups for their nutritional quality
attributes such as isoflavone [21], fatty acid compositions [22] and tocopherols [23] and
found variation among genotypes and between MGs. Moreover, several soybean genotypes
with different seed colors have previously been used for evaluating and improving seed
chemical compositions such as isoflavone, fatty acids, carbohydrates, protein and oil [17].
Despite the fact that several research works have been carried out on the variability of
soybean seed compositions, very little is known about soybean seed carotenoids and
chlorophyll profile. To date, the contribution of soybean origin, MG and seed coat color to
the carotenoid and chlorophyll contents of diverse soybean seed germplasms has not been
reported so far. To our knowledge, only Monma et al. [24] analyzed the lipophilic pigment
metabolites chl-a and -b as well as lutein and β-carotene of 50 Japanese soybean varieties
with various seed colors and different maturity stages.
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Though carotenoids in soybean seeds have not been given more attention in breeding
research programs, increasing carotenoid content in soybean seeds is believed to be an
effective way to improve the nutritional value of soybean derived foods. The evaluation of
unexploited soybean germplasms on a large scale with diversified phytochemical prop-
erties helps to obtain elite accessions for the sustainable improvement of seed carotenoid
accumulation in soybean breeding programs. High genetic diversity provides an oppor-
tunity for plant breeders to investigate accurate and effective strategies for improving
the desired traits of soybeans [25]. In an attempt to achieve this strategy, in this study,
408 diverse soybean germplasm accessions of different origins (China, Japan, Russia and
the USA), MGs and various seed coat colors were evaluated under the same environmental
conditions. An understanding of the carotenoid and chlorophyll fluctuations in differ-
ent soybean origins with various MGs and seed color would provide a more complete
characterization of the nutritional compositions for the final utilization of soy products in
different food, pharmaceutical, nutraceutical and cosmetic industries. Thus, we hypothe-
sized that the aforementioned factors had a significant effect on soybean seed carotenoid
and chlorophyll compositions. The present study was undertaken to (i) comprehensively
analyze the variation in carotenoid and chlorophyll concentrations in large panel soybean
accessions of diverse origin, (ii) investigate the influences of seed coat color and MG on
soybean seed carotenoid and chlorophyll profile and concentrations and (iii) identify elite
soybean accessions with a substantial concentration of carotenoids across environments.
The derived information will help breeders and producers to develop and disseminate
breeding strategies for enhancing carotenoid concentration in soybean seeds.

2. Results and Discussion
2.1. Comprehensive Natural Variation of Seed Carotenoid and Chlorophyll Contents in Soybean

The concentration of major carotenoids such as lutein, zeaxanthin, and β-carotene,
as well as chlorophyll components, including chl-a and -b, were quantified (Table 1).
Significant variations (p < 0.001) in carotenoids and chlorophylls were observed among
the soybean accessions, showing the existence of wide genetic differences and thereby a
good opportunity to obtain valuable genetic resources for soybean breeding (Table S3).
The overall means and variations of the traits across two planting years are summarized
in Table 1. The total carotenoid content ranged from 1.35 to 33.09 µg g−1 with an overall
mean of 12.04 µg g−1, showing a comparative advantage compared with previous studies
reporting average total concentrations of 6.32 µg g−1 [24]. The highest and lowest contents
were obtained from ZDD11183 and ZDD25115 Chinese accessions, respectively (Table S1),
with about a 25-fold variation between the germplasms for total carotenoid content.

Table 1. Descriptive statistics for the concentrations of carotenoid and chlorophyll traits in soybean
accessions grown in two locations for two years.

Traits Min (µg g−1) Max (µg g−1) Range (µg g−1) Mean (µg g−1) SD CV (%) Kurtosis Skewness

Lutein 1.35 32.08 30.73 11.79 5.93 50.36 1.79 1.08
Zeax 0.02 2.90 2.88 0.49 0.51 107.38 4.71 1.23
β-car 0.04 2.29 2.25 0.52 0.35 67.07 3.27 1.11
Totcar 1.35 33.09 31.74 12.04 6.27 52.08 2.90 1.05
chl-a 1.10 66.07 64.97 5.06 8.45 139.12 6.86 2.44
chl-b 0.36 22.53 22.17 1.58 2.40 152.81 7.16 3.76

Totchl 0.36 87.68 87.32 4.05 8.52 213.26 9.96 3.03

Totcar, total carotenoid; Totchl, total chlorophyll; SD, standard deviation; CV, coefficient of variation.

Individual carotenoid components were also significantly influenced (p < 0.001) by the
genotypic effect. Lutein ranged substantially from 1.35 to 32.08 µg g−1, with the highest
and lowest concentrations obtained from the above-mentioned soybean accessions, respec-
tively. Notably, lutein was the most abundant component, which is in line with several
reports showing that lutein is the dominant component of carotenoids in many legume
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crops [24,26,27]. Surprisingly, in the present study, it covered 97.8% of total carotenoids,
and obtained from all tested accessions, which is consistent with the previous report show-
ing 96.6% lutein coverage [28]. Previous studies documented that some soybean inbred
lines have been developed to enhance soybean seed lutein content [29,30]. Importantly,
this study provides new insights to help obtain more parental lines so as to generate new
breeding lines for soybean lutein content improvement at a global level. Likewise, it is
interesting to note that lutein is relatively found to be the most stable trait compared
with the coefficient variation (CV) value of the others, suggested to be due to strong
genetic control that boosts their performance even when grown under diverse field condi-
tions. Concerning β-carotene, soybean accessions accumulated a mean concentration of
0.52 µg g−1 β-carotene, with the maximum (2.29 µg g−1) and minimum (0.04 µg g−1) values
unequivocally observed in WDD02873 from Russia and ZDD14267 from China, respec-
tively, substantially 8.66-fold higher than the previous findings [28], which could additively
promote total antioxidant activity in soybeans [31]. Collectively, our study identified
outstanding soybean accessions with the higher accumulation of carotenoid components
compared to previous studies, most probably due to the presence of large germplasm
collections in our study, which helped to explicitly analyze the genetic variability. Notably,
our results suggest that utilizing genetic resources with abundant genetic differentiation
helps to increase the contents of economically desired traits in soybeans, which is supported
by previous studies on genetically diversified chickpea and pea accessions [32].

In the present study, the analysis of variance showed that total chlorophyll content
varied significantly (p < 0.001) (Table S3) and was found in the range of 0.36–87.68 µg g−1

with a mean of 4.05 µg g−1 (Table 1). Among the soybean germplasms, the ZDD06375 ac-
cession from China contained the highest level of total chlorophyll, whereas the ZDD02764
accession from China had the lowest total chlorophyll content. Similarly, the concentrations
of chl-a and-b were highly significantly influenced (p < 0.001) due to the genetic variability
of the soybean accessions. Chl-a and -b were obtained from 57% and 96% of the total
accessions, respectively, implying that the seeds of all soybean accessions could not con-
tain chlorophylls. Soybean seeds contained a mean of 5.06 µg g−1 and 1.58 µg g−1 chl-a
and chl-b, respectively (Table 1), confirming that chl-a exceeds chl-b approximately by a
3:1 margin [6]. Some studies have detected the lipophilic pigment metabolites chl-a and-b
as well as lutein and β-carotene [31,33], but no clear quantified data of the chlorophylls
were included in the reports. Thus, the present study explicitly indicated that chlorophyll
contents may vary depending on soybean seeds of different genetic diversities.

It was observed that cultivation year caused significant variation (p < 0.001) in the
contents of carotenoids and chlorophylls of soybean seeds, indicating that breeders should
take not only the genotypic effect but also seasonal variations into consideration during
soybean seed lipophilic pigments production. Several studies have confirmed the effect
of planting season on soybean seed compositions such as carotenoids, isoflavone, amino
acids, oil and fatty acids, among others [14,21]. In the present research, the interaction of
accession by year had no significant effect (p > 0.05) (Table S3), indicating that genetic factor
plays a major role in the accumulation of carotenoids and chlorophylls in various soybean
seed germplasm accessions.

2.2. Germplasm Origin Differently Affected Soybean Seed Carotenoid and Chlorophyll Concentrations

In the current study, carotenoid and chlorophyll contents significantly varied by germplasm
origin (Table S3), which is consistent with previous studies that reported on other soybean
bioactive compounds [12,19,34]. The variation in carotenoid and chlorophyll contents among
the four germplasm origins is shown in Figure 1. The total carotenoid level was signifi-
cantly higher in accessions originated from Russia (14.78 µg g−1) and the USA (12.58 µg g−1),
whereas the lowest mean content was observed in Japanese (11.10 µg g−1) and Chinese
(11.41 µg g−1) accessions, which shows the existence of wider variability among the soybean
germplasms, which could be attributed to environmental and genetic factors.
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Figure 1. Variations in carotenoid and chlorophyll contents among soybean germplasm accessions
originated from China (n = 236), USA (n = 135), Russia (n = 19) and Japan (n = 18). n represents
number of soybean accessions. The lines across each box plots indicate the medians. Different
lower-case letters (a, and b) indicate statistically significant difference at p < 0.05 level among the
germplasm origins.

Interestingly, the same trend was followed in the lutein content, where the optimum
quantity of lutein was obtained from Russian and USA accessions. Our results also high-
lighted that Russian soybean accessions contained a significantly superior concentration
of β-carotene, while the others showed statistically similar responses. Growing year is
another equally important factor that impacts soybean seed metabolite content, as reported
by Ashokkumar et al. [26] on the carotenoid contents of pea and chickpea. In our study,
lutein and total carotenoid contents were significantly influenced (p < 0.001) by the growing year,
whereas zeaxanthin was significantly affected neither by the country of origin nor growing year,
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showing that its concentration is similar across the cropping years, irrespective of germplasm
origin (Table S3), implying that zeaxanthin was relatively stable in soybean accessions.

The analysis of variance (ANOVA) showed that chlorophyll components were signif-
icantly influenced (p < 0.05) by the geographical origin of accessions (Table S3). Russian
accessions followed by Chinese accessions contained significantly higher chlorophyll con-
centrations, while USA and Japanese accessions contained relatively lower concentrations
(Figure 1), attributed to the genetic variability of the accessions to perform in different
environmental conditions, corresponding to the study of Song et al. [35], who found that ac-
cessions from different geographical origins (such as Japanese and Chinese) are genetically
distinct, resulting in various biochemical contents in soybean. In summary, understanding
the origin of the germplasm and cultivation year is crucial in soybean breeding strategies
to improve carotenoid contents, as suggested by several other studies on other desirable
soybean seed nutritional compositions [18,20–22].

2.3. Seed Coat Colors Differently Affected Soybean Seed Carotenoid and Chlorophyll Concentrations

Soybeans exhibit natural variation in seed coat colors that impact the nutritional
composition of soybeans. Soybean seeds tested in our experiment were available in the form
of yellow, black, green, and brown seed colors (Figure S1), formed due to the accumulation
of different pigment-stimulating metabolites [36,37]. The results showed that the seed color
differences contributed differentially to the variations in the contents of carotenoid and
chlorophyll components (Table S3), indicating that seed coat color should be taken as an
important factor in soybean seed nutritional components. As shown in Figure 2, the highest
average total carotenoid content was observed in black seeds (21.04 µg g−1), followed by
brown (13.93 µg g−1) and green soybeans (13.15 µg g−1), while yellow seeds contained
about 1.97-fold lower total carotenoid content than that of black seeds. A similar trend was
also followed in lutein among the soybean seed colors, where significantly superior lutein
content was found in black soybean seeds, which suggests that accessions with a black seed
coat color can be preferentially selected by breeders to develop lutein-rich elite cultivars.
The results were coherent with earlier studies [9,34,38,39] that indicated black soybeans
are rich sources of phytochemicals, including carotenoids, anthocyanins, tocopherols and
isoflavones. The presence of more carotenoids in black soybeans could be most probably
due to relatively smaller seeds (Figure S2), which is consistent with previous studies on
soybean seed weight which found that smaller seeds contained higher contents of targeted
metabolites [12,29,40]. In other legumes, Ashokkumar et al. [32] also found considerably
high contents of carotenoids in black cultivars as compared to their yellow counterparts.

Zeaxanthin, stereoisomers of lutein specifically present in the macula and lens of the
human eye, showed significant differences among the seed colors, with the highest mean
concentration observed in black seeds (0.85 µg g−1), which, however, was statistically
similar to brown colored seeds. Though the majority of soybeans in our experiment as well
as globally [41] exhibit yellow seed coats, they had the lowest mean zeaxanthin content
(0.44 µg g−1) (Figure 2). Concerning β-carotene, accessions with black seed coat colors had
approximately 1.5-fold higher β-carotene content than the others, showing that soybeans
with black seed colors are rich in β-carotene, thereby resulting high photoprotective and
antioxidant capacities in soybeans, which is in agreement with previous reports [42,43].
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among the seed coat colors.

The seed coat color of soybeans also highly significantly (p < 0.001) influenced the
concentrations of chlorophyll (Figure 2 and Table S3). By comparison, soybeans with black
seed colors contained considerably higher contents of total chlorophyll than accessions
with green, yellow and brown seed colors, suggesting that differently colored seeds can
possess various types of bioactive and other beneficial components [24]. As shown in
Figure 2, the mean concentrations of total chlorophyll in black seed colors were 8.1 times
higher than yellow-colored accessions (1.87 µg g−1), which statistically had the lowest
mean concentration. In the case of individual chlorophylls, the same trend was observed
in chl-b; however, black and green seed coat colors responded similarly in chl-a. Recently,
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Jo et al. [44] reported that soybean germplasms with black seed coat and green cotyledon
are rich in chlorophylls and other functional nutrients. Likewise, several studies have
documented that black soybeans have been used as traditional ingredients in medicinal
treatments (folk medicine) in Asian countries including China, Japan and Korea due to
their content of potentially active phytochemicals in their seed coat [36,45].

Several factors, including planting season, can affect the soybean seed metabolites. As
shown in Table S3, cultivation year had a pronounced effect on the contents of soybean
chl-b and carotenoid components except β-carotene, possibly due to climatic conditions,
as reported by Ashokkumar et al. [26] in pea and chickpea carotenoid profile, who found
1.18-fold chickpea lutein and 1.07-fold total carotenoid concentration variation between
two planting years. The year by seed coat color interaction also had a significant impact
on chl-b and zeaxanthin concentrations, suggesting seasonal variation over the years can
affect chlorophyll and carotenoid components of soybeans of different seed colors. Taken
together, our results suggested that black soybeans are reliable resources for producing
more lipophilic pigments, particularly carotenoids, which can be used in food additives and
medicinal treatments to enhance human nutrition and health. Remarkably, a high level of
carotenoids contributes to the greater functional food source and pharmacological capacities
of black soybeans than other colored soybeans. In addition, our study demonstrates that
seed coat color is among the numerous qualitative characteristics of soybean seed that
determines the biochemical composition of soybeans; thereby, this information is helpful
for breeders to consider this agronomic trait during carotenoid-rich cultivar development
so as to enhance the functional and nutritional values of soybeans.

2.4. The Maturity Groups Differently Affected Soybean Seed Carotenoid and Chlorophyll Concentrations

Soybean accessions are classified into different MGs based on their photoperiod (day
length) requirements. Maturity group is among the major agronomic characteristics that
determine soybean seed quality. In the present study, the ANOVA revealed that MGs
contributed differently to the carotenoid and chlorophyll responses in soybean seeds
(Table S3), and is supported by several studies reporting the effect of MG differences on
soybean seed quality characteristics [16,21,22,46]. Figure 3 shows the average contents of
carotenoid and chlorophyll components in soybean accessions on the basis of MG. The
early MGs (MG 0–MG II) contained the highest mean total carotenoid concentrations, while
the other MGs, which were significantly similar, generated lower mean contents of total
carotenoids. The same pattern was also observed in lutein, where a decreasing trend of
lutein towards late MGs was observed, implying that early matured soybeans accumulate
more lutein, which might be attributed to climatic conditions and lutein accumulation
pattern in short-season soybean genotypes, which are naturally originated and distributed
in high-latitude regions. This concurs with the study of Ghosh et al. [23], who reported
that early MG soybean accessions, originated and distributed in high-latitude regions,
contained high levels of soybean seed nutritional compositions, including tocopherols.

The total chlorophyll was highly significantly accumulated in the earliest soybean
MGs, while soybean accessions corresponding to the MG from MG III to MG VI exhibited
lower total chlorophyll concentrations (Figure 3). As shown in Figure S3, individual
chlorophylls, zeaxanthin and β-carotene contents did not show significant responses to
MGs, indicating that these components are not more sensitive to the day of maturity. Most
importantly, alongside the effects of MGs on the biochemical responses of the targeted
pigments, cultivation year had a significant contribution to the contents of carotenoids
and chlorophylls (Table S3), implying that seasonal changes can influence the carotenoid
and chlorophyll concentrations and the profile of soybeans of different MGs, which is
supported by similar reports on soybean isoflavone [16] and tocopherol [23]. Additionally,
the MG by year interaction had significant effect (p < 0.001) on lutein, total carotenoids and
chlorophylls, which is in consonance with the earlier study on soybean seed nutritional
characteristics [21]. The significant effect of year by MG interaction on the aforementioned
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components underlines the high sensitivity of soybeans to the growing seasonal climatic
variations, including photoperiod and temperature, during seed maturation [47].
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Figure 3. Seed carotenoid and chlorophyll concentrations of yellow-seed-coat-colored soybean
accessions of different maturity groups. Different lower-case letters (a, b and ab) indicate statisti-
cally significant difference at p < 0.001 level among the maturity groups. Number of accessions in
MG 0 = 61, MG I = 57, MG II = 57, MG III = 80, MG IV = 37, MG V = 24 and MG VI = 15. MG
represents maturity group.

As no studies have been carried out so far on the effect of soybean MGs on carotenoid
and chlorophyll contents, interestingly, the present study pointed out that the variation of
these bioactive compounds depended not only on the effect of genotype and environment
factors, but also on the effect of MG, suggesting that breeders should take into account MGs
by themselves beyond to the genotype effect during soybean production. Overall, under-
standing the differential responses of the components to MGs is magnificently important to
harmonize soybean cultivar with its best regional adaptation and further plays a significant
role in the breeding and production of quality trait soybeans in world geographical regions.

2.5. Principal Component Analysis Based on Origin and Seed Coat Colors

In this study, principal component analysis (PCA) was carried out to assess the varia-
tion of carotenoid concentration and profile of soybean accessions based on various seed
coat colors and germplasm origins. Figure 4A,B show the PCA, outlining the carotenoid
and chlorophyll concentrations and profile differences among soybeans of different origins
and seed coat colors, respectively. In Figure 4A, carotenoids and chlorophylls data yielded
two principal components (PCs), which accounted for 78% of the total variances and were
positively loaded with every component of carotenoids and chlorophylls. The first com-
ponent of the PCA (PC1) accounted for 60.7% of the data set variation, and the second
component (PC2) explained an additional 17.3% of the observed variation, indicating that
variations in the components of carotenoids and chlorophylls were observed based on the
country of origins.
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In Figure 4A, it can be seen that chl-b (20.39%) contributed the highest to the variance
in PC1, followed by total chlorophyll (20.06%) and chl-a (16.58%), while total carotenoid
(21.35%) preceded by lutein (21.98%) were the best contributors to the total variance
in PC2. As shown in Figure 4A, a large number of soybean accessions of USA origins
were densely scattered close to the carotenoid components (lutein, zeaxanthin and total
carotenoid), signifying that these accessions tend to contain high levels of individual and
total carotenoids across multiple environments, confirming to the results in Figure 1. On
the other hand, Chinese soybeans followed by Russian soybeans were largely distributed
around the chlorophyll components, suggesting that soybeans of these origins are rich sources
of chlorophylls, despite the quantitative significant differences exhibited among them.

The PCA of carotenoids and chlorophylls for the seed coat color differences is pre-
sented in Figure 4B, where the score plots in PC1 and PC2 illustrate reasonable clustering
appearance according to the differences in seed coat colors. The PCA, which accounted
collectively for 78% of total variance, unraveled the existence of differences in carotenoid
and chlorophyll concentrations of various seed coat colors. Though the number of black
soybeans tested (41) was lower compared to yellow ones (331), they were more diverse
around the carotenoid components (mainly lutein and total carotenoid), while the others
were sparsely distributed, signifying that black soybean accessions are rich sources of these
components. Similarly, comparatively more diverse black soybeans were observed around
β-carotene and chlorophyll components, indicating that accessions with these seed coat
colors tend to preserve high levels of β-carotene, individual and total chlorophylls, which
is in agreement with the results in Figure 2. The contribution of variables followed the same
trend as shown in Figure 4A, where the variation in PC1 was largely attributable to chl-b
(20.39%), followed by total chlorophyll (20.06%) and chl-a (16.58%), while lutein (21.98%)
and total carotenoid (21.35%) followed by zeaxanthin (20.27%) were the best contributors
to the total variance in PC2.

The PCA reveals variations and associations among parameters and identifies major
contributing variables, as reported by Ramadan et al. [48] Here, all the carotenoid and
chlorophyll components positively contributed to the total variance and showed positive
associations, which are attributed to common functions including light-harvesting, energy
transfer to the photosynthetic reaction center, photochemical redox reactions and photopro-
tection [4], as well as antioxidant activity [49]. The positive associations among individual
components observed here were also previously reported in chickpeas and peas [32].

2.6. Regression Analyses to Seed Coat Color and 100-Seed Weight

The linear regression relationships of carotenoid as well as chlorophyll components in
various colored soybeans in relation to 100-seed weight are shown in Figure 5. The con-
centration of carotenoid components (lutein, zeaxanthin, β-carotene and total carotenoids)
increased with the decrease in 100-seed weight in black, brown and green seed coat colors
(Figure 5 and Table S4). An extremely weak relationship between 100-seed weight and
the components of carotenoids was observed in yellow soybean seeds, indicating that
seed weight did not make a significant contribution to the response of carotenoids in
yellow-colored soybeans. A previous study carried out regression analyses based on seed
coat color and found strong linear relationships with different responses of soybean seed
metabolites relative to 100-seed weight [17]. In the present study, collectively, the contents
of carotenoid components increased significantly with the decrease in 100-seed weight in
black-colored soybeans, implying that smaller soybean seeds accumulate more carotenoids,
which is in line with the study of Kanamaru et al. [29]. Moreover, Abbo et al. [50] found
that seed weight was negatively associated with components of carotenoids, such as lutein,
zeaxanthin and β-carotene in chickpea seeds. Furthermore, previous studies found higher
contents of total isoflavone and phenolic compounds in low-seed-weight soybeans [12,40].
Notably, this study can suggest that seed weight plays a significant role in the synthesis
and accumulation of carotenoids in soybean seeds of various seed coat colors. Taking into
account the demand of large-seeded soybeans under commercial breeding programs by
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consumers, here, we recommend further advanced physiological and genetic studies to
improve seed weight without affecting the levels of carotenoid concentrations.
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Similar to carotenoids, the same trend was followed in chlorophylls, where the levels
of total chlorophylls increased with the decrease in 100-seed weight in black, green and
brown soybean seeds, while inverse response to 100-seed weight in yellow seeds (Figure 5
and Table S4). Briefly, the inverse relationship between chlorophylls and seed weight could
be most probably due to the presence of pleiotropic effects that can hamper the syner-
gistic development of 100-seed weight and carotenoids as well as chlorophylls. Overall,
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carotenoid and chlorophyll components exhibit diverged responses in relation to seed
coat color and seeds’ weight within the soybean germplasm accessions. Several studies
documented that the concentration of metabolites had significant variations in soybeans
with different 100-seed weights [12,36,40].

2.7. Soybean Accessions with Prominent Content of Lutein and Total Carotenoids

Soybeans showed a wide range of variations in their lipophilic pigment contents. The
variability of soybean seed lutein content has been analyzed [24,33]. Previous findings
showed that soybean genotypes grown in Maryland [51] and Chinese soybeans grown
in northeast China [30] produced 27.20 µg g−1 and 23.96 µg g−1 lutein, respectively. Our
results identified ten soybean accessions that contained a lutein concentration higher than
27 µg g−1 (Table 2), and we suggested that these should be used as parents in soybean
breeding. The identification of high-lutein soybean germplasm accessions is important for
breeding high-quality soybeans.

Table 2. Soybean accessions identified with lutein and total carotenoids higher than 27 µg g−1.

ID MG Seed Coat
Color

Country of
Origin

Lutein
(µg g−1)

Total Carotenoid
(µg g−1) §

WDD02708 I brown Russia 27.56 28.82
WDD02989 0 black USA 28.13 29.62
ZDD08013 V black China 28.45 30.08
ZDD10734 VI black China 28.71 30.52
WDD02957 I black Russia 29.04 32.32
ZDD06375 IV black China 29.58 31.37
ZDD10248 VI green China 29.79 31.93
P1438498 IV black USA 29.93 31.59

WDD00475 IV black USA 30.54 31.95
ZDD11183 V brown China 32.08 33.09

ID, identification; MG, maturity group; § Total Carotenoid = sum of lutein, zeaxanthin and β-carotene mean contents.

Table 2 also shows soybeans that contain substantial concentrations of total carotenoids. We
identified ten elite soybean accessions with total carotenoid contents greater than≈29 µg g−1,
of which seven of them had black, one green and two brown seed coats, which can help
consumers adjust their preferences for soybean seed colors, and we suggested that these
should be used in daily food resources for promoting and sustaining health functions. It is
interesting that all the selected accessions contained substantial concentrations of lutein,
zeaxanthin and β-carotene components. Both lutein and zeaxanthin, the xanthophyll
carotenoids accumulated in the macula and lens, are the key carotenoid components
responsible to prevent eye diseases, mainly associated with reducing the risk of age-
related macular degeneration and cataract [52]. Collectively, these promising germplasms
with unique carotenoid profiles will be considered as potential donors of this important
nutritional and quality trait and suggested to be used as sources of genetic materials in
conventional and/or molecular breeding purposes, including biofortification programs so
as to enhance grain quality, thereby the supply of natural ingredients for food products of
modern food industries.

3. Materials and Methods
3.1. Plant Materials and Field Experiments

This study employed natural populations consisting of 408 diverse soybean acces-
sions (Table S1), originated from China (236 accessions), the USA (135 accessions), Russia
(19 accessions) and Japan (18 accessions). These germplasms were received from the Chi-
nese National Soybean Gene Bank (CNSGB), Institute of Crop Sciences, Chinese Academy
of Agricultural Sciences. The CNSGB conserves 23,587 Chinese germplasm accessions
collected from the whole of China, mainly the northern, Huang Huai Hai Valley and
southern regions [53]. The genotypes included in this experiment were also classified into
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yellow (331 accessions), black (41 accessions), green (18 accessions) and brown (18 acces-
sions) seed coat colors (Table S1 and Figure S1). In addition, seven MGs, including MG 0
(61 accessions), MG I (57 accessions), MG II (57 accessions), MG III (80 accessions), MG
IV (37 accessions), MG V (24 accessions) and MG VI (15 accessions) were formed (Table
S1). Here, to avoid the interferences of various seed-coat-colored soybeans with differential
responses to lipophilic pigments, the same seed-coat-colored accessions (only yellow) were
taken to explicitly investigate the effects of MGs on concentrations of carotenoids and
chlorophylls in soybean seeds.

The genotypes were planted over two years (2017–2018) in Changping (40◦13′ N,
116◦12′ E), Beijing and Sanya (18◦24′ N, 109◦5′ E), Hainan province. The experiments were
conducted each year following sowing from the middle of June in Changping and from the
middle of November in Sanya. The experiment was laid out in a randomized, incomplete
block design with the two planting locations deployed as replications. The experimental
unit was a row with a width of 3 m accompanied with 0.5 m and 0.1 m inter and intra
row spacing, respectively. Each row contained 20 plants as a seed source that was used for
subsequent carotenoid and chlorophyll content measurements. Nitrogen, phosphorus and
potassium fertilizers were applied at the rate of 30, 40 and 60 kg ha−1, respectively. Other
recommended agronomic practices were previously reported [22]. The mean monthly
temperature, rain fall and sunshine in the experimental locations are shown in Table S2.

3.2. Chemicals and Reagents

The carotenoid standards, such as zeaxanthin (CAS: 144-68-3, purity ≥ 85%), β-
carotene (CAS: 7235-40-7, purity ≥ 98%), and chlorophyll standards, including chlorophyll-
a (CAS: 479-61-8, purity ≥ 85%) and chlorophyll-b (CAS: 519-62-0, purity ≥ 90%), were
purchased from Shanghai Yuanya Biotechnology Co., Ltd. (Shanghai, China), while the
carotenoid standard lutein (CAS:127-40-2, purity ≥ 96%) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). HPLC analytical-grade methanol, acetone, ethanol, and
ammonium acetate were purchased from Thermo Fisher Scientific Co., Ltd. (Fair Lawn, NJ,
USA). Methyl tert-butyl ether and butylated hydroxytoluene, HPLC-grade chemicals, were
purchased from Mreda Technology Inc., USA and Shanghai Macklin Biochemical Co., Ltd.,
Shanghai, China, respectively. Ultrapure water (Milli-Q) was obtained from a Millipore
system (Millipore, Billerica, MA, USA).

3.3. Extraction and Determination of Carotenoids and Chlorophylls

The detailed procedure used for extracting and analyzing carotenoid and chlorophyll
compositions of matured soybean seeds has been recently reported [42]. In brief, fine
powder was obtained from 20 g of seeds of each soybean accession grinded with a sample
preparation Mill (Retsch ZM100, Φ = 1.0 mm, Rheinische, Germany). After grinding,
100 mg of powder from each sample was accurately weighed out using an electronic
analytical balance (Sartorius BS124S, Gottingen, Germany), and placed in a 2 mL micro-
centrifuge tube preloaded with 1.5 mL of a mixture of ethanol and acetone solvents at a
1:1 ratio. The 0.1% butylated hydroxytoluene (w/v) was added to the solvents to keep
carotenoids and chlorophylls stable. The mixture was placed and shaken in an ultra-sonic
water bath (Ningbo Scientz Biotechnology Company Ltd., Ningbo, China) for 20 min at
room temperature. Supernatant was collected via centrifugation at 13,000 rpm for 10 min at
4 ◦C and transferred to a new centrifuge tube for another centrifugation at 13,000 rpm for
5 min at 4 ◦C. The collected supernatant was then filtered using a 0.2 µm pore dimension
YMC duo-filter (YMC Co., Kyoto, Japan) with the help of a sterile syringe (Jiangsu Zhiyu
Medical equipment Co., Ltd., Jiangsu, China) and placed in a 1.5 mL amber glass HPLC vial
(AS ONE, Ningbo, China) for subsequent analysis. The carotenoid and chlorophyll extracts
were analyzed using an Agilent 1100 Model HPLC instrument (Agilent Technologies, Santa
Clara, CA, USA) equipped with a Hewlett-Packard Model 1050 solvent delivery system
and a reverse-phase C30 YMC Carotenoid (250 × 4.6 mm I.D., S-5 µm, YMC CO., Kyoto,
Japan) column coupled with a UV-Vis detector (Santa Clara, CA, USA) set at a wavelength
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of 450 nm. Gradient elution was performed with mobile phases consisting of methyl
tert.-butyl ether, methanol-10 mM ammonium acetate and ultrapure water, delivered at
flow rate of 0.9 mL min−1 with an injection volume of 20 µL. Finally, the concentrations
of each component were calculated using the formula [54]: carotenoid or chlorophyll
(µg g−1) = [Cx (µg mL−1) * V (mL) * D]/Wt (g); where, Cx = the concentration of each
component calculated from the standard calibration curve, V = volume of the extracting
solvent, D = any dilution factor, and Wt = sample weight in dry bases. The total carotenoid
and total chlorophyll concentrations were described as the sum of individual carotenoid
and chlorophyll components, respectively.

3.4. Statistical Analysis

The combined data were subjected to ANOVA using the procedure of general linear
model (PROC GLM) (SAS version 9.1, SAS Institute Inc., Cary, NC, USA) to determine the
effects of accessions, germplasm origin, seed coat color and MG on variability of carotenoid
and chlorophyll concentrations. Accession, germplasm origin, MG and seed color were
considered as fixed effects, while locations together with years were set as random effects.
Differences were considered statistically significant at p < 0.05. Multiple comparisons of
means were performed using Tukey’s honestly significant difference (HSD) test. Boxplots
were drawn to show the distribution and variation of seed carotenoid and chlorophyll
compositions among the four countries of origin, seven MGs as well as four seed coat color
types. Principal component analysis (PCA) was performed to identify components with
high discriminatory properties, which in turn were used to group accessions based on their
origin and seed coat color as well as to show the contribution of each component to the
total variation among the countries of origin and seed color types. Regression analysis was
performed to establish the relationship between 100-seed weight and lipophilic components
within the corresponding seed coat colors. The PCA, regression analysis and boxplots were
analyzed using R statistical software version 3.6.3 (R Foundation for Statistical Computing,
Vienna, Austria).

4. Conclusions

In this study, the variability in concentrations of carotenoids and chlorophylls across
soybeans of diversified origin along with various seed coat colors and MGs were investi-
gated. The results showed that carotenoids and chlorophylls varied in terms of countries of
origin, genotype, seed coat color and MGs. Wide variation existed among individual and
total carotenoids as well as chlorophyll levels in soybeans. Chinese and Japanese soybeans
contained lower total carotenoids, while Russian and USA soybeans produced significantly
similar high contents. The higher total chlorophylls were largely observed in Russian,
followed by Chinese. In terms of seed coat colors, black soybeans contained significantly
abundant concentrations of carotenoids and chlorophylls, implying that black soybeans
are rich sources of lipophilic pigments. Higher carotenoid and chlorophyll concentrations
were significantly presented in early- rather than late-maturing soybeans, showing that
MG should be considered as an influential factor in soybean seed compositions. Altogether,
this result demonstrates that germplasm origin, seed coat color, MG and 100-seed weight
differently affected the concentrations of targeted carotenoid and chlorophyll components
in soybean seeds. Understanding the profile of carotenoids and chlorophylls in soybeans
and their responses to germplasm origin, seed coat color and MGs is necessary to better
improve the quality and bioactive constituents of soybean seeds and ultimately provide
valuable information to modern food industries developing nutrient dense foods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11070848/s1, Figure S1: Seed samples of black (A); brown (B); yellow (C); green (D)
seed coat colors of soybean seed germplasm accessions; Figure S2: The 100-seed weight of soybean
accessions with various seed coat colors; Figure S3: The zeaxanthin, β-carotene, chlorophyll-a and
-b concentrations of yellow-seed-coat-colored soybean accessions from different maturity groups;
Table S1: The 408 soybean accessions of various origins along with their seed coat color and maturity
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group; Table S2: Monthly temperature and precipitation readings at the experimental sites in China
in 2017 and 2018 cropping seasons; Table S3: Analysis of variance (ANOVA) for the effects of country
of origin, maturity group, and seed color on carotenoid and chlorophyll concentrations of soybean
germplasm accessions grown in China for two years; Table S4: Linear regression equation and R-
squared values for the regression analysis between 100-seed weight and contents of lutein, zeaxanthin,
β-carotene, total carotenoids, chlorophyll-a, chlorophyll-b and total chlorophylls from diversified
soybean germplasm accessions with black (n = 41), brown (n = 18), green (n = 18) and yellow (n = 331)
seed coat colors.
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