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Green-blue spaces (GBS) are pivotal in mitigating thermal discomfort. However, their management lacks
guidelines rooted in epidemiological evidence for specific planning and design. Here we show how
various GBS types modify the link between non-optimal temperatures and cardiovascular mortality
across different thermal extremes. We merged fine-scale population density and GBS data to create novel
GBS exposure index. A case time series approach was employed to analyse temperature-cardiovascular
mortality association and the effect modifications of type-specific GBSs across 1085 subdistricts in
south-eastern China. Our findings indicate that both green and blue spaces may significantly reduce
high-temperature-related cardiovascular mortality risks (e.g., for low (5%) vs. high (95%) level of overall
green spaces at 99th vs. minimum mortality temperature (MMT), Ratio of relative risk (RRR) ¼ 1.14 (95%
CI: 1.07, 1.21); for overall blue spaces, RRR ¼ 1.20 (95% CI: 1.12, 1.29)), while specific blue space types offer
protection against cold temperatures (e.g., for the rivers at 1st vs MMT, RRR ¼ 1.17 (95% CI: 1.07, 1.28)).
Notably, forests, parks, nature reserves, street greenery, and lakes are linked with lower heat-related
cardiovascular mortality, whereas rivers and coasts mitigate cold-related cardiovascular mortality. Blue
spaces provide greater benefits than green spaces. The severity of temperature extremes further am-
plifies GBS's protective effects. This study enhances our understanding of how type-specific GBS in-
fluences health risks associated with non-optimal temperatures, offering valuable insights for integrating
GBS into climate adaptation strategies for maximal health benefits.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cardiovascular diseases (CVDs), including coronary heart dis-
ease, stroke, and other heart diseases, remain the leading cause of
death in the world [1]. Non-optimum ambient temperature is an
important risk factor for CVDs [2]. Globally, CVD mortality burdens
attributable to high and low temperatures were estimated at 0.4%
and 12.7%, respectively [3]. Over the period from 1990 to 2019,
deaths associated with non-optimum temperatures saw a marked
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Fig. 1. Location of study area and averaged daily mean temperature during the study
period (2009e2020).
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increase of 45%, with those linked to low temperatures rising by
36% and high temperatures by 600% [4]. These trends will worsen
over the next few decades, driven by ongoing climate change,
increasing extreme weather events, and population ageing [5,6].
Globally, the temperature-related mortality burden is expected to
increase more in low- and middle-income countries, including
China [7]. While a range of preparedness and emergency measures
and public health guidelines exist in China so far, the need for
upscaling interventions exceeds the current capacity of the gover-
nance system to prevent temperature-related excess deaths, which
calls for innovative and sustainable strategies such as nature-based
solutions to combat the effects of uncomfortable temperatures.

Green and blue space (GBS) is treated as an effective and
promising nature-based solution with high efficiency and low cost
to contribute to improved thermal comfort [8,9]. Microclimate can
be controlled by green spaces through shadowing, evapotranspi-
ration, and photosynthesis [10e12]. Blue spaces form “cool islands”
by exchanging air convection due to its greater heat capacity than
other materials on the land surface [13e16]. In recent years, evi-
dence of the protective effects of GBSs on heat-related mortality
risks was reported [17e19], while several studies have not sup-
ported the beneficial associations [20,21]. Speculation of the
inconsistent results points to the heterogeneity in landscape
composition and configuration regionally and nationally [21]. The
ability of GBS to regulate temperature varies with its size, shape,
connectivity, and vegetation structure and composition
[11,14,22,23], and such features largely depend on the GBS types.
Moreover, GBS can alter human outdoor activities [24,25], but little
is known about the combined effects of various GBS types on hu-
man outdoor activities and heat exposure. Additionally, although
low temperatures may triple the risk of high temperatures [26],
insufficient attention has been paid to the impacts of GBS on cold-
related mortality. The development and implementation of urban
greening and blueing strategies require a comprehensive and in-
depth understanding and comprehensive quantification of the ef-
fects of various GBS types on temperatureehealth associations.

In the current study, we developed novel exposure indices to
reflect the residents' access to overall and type-specific GBS by
combining GBS data and fine-scale population distribution data at a
small area (i.e., subdistrict) level. This method can reduce the
exposure measurement bias or errors by the modifiable areal unit
problem (MAUP), which widely exists in prior ecological studies
using the area-averaged satellite-based vegetation or water indices.
We also assessed the street greenery based on street view images
through convolutional neural network models. Then, based on
nearly 0.9 million CVD mortality cases, we quantified the effect
modifications of GBS in 12 types on both heat- and cold-related
CVD mortality risks in 1085 subdistricts in the Zhejiang province
of China. Considering GBS management remains far short of type-
specific guidelines to combat the health risks of thermal discom-
fort even in high-income countries, our findings could help
decision-makers integrate epidemiological knowledge into their
practices and facilitate the development of heat/cold-health action
plans to increase resilience to climate change.

2. Methods

2.1. Study area

The study was conducted in Zhejiang, a coastal province in
southeastern China, with a subtropical climate characterized by
hot, humid summers and cool, dry winters (Fig. 1). Zhejiang is
comprised of 11 prefecture-level cities, which include both urban
and rural areas. The 11 prefecture-level cities are further divided
into 90 districts/counties (termed as districts below), and each
2

district consists of several subdistricts/towns/townships (termed as
subdistricts below). Subdistrict was chosen as the analysis unit
because it represents the smallest administrative division in the
death reporting system. During the study period of 2009e2020,
changes in the administrative division of 1365 subdistricts caused
the discontinuity of mortality data; thus, we excluded these sub-
districts and included 1085 subdistricts for analysis.

2.2. Mortality, demographic, and socioeconomic data

Daily cardiovascular mortality count data during the study
period from January 1, 2009 to June 30, 2020 was obtained from the
Zhejiang Centre for Disease Control and Prevention based on the
National Death Registration Reporting Information System.
Subdistrict-specific demographic information on the percentages
of old adults (over 65 years) and sex ratios was obtained from the
2010 and 2020 China national census (www.stats.gov.cn/sj/pcsj/
rkpc/6rp/indexch.htm, and www.stats.gov.cn/sj/pcsj/rkpc/7rp/
indexce.htm). District-specific socioeconomic data on per capita
disposable income was obtained from the annual city-level statis-
tical yearbooks (e.g., 2011 Zhejiang Statistical Yearbook [27]).

2.3. Meteorological data

Population-weighted averages of daily 24-h mean temperature
and humidity were calculated for each subdistrict to measure hu-
man exposure accurately. Hourly temperature and relative hu-
midity observations were obtained from the Zhejiang
Meteorological Bureau and collected from a network of 4007
automatic weather stations (AWS) in Zhejiang and neighbouring
provinces (Fig. S1). A rigorous automated quality control process
was implemented to minimise random errors. Using the global
atmospheric reanalysis dataset, the European Centre for Medium-
Range Weather Forecast (ECMWF) Interim Re-Analysis (ERA-
Interim) [28], hourly temperature and relative humidity datawith a
spatial resolution of 0.75� was generated. According to a method
described in a previous study [29], hourly temperature and hu-
midity were interpolated to a 1 km resolution based on
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meteorological observations, ERA-interim, and a digital elevation
model (DEM). The five-fold cross-validation showed the method
produced accurate prediction with little bias (R2 ¼ 0.93,
RMSE ¼ 0.48 �C).

Population density at a spatial resolution of 1 kmwas estimated
through random forest models [30] based on points-of-interest
(POIs), road network, DEM, and multi-source remote sensing data
(Fig. 2). The population-weighted averages of daily 24-h mean
temperature and humidity for each subdistrict were then calcu-
lated using the method previously used by Hu et al. [29].
Fig. 2. Population density of all subdistricts in Zhejiang province, China.

Fig. 3. Subdistrict-level green and blue space exposure indicators: a, over
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2.4. Measurements of green and blue space exposure

We developed exposure indices for each type of GBS to assess
subdistrict-level residents' exposure to green and blue spaces.
Green spaces were classified into seven types: farms, nature re-
serves, forests, scrubs, grasses, parks, and street greenery. The
exposure indices for farms, nature reserves, forests, scrubs, grasses,
and parks were calculated as the ratio of the number of residents
living within a buffer zone around a specific type of green space to
the total population of a certain subdistrict. Buffer zones were
established around the input green space boundaries according to
the maximum attraction distance corresponding to different sizes
of specified green spaces (Table S1). The boundaries of forests were
obtained from Area-of-Interest (AOI) data from the Baidu map
(map.baidu.com). The boundaries for other types of green spaces
(including farms, nature reserves, forests, scrubs, grasses, and
parks) were obtained from OpenStreetMap (www.openstreetmap.
org), a collaborative project to create a free global geographic
database. Additionally, we applied the method above to calculate
the exposure index of overall green spaces, using the buffer zones of
patches, including farms, nature reserves, forests, scrubs, grasses,
and parks (Fig. 3).

We used the Green View Index (GVI) to measure the green space
exposure index for street greenery. We placed sampling points at
intervals of 50 m along the road network provided by Open-
StreetMap (Fig. 4). Baidu street view images were downloaded
from different angles (0�, 90�, 180�, and 270�) at each sampling
point between the years 2017 and 2020. Most street view images
were collected in the summer when plants and trees are the
greenest. A total of 3,314,028 street-view images were gathered
from 828,507 sampling points. DeepLab V3þ, the third-generation
improvement version of Google's DeepLab convolutional neural
network series [31], was used to calculate GVI from street view
images by semantic segmentation. The xception71_dpc_city-
scapes_trainval model was selected, and the CityScapes dataset was
used for model training. The average proportion of trees and plants
in four matched images was taken as the GVI of each sampling
point. The average GVI of all sampling points within a subdistrict
all green space exposure index; b, overall blue space exposure index.

http://map.baidu.com
http://www.openstreetmap.org
http://www.openstreetmap.org


Fig. 4. An example of the sampling point of the street view images and the image
segmentation process.
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was used to characterise the subdistrict's exposure index of street
greenery. The index is between 0 and 1, with higher values indi-
cating higher exposure to street greenery.

Similarly, we classified blue spaces into five types (i.e., lakes,
rivers, wetlands, reservoirs, and coasts) [15] and calculated the
exposure index for each blue space type. For lakes, rivers, wetlands,
reservoirs, and coasts, the blue space exposure indexwasmeasured
as the ratio of residents living within the buffer zone around a type
of blue space to the total population of a certain subdistrict. For
inland blue spaces, buffer zones were created around the blue
space boundaries according to the maximum attraction distance
corresponding to blue space types and sizes (Table S2). For the
coast, a 5 km buffer zone was created around the coastline of
Zhejiang province [32]. The polygon data of inland blue spaces (i.e.,
rivers, lakes, wetlands, and reservoirs) were collected from the
Chinese river system and river basin dataset (https://www.
rserforum.com/thread/212). The exposure index of overall blue
spaces was calculated using the buffer zones of all patches of blue
spaces (Fig. 3).

2.5. Statistical analysis

A novel case-time series design explored the association be-
tween non-optimum temperature and CVD mortality. This design
reduced potential biases by aggregating exposures and health
outcomes across small geographical areas (e.g., subdistricts) [33].
Temperature-mortality associations at the subdistrict level were
estimated through a fixed-effects conditional quasi-Poisson
regression with distributed lag non-linear models (DLNMs),
which were able to account for both non-linear exposure-response
associations and delayed effects [34]. Using strata in the same year,
month, and day of the week to match the case and control days
within the subdistrict, the regression controlled for long-term and
seasonal trends and the day-of-week effect. We then introduced
the cross-basis function of daily mean temperature constructed by
the DLNM, which included a nature cubic spline with two internal
knots at the 33rd and 66th percentiles of the mean temperature
distributions [35], as well as a lag response curve with a natural
cubic spline with lag knots placed at equally-spaced values along
the logarithmic scale [36]. Previous studies have shown that it was
inappropriate to use the same exposure lag period for both heat
and cold responses, because cold effects often appear several days
after exposure and persist for a longer period, whereas heat effects
4

are immediate [37,38]. According to the lag-response associations
at high and low temperatures (Fig. S2), we set the maximum lag
days for high temperatures as three. We extended the lag days to 21
days to capture the longer delayed effects in coldemortality
associations.

To measure the effect modifications of green and blue spaces on
heat- and cold-related mortality risks, a linear interaction between
the cross-basis function and the green or blue space exposure index
was introduced into the model [33,39]. Relative risks (RRs) of non-
optimum temperatures versus (vs.) minimum mortality tempera-
ture (MMT) were reported. Temperatures at the 1st, 5th, 10th, 90th,
95th, and 99th percentiles are defined as extreme cold, severe cold,
moderate cold, moderate heat, severe heat, and extreme heat,
respectively. The ratios of relative risks (RRRs) were calculated
using a previously described method [40] to compare RRs between
subdistricts with low (P5) and high (P95) levels of green or blue
space exposure index. The Z test was used to test the significance of
the effect modifications of green and blue spaces [40].

To verify the robustness of our results, sensitivity analyses were
conducted by changing the model settings. Firstly, low and high
levels of the green and blue space exposure indices were consid-
ered to be reset to their respective values at the 10th and 90th
percentiles. Secondly, relative humidity at 0e3 lag days was addi-
tionally controlled for in the model. In addition, potential con-
founders, such as the percentage of old adults aged over 65 years,
sex ratio, and per capita disposable income, were additionally
controlled as the time-varying interactive covariates in the
regression models.

All statistical analyses were performed in R software (version
4.2.0), employing the dlnm, gnm, and MASS packages. The signifi-
cance level was set at P < 0.05 (two-tailed) for all statistical tests.

3. Results

3.1. Descriptive statistics

During a 12-year study period, we observed a total of 902,193
CVD deaths, with an average of 75,183 deaths per year (Table 1). The
average mean temperature in Zhejiang province is 16.9 �C, with an
average daily relative humidity of 75.9%. The temperatures of
extreme heat (P99), severe heat (P95), and moderate heat (P90)
were 31.7, 29.3, and 27.7 �C. The temperatures of extreme cold (P1),
severe cold (P5), and moderate cold (P10) are �0.5, 2.8, and 5.1 �C,
respectively. The mean (SD) values of green space exposure indices
were as follows: overall green spaces (0.63 [0.40]), forests (0.57
[0.41]), street greenery (0.06 [0.10]), parks (0.14 [0.28]), nature re-
serves (0.14 [0.31]), grasses (0.02 [0.12]), farms (0.11 [0.26]), and
scrubs (0.02 [0.10]). The mean (SD) values of blue space exposure
indices were overall blue spaces (0.70 [0.35]), lakes (0.24 [0.28]),
rivers (0.28 [0.37]), reservoirs (0.38 [0.39]), wetlands (0.04 [0.14]),
and coasts (0.51 [0.49]).

3.2. Heat-related mortality risks with different types of GBS

For green spaces, subdistricts with high levels of green space
exposure to overall green spaces, forests, parks, nature reserves,
and street greenery exhibited significantly lower RRs for CVD
mortality during extreme heat days (P99) and severe heat days
(P95) (Fig. 5). For example, the RR at P95 vs. MMT was higher in
subdistricts with a low level of exposure to forests (1.22; 95% CI:
1.19, 1.26) compared to those with a high level of exposure (1.12;
95% CI: 1.09, 1.15), with an estimated RRR of 1.09 (95% CI: 1.05, 1.14)
(P < 0.001, Table 2). The beneficial effects of higher exposure to
overall green spaces, forests, nature reserves, and street greenery
were maintained at moderate heat days (P90) (Ps < 0.01, Fig. 5);

https://www.rserforum.com/thread/212
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Table 1
Descriptive statistics of death number and temperature by cities of Zhejiang province, China, for 2009e2020.

City Number of districts Number of subdistricts involved Mean CVD deaths per year Population-weighted daily mean temperature (�C)a

Hangzhou 13 141 10,690 16.9 (�11.0 to 36.0)
Ningbo 10 122 8171 17.2 (�11.3 to 35.6)
Wenzhou 12 100 11,174 17.7 (�7.3 to 33.5)
Shaoxing 6 59 5428 16.6 (�9.8 to 36.2)
Huzhou 5 54 5113 16.7 (�11.3 to 35.9)
Jiaxing 7 63 6078 17.3 (�6.1 to 35.8)
Jinhua 9 141 8298 16.9 (�10.3 to 35.2)
Quzhou 6 96 3772 17.0 (�10.8 to 34.6)
Taizhou 9 111 9830 17.1 (�10.5 to 33.3)
Lishui 9 166 4746 15.8 (�11.0 to 33.8)
Zhoushan 4 32 1883 17.1 (�5.0 to 33.3)
All 90 1085 75,183 16.9 (�11.3 to 36.2)

a Mean (min, max).

Fig. 5. Relative risk (RR) and its 95% confidence interval (95% CI) of cardiovascular mortality at high temperatures predicted for a subdistrict with a low (light colour) and high (dark
colour) value of green and blue space exposure index by green and blue space types. High temperatures: a, P99, 31.7 �C; b, P95, 29.3 �C; c, P90, 27.7 �C.
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however, the beneficial effect of parks became insignificant
(P ¼ 0.06). No effect modification was observed for grasses, farms,
or scrubs during either moderate heat, severe heat, or extreme heat
days.

For blue spaces, protective associations with heat-related mor-
tality risks during moderate heat, severe heat, and extreme heat
days were only observed for overall blue spaces and lakes, but not
for rivers, reservoirs, wetlands, and coasts (Fig. 5). For example, the
RRs for the population in subdistricts with low and high levels of
overall blue space exposure index were 1.28 (95% CI: 1.22, 1.34) and
5

1.12 (95% CI: 1.10, 1.15) during severe heat days (P95), respectively,
with a RRR estimated to be 1.14 (95% CI: 1.08, 1.20) (P < 0.001,
Table 2). The difference in RRs between high and low levels of blue
space exposures to overall blue spaces and lakes gradually became
smaller as high temperature decreased from extreme heat to
moderate heat (Table 2).
3.3. Cold-related mortality risks with different types of GBS

During extreme cold (P1), severe cold (P5), and moderate cold



Table 2
The ratio of relative risk (RRR) and its 95% confidence interval (95% CI) for cardiovascular mortality at high temperatures (P90, P95, and P99) at high (95%) and low (5%) levels of
green and blue space exposure indices and the Z test.

Green and blue space type RRR for a T (27.7 �C) at P90 P value RRR for a T (29.3 �C) at P95 P value RRR for a T (31.7 �C) at P99 P value

Green space type
Overall 1.07 (1.03, 1.10) <0.001 1.09 (1.05, 1.14) <0.001 1.14 (1.07, 1.21) <0.001
Forest 1.07 (1.03, 1.10) <0.001 1.09 (1.05, 1.14) <0.001 1.14 (1.07, 1.20) <0.001
Street greenery 1.05 (1.01, 1.09) <0.01 1.07 (1.03, 1.12) <0.01 1.12 (1.05, 1.19) <0.001
Park 1.04 (1.00, 1.08) 0.060 1.06 (1.01, 1.12) <0.05 1.10 (1.02, 1.17) <0.01
Nature reserve 1.06 (1.01, 1.10) <0.01 1.09 (1.03, 1.15) <0.01 1.14 (1.07, 1.23) <0.001
Grass 1.01 (0.98, 1.03) 0.634 1.01 (0.98, 1.03) 0.605 1.01 (0.97, 1.05) 0.584
Farm 1.01 (0.96, 1.06) 0.708 1.01 (0.95, 1.08) 0.685 1.02 (0.94, 1.11) 0.669
Scrub 1.00 (0.98, 1.03) 0.785 1.00 (0.98, 1.03) 0.795 1.00 (0.97, 1.04) 0.811
Blue space type
Overall 1.11 (1.06, 1.15) <0.001 1.14 (1.08, 1.20) <0.001 1.20 (1.12, 1.29) <0.001
Lake 1.08 (1.04, 1.13) <0.001 1.12 (1.06, 1.17) <0.001 1.17 (1.10, 1.25) <0.001
River 1.02 (0.98, 1.05) 0.295 1.03 (0.99, 1.07) 0.195 1.05 (0.99, 1.11) 0.125
Reservoir 1.02 (0.99, 1.06) 0.196 1.03 (0.99, 1.08) 0.171 1.05 (0.98, 1.11) 0.157
Wetland 1.01 (0.97, 1.05) 0.636 1.02 (0.97, 1.07) 0.517 1.03 (0.96, 1.10) 0.410
Coast 0.98 (0.95, 1.01) 0.107 0.97 (0.93, 1.01) 0.097 0.96 (0.91, 1.01) 0.095

Note:
(1) RRR refers to the ratio of RR at the 90th, 95th, or 99th percentiles of the temperature compared to MMT at high (95%) and low (5%) levels of green and blue space exposure
indices.
(2) P value refers to the significance of the difference between the RRs at the 90th, 95th, or 99th percentiles of the temperature compared to MMT at high (95%) and low (5%)
levels of green and blue space exposure indices using Z test.
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(P10) days, significantly lower cold-related CVD mortality risks
were found in subdistricts with higher levels of blue space expo-
sures to rivers and coasts (Fig. 6), rather than to other blue space
Fig. 6. Relative risk (RR) and its 95% confidence interval (95% CI) of cardiovascular mortality
colour) value of green and blue space exposure index by green and blue space types. Low
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types of overall blue spaces, lakes, wetlands, and reservoirs, as well
as all types of green spaces. For example, the RRs at P1 vs. MMT
were higher for the population in subdistricts with a low exposure
at low temperatures predicted for a subdistrict with a low (light colour) and high (dark
temperatures: a, P1, �0.5 �C; b, P5, 2.8 �C; c, P10, 5.1 �C.



Table 3
The ratio of relative risk (RRR) and its 95% confidence interval (95% CI) for cardiovascular mortality at low temperatures (P10, P5, and P1) at high (95%) and low (5%) levels of
green and blue space exposure indices and the Z test.

Green and blue space type RRR for a T (5.1 �C) at P10 P value RRR for a T (2.8 �C) at P5 P value RRR for a T (�0.5 �C) at P1 P value

Green space type
Overall 1.02 (0.97, 1.08) 0.367 1.01 (0.95, 1.08) 0.690 0.99 (0.91, 1.08) 0.828
Forest 1.01 (0.96, 1.06) 0.640 1.00 (0.94, 1.06) 0.894 0.97 (0.89, 1.05) 0.429
Street greenery 1.04 (0.98, 1.10) 0.226 1.05 (0.98, 1.13) 0.137 1.08 (0.98, 1.20) 0.110
Park 1.05 (0.99, 1.12) 0.131 1.07 (0.99, 1.16) 0.089 1.10 (0.98, 1.24) 0.090
Nature reserve 1.04 (0.98, 1.11) 0.210 1.06 (0.98, 1.15) 0.131 1.10 (0.98, 1.23) 0.107
Grass 1.01 (0.98, 1.04) 0.696 1.01 (0.97, 1.05) 0.593 1.02 (0.96, 1.07) 0.531
Farm 1.00 (0.93, 1.09) 0.933 1.04 (0.94, 1.15) 0.459 1.11 (0.95, 1.30) 0.199
Scrub 1.01 (0.97, 1.04) 0.652 1.01 (0.97, 1.06) 0.496 1.03 (0.97, 1.09) 0.398
Blue space type
Overall 1.05 (0.99, 1.12) 0.097 1.05 (0.98, 1.13) 0.148 1.05 (0.95, 1.16) 0.309
Lake 1.03 (0.97, 1.09) 0.406 1.04 (0.97, 1.12) 0.292 1.07 (0.96, 1.19) 0.245
River 1.08 (1.03, 1.14) <0.01 1.12 (1.05, 1.19) <0.001 1.17 (1.07, 1.28) <0.001
Reservoir 0.99 (0.94, 1.05) 0.832 0.97 (0.91, 1.03) 0.316 0.92 (0.85, 1.01) 0.077
Wetland 1.03 (0.97, 1.10) 0.294 1.05 (0.98, 1.14) 0.168 1.09 (0.98, 1.22) 0.118
Coast 1.06 (1.01, 1.10) <0.05 1.08 (1.03, 1.14) <0.01 1.13 (1.05, 1.22) <0.01

Note:
(1) RRR refers to the ratio of RR at the 10th, 5th, or 1st percentiles of the temperature compared to MMT at high (95%) and low (5%) levels of green and blue space exposure
indices.
(2) P value refers to the significance of the difference between the RRs at the 10th, 5th, or 1st percentiles of the temperature compared toMMT at high (95%) and low (5%) levels
of green and blue space exposure indices using the Z test.
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level of rivers (1.86; 95% CI: 1.77, 1.95) than those with a high
exposure level of rivers (1.59; 95% CI: 1.47, 1.71). The corresponding
RRR was estimated to be 1.17 (95% CI: 1.07, 1.28) (P < 0.001, Table 3),
indicating a distinct disparity between subdistricts with high and
low exposure levels of rivers.

3.4. Sensitivity analyses

In the sensitivity analyses, we found robust effect modifications
of specific types of green and blue spaces after using different
definitions of the high and low levels of green and blue space
exposure indices or additionally adjusting for confounders
including humidity, percentage of people aged over 65 years, sex,
and income in the model (Figs. S3e12).

4. Discussion

To our knowledge, this study is the first to provide epidemio-
logical insights into the complexity of effect modifications of
different types of GBS on both heat- and cold-related CVDmortality
risks. Based on the small-area analysis of 1085 subdistricts in
Zhejiang province, China, we found that higher exposure to certain
types of GBS, including forests, parks, nature reserves, street
greenery, and lakes, could alleviate the risk of heat-related CVD
mortality. For cold-related CVD mortality, only blue space types of
rivers and coasts showed significant protective effects. Our findings
highlight the effectiveness of certain GBS types in mitigating the
mortality risks associated with non-optimum temperatures.

The cooling effects of all green space types in the warm season
are well established [41]. However, we only observed significant
mitigation of heat-induced mortality for a few types of green
spaces. The major reason may be related to the distinction of patch
size. Various city case studies have reported that larger green
spaces (e.g., forests, nature reserves, and parks) contributed to
greater cooling effects [16,42,43]. Another potential explanation is
the varying cooling effects of different vegetation structures [16]. A
lack of tree canopy to absorb shortwave radiation can lead to a high
vapour pressure deficit, which triggers a physiological reaction that
causes stomatal closure and hinders transpiration cooling [44].
Meanwhile, the underlying ground vegetation beneath the tree
canopy shades does not get adequate radiation for transpiration
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[22]. Forests, parks, nature reserves, and street greenery often have
dense, extensive canopy cover with multi-layered vegetation
structures. They can provide stronger cooling effects than grasses,
farms, and scrubs.

Decreased cooling capacity in winter may lead to no apparent
impact of all green space types on cold-related CVD mortality in
Zhejiang. This phenomenon could be regarded as a verification of
the findings by Hathway and Sharples [45], Schatz and Kucharik
[46], and Solcerova et al. [47], who reported a stronger cooling ef-
fect of green spaces in summer than inwinter. The cooling effects of
green spaces are mainly obtained by sensible and latent heat
reduction. Seasonal sensible heat flux was found to be lowest
during thewinter, while the highest heat flux occurs in the summer
season when the vegetation-to-atmosphere temperature gradient
is higher [15]d so that inwinter green spaces (e.g., forests) in some
climate zones have moderate warming effects [15]. Besides, past
evidence showed stronger cooling during the daytime in summer
but stronger cooling of vegetation during the night in winter [41].
Indeed, cold exposure for the population at night is likely mainly
driven by the indoor environment. It is, therefore, unlikely that the
actual temperature exposure of residents during the winter will be
greatly affected by the cooling of green spaces.

Among all blue space types, only the lakes were observed to
mitigate the heat-related CVD mortality risks, despite this benefit
being larger than any type of green spaces. For rivers, reservoirs,
and wetlands, the cooling intensity of their waterbody patches may
be weaker than those of lakes since larger size and compact shape
of waterbodies can reduce temperature better than smaller sizes
and elongated or irregular shapes, respectively [14,48,49]. Despite
the vast expanse of oceans compared to inland water bodies, the
evaporation of seawater may raise the air humidity and conse-
quently offset the benefits of thermal comfort [49]. Further,
consistent with a study by Song et al. [21] in Hong Kong, the non-
significant mitigation effect of the coast was also speculated to be
partly explained by the fact that the coastal populations are far
more likely to engage in outdoor physical activities or works than
the non-coastal populations during heat waves [25,50].

During the cold season, only rivers and coastal areas exhibited
protective effects against cold-related health issues. The benefits of
residing near the coast can be naturally explained by the warming
effect of the ocean [13,15]. As solar radiation decreases in winter,
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the ocean can gradually release the stored heat and warm the
coastal areas [15]. Meanwhile, we cannot rule out the influence of
better health status of people living near the coast potentially
benefiting from enhanced physical activity [25]. Among all types of
inland blue spaces, no significant modification of effects was
observed for lakes, wetlands, or reservoirs. Prior studies that tried
to assess the impact of waterbodies found that lakes, wetlands, and
reservoirs can provide warming as rivers during the winter [45,51].
The underlying reason for the discrepancy in the impacts of
different inland blue space types on cold-induced CVD mortality is
still unknown and needs further exploration.

Our findings reinforce the greening and blueing strategy in ur-
ban development and renewal as an effective adaptation policy to
climate change. Results support that the trade-offs between
potentially enhanced outdoor activities due to green spaces (e.g.,
urban parks, street greenery) and the cooling effects yield net
protective effects against temperature-related mortality. It lessens
the worries about the increased health risks from higher exposure
time to outdoor non-optimum temperatures due to more visits to
public green spaces. Concrete ways to achieve a climate-resilient
development of green space planning for a healthy city include
preserving forests and nature reserves, improving spatial equity of
urban parks, and increasing street greenery. Creating new blue
space is difficult in most developed areas, but developing conser-
vation actions to protect the rivers and lakes around neighbour-
hoods should be recommended. In addition, our study confirmed
that disparity in temperature-related mortality is partially attrib-
uted to the inequality of access to certain GBS types. Accordingly,
indicators of insufficient neighbourhood GBS should be included in
future vulnerability assessment models. The inclusion should also
consider the varying effects at different temperatures.

The current study benefited from (a) the use of an advanced
case-time series design to assess GBS exposures in small
geographical areas to reduce the exposure assessment bias and
errors from MAUP; (b) the application of novel GBS exposure
indices considering both size and distance to the residences of the
GBS, as well as the exposure index of street greenery based on a
large sample of street view images through machine learning
techniques. Nonetheless, several limitations should be acknowl-
edged. First, temperature-related mortality risks are largely
affected by various individual factors, such as the use of air con-
ditioning and heating [52,53]. Although we carefully attempted to
test potential confounding effects (e.g., age, sex, income), residual
confounding cannot be fully ruled out. Second, despite the inter-
action effects of air pollution (e.g., particulate matter, ozone) and
temperature on mortality previously reported [54], air pollution
was not included in our analysis due to the data unavailability for
the entire study period. Third, GBS exposure assessments were
based on the assumption that the willingness to visit GBS for the
exposed population is the same in different subdistricts without
accounting for human time-activity patterns, which are worth
considering in further research. Additionally, prior studies have
demonstrated that the cooling effects of GBS vary by local back-
ground climate [41]. Therefore, there is uncertainty about the
extrapolation of our results to other regions and countries. Finally,
the income data used in the sensitivity analysis were collected at
the district level rather than the subdistrict level because
subdistrict-level data were not publicly available. This may reduce
the ability to detect the impact of the potential confounding effects
of income on the effect modification of GBS.

Conclusions

Green and blue spaces have significant protective effects on CVD
mortality at high temperatures in Zhejiang province, China,
8

whereas only blue spaces showed protective effects at low tem-
peratures. Specifically, higher exposures to forests, parks, nature
reserves, street greenery, and lakes are associated with a decreased
risk of heat-related CVD mortality, while higher exposures to rivers
and coasts are associated with a decreased risk of cold-related CVD
mortality. Notably, blue spaces confer greater protective benefits
than green spaces, with these benefits intensifying alongside more
extreme temperature conditions. Our findings provide a deeper
understanding of the linkage of type-specific GBS and health risks
attributable to non-optimum temperatures, providing insights for
decision-makers to obtain the maximum health benefits of GBS in
actionable climate adaptation planning.
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